1) Fix IPF ICC 11.1 issue when /Ox is used related to the use of local variables and parameter across the transition when TEMP RAM is disabled.

2) Update the logic that computes the offset of the heap and stack from TEMP RAM to Permanent RAM to handle all possible offsets values.
3) Minor cleanups to the PEI_CORE_INSTANCE structure
4) Simplify the logic that manages the TEMP RAM to PERM RAM transition and clean up the related DEBUG() messages.


git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@10481 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
mdkinney 2010-05-11 22:11:31 +00:00
parent da935a5c97
commit ef05e06350
4 changed files with 259 additions and 244 deletions

View File

@ -183,56 +183,6 @@ DiscoverPeimsAndOrderWithApriori (
}
/**
Shadow PeiCore module from flash to installed memory.
@param PeiServices An indirect pointer to the EFI_PEI_SERVICES table published by the PEI Foundation.
@param PrivateInMem PeiCore's private data structure
@return PeiCore function address after shadowing.
**/
VOID*
ShadowPeiCore(
IN CONST EFI_PEI_SERVICES **PeiServices,
IN PEI_CORE_INSTANCE *PrivateInMem
)
{
EFI_PEI_FILE_HANDLE PeiCoreFileHandle;
EFI_PHYSICAL_ADDRESS EntryPoint;
EFI_STATUS Status;
UINT32 AuthenticationState;
PeiCoreFileHandle = NULL;
//
// Find the PEI Core in the BFV
//
Status = PrivateInMem->Fv[0].FvPpi->FindFileByType (
PrivateInMem->Fv[0].FvPpi,
EFI_FV_FILETYPE_PEI_CORE,
PrivateInMem->Fv[0].FvHandle,
&PeiCoreFileHandle
);
ASSERT_EFI_ERROR (Status);
//
// Shadow PEI Core into memory so it will run faster
//
Status = PeiLoadImage (
PeiServices,
*((EFI_PEI_FILE_HANDLE*)&PeiCoreFileHandle),
PEIM_STATE_REGISITER_FOR_SHADOW,
&EntryPoint,
&AuthenticationState
);
ASSERT_EFI_ERROR (Status);
//
// Compute the PeiCore's function address after shaowed PeiCore.
// _ModuleEntryPoint is PeiCore main function entry
//
return (VOID*) ((UINTN) EntryPoint + (UINTN) PeiCore - (UINTN) _ModuleEntryPoint);
}
//
// This is the minimum memory required by DxeCore initialization. When LMFA feature enabled,
// This part of memory still need reserved on the very top of memory so that the DXE Core could
@ -685,19 +635,16 @@ PeiDispatcher (
UINTN SaveCurrentFvCount;
EFI_PEI_FILE_HANDLE SaveCurrentFileHandle;
PEIM_FILE_HANDLE_EXTENDED_DATA ExtendedData;
EFI_PHYSICAL_ADDRESS NewPermenentMemoryBase;
TEMPORARY_RAM_SUPPORT_PPI *TemporaryRamSupportPpi;
EFI_HOB_HANDOFF_INFO_TABLE *OldHandOffTable;
EFI_HOB_HANDOFF_INFO_TABLE *NewHandOffTable;
INTN StackOffset;
INTN HeapOffset;
PEI_CORE_INSTANCE *PrivateInMem;
UINT64 NewPeiStackSize;
UINT64 OldPeiStackSize;
UINT64 StackGap;
UINT64 NewStackSize;
EFI_PHYSICAL_ADDRESS TopOfNewStack;
EFI_PHYSICAL_ADDRESS TopOfOldStack;
EFI_PHYSICAL_ADDRESS TemporaryRamBase;
UINTN TemporaryRamSize;
EFI_PHYSICAL_ADDRESS TemporaryStackSize;
UINTN StackOffset;
BOOLEAN StackOffsetPositive;
EFI_FV_FILE_INFO FvFileInfo;
UINTN OldCheckingTop;
UINTN OldCheckingBottom;
PEI_CORE_FV_HANDLE *CoreFvHandle;
VOID *LoadFixPeiCodeBegin;
@ -889,13 +836,14 @@ PeiDispatcher (
&& (*StackPointer == INIT_CAR_VALUE);
StackPointer ++);
DEBUG ((EFI_D_INFO, "Temp Stack : BaseAddress=0x%p Length=0x%X\n", SecCoreData->StackBase, (UINT32)SecCoreData->StackSize));
DEBUG ((EFI_D_INFO, "Temp Heap : BaseAddress=0x%p Length=0x%X\n", Private->HobList.Raw, (UINT32)((UINTN) Private->HobList.HandoffInformationTable->EfiFreeMemoryBottom - (UINTN) Private->HobList.Raw)));
DEBUG ((EFI_D_INFO, "Total temporary memory: %d bytes.\n", (UINT32)SecCoreData->TemporaryRamSize));
DEBUG ((EFI_D_INFO, " temporary memory stack ever used: %d bytes.\n",
(SecCoreData->StackSize - ((UINTN) StackPointer - (UINTN)SecCoreData->StackBase))
(UINT32)(SecCoreData->StackSize - ((UINTN) StackPointer - (UINTN)SecCoreData->StackBase))
));
DEBUG ((EFI_D_INFO, " temporary memory heap used: %d bytes.\n",
((UINTN) Private->HobList.HandoffInformationTable->EfiFreeMemoryBottom -
(UINTN) Private->HobList.Raw)
(UINT32)((UINTN)Private->HobList.HandoffInformationTable->EfiFreeMemoryBottom - (UINTN)Private->HobList.Raw)
));
DEBUG_CODE_END ();
@ -903,9 +851,10 @@ PeiDispatcher (
//
// Loading Module at Fixed Address is enabled
//
PeiLoadFixAddressHook(Private);
PeiLoadFixAddressHook (Private);
//
// if Loading Module at Fixed Address is enabled, Allocating memory range for Pei code range.
// If Loading Module at Fixed Address is enabled, Allocating memory range for Pei code range.
//
LoadFixPeiCodeBegin = AllocatePages((UINTN)PcdGet32(PcdLoadFixAddressPeiCodePageNumber));
DEBUG ((EFI_D_INFO, "LOADING MODULE FIXED INFO: PeiCodeBegin = 0x%lX, PeiCodeTop= 0x%lX\n", (UINT64)(UINTN)LoadFixPeiCodeBegin, (UINT64)((UINTN)LoadFixPeiCodeBegin + PcdGet32(PcdLoadFixAddressPeiCodePageNumber) * EFI_PAGE_SIZE)));
@ -914,170 +863,104 @@ PeiDispatcher (
//
// Reserve the size of new stack at bottom of physical memory
//
OldPeiStackSize = (UINT64) SecCoreData->StackSize;
NewPeiStackSize = (RShiftU64 (Private->PhysicalMemoryLength, 1) + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
if (PcdGet32(PcdPeiCoreMaxPeiStackSize) > (UINT32) NewPeiStackSize) {
Private->StackSize = NewPeiStackSize;
} else {
Private->StackSize = PcdGet32(PcdPeiCoreMaxPeiStackSize);
}
//
// In theory, the size of new stack in permenent memory should large than
// size of old stack in temporary memory.
// The size of new stack in permenent memory must be the same size
// or larger than the size of old stack in temporary memory.
// But if new stack is smaller than the size of old stack, we also reserve
// the size of old stack at bottom of permenent memory.
//
DEBUG ((EFI_D_INFO, "Old Stack size %d, New stack size %d\n", (INT32) OldPeiStackSize, (INT32) Private->StackSize));
ASSERT (Private->StackSize >= OldPeiStackSize);
StackGap = Private->StackSize - OldPeiStackSize;
//
// Update HandOffHob for new installed permenent memory
//
OldHandOffTable = Private->HobList.HandoffInformationTable;
OldCheckingBottom = (UINTN)(SecCoreData->TemporaryRamBase);
OldCheckingTop = (UINTN)(OldCheckingBottom + SecCoreData->TemporaryRamSize);
//
// The whole temporary memory will be migrated to physical memory.
// CAUTION: The new base is computed accounding to gap of new stack.
//
NewPermenentMemoryBase = Private->PhysicalMemoryBegin + StackGap;
NewStackSize = RShiftU64 (Private->PhysicalMemoryLength, 1);
NewStackSize = ALIGN_VALUE (NewStackSize, EFI_PAGE_SIZE);
NewStackSize = MIN (PcdGet32(PcdPeiCoreMaxPeiStackSize), NewStackSize);
DEBUG ((EFI_D_INFO, "Old Stack size %d, New stack size %d\n", (UINT32)SecCoreData->StackSize, (UINT32)NewStackSize));
ASSERT (NewStackSize >= SecCoreData->StackSize);
//
// Caculate stack offset and heap offset between temporary memory and new permement
// memory seperately.
//
StackOffset = (UINTN) NewPermenentMemoryBase - (UINTN) SecCoreData->StackBase;
HeapOffset = (INTN) ((UINTN) Private->PhysicalMemoryBegin + Private->StackSize - \
(UINTN) SecCoreData->PeiTemporaryRamBase);
DEBUG ((EFI_D_INFO, "Heap Offset = 0x%lX Stack Offset = 0x%lX\n", (INT64)HeapOffset, (INT64)StackOffset));
TopOfOldStack = (UINTN)SecCoreData->StackBase + SecCoreData->StackSize;
TopOfNewStack = Private->PhysicalMemoryBegin + NewStackSize;
if (TopOfNewStack >= (UINTN)SecCoreData->PeiTemporaryRamBase) {
Private->HeapOffsetPositive = TRUE;
Private->HeapOffset = (UINTN)(TopOfNewStack - (UINTN)SecCoreData->PeiTemporaryRamBase);
} else {
Private->HeapOffsetPositive = FALSE;
Private->HeapOffset = (UINTN)((UINTN)SecCoreData->PeiTemporaryRamBase - TopOfNewStack);
}
if (TopOfNewStack >= TopOfOldStack) {
StackOffsetPositive = TRUE;
StackOffset = (UINTN)(TopOfNewStack - TopOfOldStack);
} else {
StackOffsetPositive = FALSE;
StackOffset = (UINTN)(TopOfOldStack - TopOfNewStack);
}
DEBUG ((EFI_D_INFO, "Heap Offset = 0x%lX Stack Offset = 0x%lX\n", (UINT64)Private->HeapOffset, (UINT64)(StackOffset)));
//
// Caculate new HandOffTable and PrivateData address in permenet memory's stack
// Build Stack HOB that describes the permanent memory stack
//
NewHandOffTable = (EFI_HOB_HANDOFF_INFO_TABLE *)((UINTN)OldHandOffTable + HeapOffset);
PrivateInMem = (PEI_CORE_INSTANCE *)((UINTN) (VOID*) Private + StackOffset);
DEBUG ((EFI_D_INFO, "Stack Hob: BaseAddress=0x%lX Length=0x%lX\n", TopOfNewStack - NewStackSize, NewStackSize));
BuildStackHob (TopOfNewStack - NewStackSize, NewStackSize);
//
// Cache information from SecCoreData into locals before SecCoreData is converted to a permanent memory address
//
TemporaryRamBase = (EFI_PHYSICAL_ADDRESS)(UINTN)SecCoreData->TemporaryRamBase;
TemporaryRamSize = SecCoreData->TemporaryRamSize;
TemporaryStackSize = SecCoreData->StackSize;
//
// Caculate new HandOffTable and PrivateData address in permanent memory's stack
//
if (StackOffsetPositive) {
SecCoreData = (CONST EFI_SEC_PEI_HAND_OFF *)((UINTN)(VOID *)SecCoreData + StackOffset);
Private = (PEI_CORE_INSTANCE *)((UINTN)(VOID *)Private + StackOffset);
} else {
SecCoreData = (CONST EFI_SEC_PEI_HAND_OFF *)((UINTN)(VOID *)SecCoreData - StackOffset);
Private = (PEI_CORE_INSTANCE *)((UINTN)(VOID *)Private - StackOffset);
}
//
// TemporaryRamSupportPpi is produced by platform's SEC
//
Status = PeiLocatePpi (
(CONST EFI_PEI_SERVICES **) PeiServices,
Status = PeiServicesLocatePpi (
&gEfiTemporaryRamSupportPpiGuid,
0,
NULL,
(VOID**)&TemporaryRamSupportPpi
);
if (!EFI_ERROR (Status)) {
//
// Temporary Ram support Ppi is provided by platform, it will copy
// Temporary Ram Support PPI is provided by platform, it will copy
// temporary memory to permenent memory and do stack switching.
// After invoken temporary Ram support, following code's stack is in
// memory but not in temporary memory.
// After invoking Temporary Ram Support PPI, the following code's
// stack is in permanent memory.
//
TemporaryRamSupportPpi->TemporaryRamMigration (
(CONST EFI_PEI_SERVICES **) PeiServices,
(EFI_PHYSICAL_ADDRESS)(UINTN) SecCoreData->TemporaryRamBase,
(EFI_PHYSICAL_ADDRESS)(UINTN) NewPermenentMemoryBase,
SecCoreData->TemporaryRamSize
PeiServices,
TemporaryRamBase,
(EFI_PHYSICAL_ADDRESS)(UINTN)(TopOfNewStack - TemporaryStackSize),
TemporaryRamSize
);
} else {
//
// In IA32/x64/Itanium architecture, we need platform provide
// TEMPORAY_RAM_MIGRATION_PPI.
// TEMPORARY_RAM_MIGRATION_PPI.
//
ASSERT (FALSE);
}
//
//
// Fixup the PeiCore's private data
//
PrivateInMem->Ps = &PrivateInMem->ServiceTableShadow;
PrivateInMem->CpuIo = &PrivateInMem->ServiceTableShadow.CpuIo;
PrivateInMem->HobList.Raw = (VOID*) ((UINTN) PrivateInMem->HobList.Raw + HeapOffset);
PrivateInMem->StackBase = (EFI_PHYSICAL_ADDRESS)(((UINTN)PrivateInMem->PhysicalMemoryBegin + EFI_PAGE_MASK) & ~EFI_PAGE_MASK);
PeiServices = (CONST EFI_PEI_SERVICES **) &PrivateInMem->Ps;
//
// Fixup for PeiService's address
//
SetPeiServicesTablePointer(PeiServices);
//
// Update HandOffHob for new installed permenent memory
//
NewHandOffTable->EfiEndOfHobList =
(EFI_PHYSICAL_ADDRESS)((UINTN) NewHandOffTable->EfiEndOfHobList + HeapOffset);
NewHandOffTable->EfiMemoryTop = PrivateInMem->PhysicalMemoryBegin +
PrivateInMem->PhysicalMemoryLength;
NewHandOffTable->EfiMemoryBottom = PrivateInMem->PhysicalMemoryBegin;
NewHandOffTable->EfiFreeMemoryTop = PrivateInMem->FreePhysicalMemoryTop;
NewHandOffTable->EfiFreeMemoryBottom = NewHandOffTable->EfiEndOfHobList +
sizeof (EFI_HOB_GENERIC_HEADER);
//
// We need convert the PPI desciptor's pointer
//
ConvertPpiPointers (PrivateInMem,
OldCheckingBottom,
OldCheckingTop,
HeapOffset
);
DEBUG ((EFI_D_INFO, "Stack Hob: BaseAddress=0x%lX Length=0x%lX\n",
PrivateInMem->StackBase,
PrivateInMem->StackSize));
BuildStackHob (PrivateInMem->StackBase, PrivateInMem->StackSize);
//
// After the whole temporary memory is migrated, then we can allocate page in
// permenent memory.
//
PrivateInMem->PeiMemoryInstalled = TRUE;
//
// Indicate that PeiCore reenter
//
PrivateInMem->PeimDispatcherReenter = TRUE;
if (PcdGet64(PcdLoadModuleAtFixAddressEnable) != 0 && (PrivateInMem->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME)) {
//
// if Loading Module at Fixed Address is enabled, allocate the PEI code memory range usage bit map array.
// Every bit in the array indicate the status of the corresponding memory page available or not
//
PrivateInMem->PeiCodeMemoryRangeUsageBitMap = AllocateZeroPool (((PcdGet32(PcdLoadFixAddressPeiCodePageNumber)>>6) + 1)*sizeof(UINT64));
}
//
// Shadow PEI Core. When permanent memory is avaiable, shadow
// PEI Core and PEIMs to get high performance.
//
PrivateInMem->ShadowedPeiCore = ShadowPeiCore (
PeiServices,
PrivateInMem
);
//
// Process the Notify list and dispatch any notifies for
// newly installed PPIs.
//
ProcessNotifyList (PrivateInMem);
//
// Entry PEI Phase 2
//
PeiCore (SecCoreData, NULL, PrivateInMem);
PeiCore (SecCoreData, NULL, Private);
//
// Code should not come here
//
ASSERT_EFI_ERROR(FALSE);
ASSERT (FALSE);
}
//

View File

@ -128,13 +128,39 @@ typedef struct {
UINTN SectionIndex;
} CACHE_SECTION_DATA;
///
/// Forward declaration for PEI_CORE_INSTANCE
///
typedef struct _PEI_CORE_INSTANCE PEI_CORE_INSTANCE;
/**
Function Pointer type for PeiCore function.
@param SecCoreData Points to a data structure containing SEC to PEI handoff data, such as the size
and location of temporary RAM, the stack location and the BFV location.
@param PpiList Points to a list of one or more PPI descriptors to be installed initially by the PEI core.
An empty PPI list consists of a single descriptor with the end-tag
EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST. As part of its initialization
phase, the PEI Foundation will add these SEC-hosted PPIs to its PPI database such
that both the PEI Foundation and any modules can leverage the associated service
calls and/or code in these early PPIs
@param OldCoreData Pointer to old core data that is used to initialize the
core's data areas.
**/
typedef
EFI_STATUS
(EFIAPI *PEICORE_FUNCTION_POINTER)(
IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData,
IN CONST EFI_PEI_PPI_DESCRIPTOR *PpiList,
IN PEI_CORE_INSTANCE *OldCoreData
);
#define PEI_CORE_HANDLE_SIGNATURE SIGNATURE_32('P','e','i','C')
///
/// Pei Core private data structure instance
///
typedef struct{
struct _PEI_CORE_INSTANCE {
UINTN Signature;
///
@ -166,8 +192,6 @@ typedef struct{
EFI_PEI_HOB_POINTERS HobList;
BOOLEAN SwitchStackSignal;
BOOLEAN PeiMemoryInstalled;
EFI_PHYSICAL_ADDRESS StackBase;
UINT64 StackSize;
VOID *CpuIo;
EFI_PEI_SECURITY2_PPI *PrivateSecurityPpi;
EFI_PEI_SERVICES ServiceTableShadow;
@ -175,7 +199,9 @@ typedef struct{
EFI_PHYSICAL_ADDRESS PhysicalMemoryBegin;
UINT64 PhysicalMemoryLength;
EFI_PHYSICAL_ADDRESS FreePhysicalMemoryTop;
VOID* ShadowedPeiCore;
UINTN HeapOffset;
BOOLEAN HeapOffsetPositive;
PEICORE_FUNCTION_POINTER ShadowedPeiCore;
CACHE_SECTION_DATA CacheSection;
//
// For Loading modules at fixed address feature to cache the top address below which the
@ -193,7 +219,7 @@ typedef struct{
// This field points to the shadowed image read function
//
PE_COFF_LOADER_READ_FILE ShadowedImageRead;
} PEI_CORE_INSTANCE;
};
///
/// Pei Core Instance Data Macros
@ -201,27 +227,6 @@ typedef struct{
#define PEI_CORE_INSTANCE_FROM_PS_THIS(a) \
CR(a, PEI_CORE_INSTANCE, Ps, PEI_CORE_HANDLE_SIGNATURE)
/**
Function Pointer type for PeiCore function.
@param SecCoreData Points to a data structure containing SEC to PEI handoff data, such as the size
and location of temporary RAM, the stack location and the BFV location.
@param PpiList Points to a list of one or more PPI descriptors to be installed initially by the PEI core.
An empty PPI list consists of a single descriptor with the end-tag
EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST. As part of its initialization
phase, the PEI Foundation will add these SEC-hosted PPIs to its PPI database such
that both the PEI Foundation and any modules can leverage the associated service
calls and/or code in these early PPIs
@param OldCoreData Pointer to old core data that is used to initialize the
core's data areas.
**/
typedef
EFI_STATUS
(EFIAPI *PEICORE_FUNCTION_POINTER)(
IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData,
IN CONST EFI_PEI_PPI_DESCRIPTOR *PpiList,
IN PEI_CORE_INSTANCE *OldCoreData
);
///
/// Union of temporarily used function pointers (to save stack space)
///
@ -380,6 +385,8 @@ InitializePpiServices (
will be fixup for PpiData and PpiDescriptor.
@param Fixup The address difference between
the new Hob list and old Hob list.
@param FixupPositive TRUE if new Hob list is above the old Hob list.
Otherwise FALSE.
**/
VOID
@ -387,7 +394,8 @@ ConvertPpiPointers (
IN PEI_CORE_INSTANCE *PrivateData,
IN UINTN OldCheckingBottom,
IN UINTN OldCheckingTop,
IN INTN Fixup
IN UINTN Fixup,
IN BOOLEAN FixupPositive
);
/**

View File

@ -64,6 +64,55 @@ EFI_PEI_SERVICES gPs = {
PeiRegisterForShadow
};
/**
Shadow PeiCore module from flash to installed memory.
@param PrivateData PeiCore's private data structure
@return PeiCore function address after shadowing.
**/
PEICORE_FUNCTION_POINTER
ShadowPeiCore (
IN PEI_CORE_INSTANCE *PrivateData
)
{
EFI_PEI_FILE_HANDLE PeiCoreFileHandle;
EFI_PHYSICAL_ADDRESS EntryPoint;
EFI_STATUS Status;
UINT32 AuthenticationState;
PeiCoreFileHandle = NULL;
//
// Find the PEI Core in the BFV
//
Status = PrivateData->Fv[0].FvPpi->FindFileByType (
PrivateData->Fv[0].FvPpi,
EFI_FV_FILETYPE_PEI_CORE,
PrivateData->Fv[0].FvHandle,
&PeiCoreFileHandle
);
ASSERT_EFI_ERROR (Status);
//
// Shadow PEI Core into memory so it will run faster
//
Status = PeiLoadImage (
GetPeiServicesTablePointer (),
*((EFI_PEI_FILE_HANDLE*)&PeiCoreFileHandle),
PEIM_STATE_REGISITER_FOR_SHADOW,
&EntryPoint,
&AuthenticationState
);
ASSERT_EFI_ERROR (Status);
//
// Compute the PeiCore's function address after shaowed PeiCore.
// _ModuleEntryPoint is PeiCore main function entry
//
return (PEICORE_FUNCTION_POINTER)((UINTN) EntryPoint + (UINTN) PeiCore - (UINTN) _ModuleEntryPoint);
}
/**
This routine is invoked by main entry of PeiMain module during transition
from SEC to PEI. After switching stack in the PEI core, it will restart
@ -91,17 +140,17 @@ PeiCore (
IN VOID *Data
)
{
PEI_CORE_INSTANCE PrivateData;
EFI_STATUS Status;
PEI_CORE_TEMP_POINTERS TempPtr;
UINT64 Tick;
PEI_CORE_INSTANCE *OldCoreData;
EFI_PEI_CPU_IO_PPI *CpuIo;
EFI_PEI_PCI_CFG2_PPI *PciCfg;
PEICORE_FUNCTION_POINTER ShadowedPeiCore;
PEI_CORE_INSTANCE PrivateData;
EFI_STATUS Status;
PEI_CORE_TEMP_POINTERS TempPtr;
UINT64 Tick;
PEI_CORE_INSTANCE *OldCoreData;
EFI_PEI_CPU_IO_PPI *CpuIo;
EFI_PEI_PCI_CFG2_PPI *PciCfg;
EFI_HOB_HANDOFF_INFO_TABLE *HandoffInformationTable;
Tick = 0;
OldCoreData = (PEI_CORE_INSTANCE *) Data;
OldCoreData = (PEI_CORE_INSTANCE *)Data;
//
// Record the system tick for first entering PeiCore.
@ -114,22 +163,82 @@ PeiCore (
}
if (OldCoreData != NULL) {
ShadowedPeiCore = (PEICORE_FUNCTION_POINTER) (UINTN) OldCoreData->ShadowedPeiCore;
if (OldCoreData->ShadowedPeiCore == NULL) {
//
//
// Fixup the PeiCore's private data
//
OldCoreData->Ps = &OldCoreData->ServiceTableShadow;
OldCoreData->CpuIo = &OldCoreData->ServiceTableShadow.CpuIo;
if (OldCoreData->HeapOffsetPositive) {
OldCoreData->HobList.Raw = (VOID *)(OldCoreData->HobList.Raw + OldCoreData->HeapOffset);
} else {
OldCoreData->HobList.Raw = (VOID *)(OldCoreData->HobList.Raw - OldCoreData->HeapOffset);
}
//
// PeiCore has been shadowed to memory for first entering, so
// just jump to PeiCore in memory here.
//
if (ShadowedPeiCore != NULL) {
OldCoreData->ShadowedPeiCore = NULL;
ShadowedPeiCore (
SecCoreData,
PpiList,
OldCoreData
);
//
// Fixup for PeiService's address
//
SetPeiServicesTablePointer ((CONST EFI_PEI_SERVICES **)&OldCoreData->Ps);
//
// Update HandOffHob for new installed permenent memory
//
HandoffInformationTable = OldCoreData->HobList.HandoffInformationTable;
if (OldCoreData->HeapOffsetPositive) {
HandoffInformationTable->EfiEndOfHobList = HandoffInformationTable->EfiEndOfHobList + OldCoreData->HeapOffset;
} else {
HandoffInformationTable->EfiEndOfHobList = HandoffInformationTable->EfiEndOfHobList - OldCoreData->HeapOffset;
}
HandoffInformationTable->EfiMemoryTop = OldCoreData->PhysicalMemoryBegin + OldCoreData->PhysicalMemoryLength;
HandoffInformationTable->EfiMemoryBottom = OldCoreData->PhysicalMemoryBegin;
HandoffInformationTable->EfiFreeMemoryTop = OldCoreData->FreePhysicalMemoryTop;
HandoffInformationTable->EfiFreeMemoryBottom = HandoffInformationTable->EfiEndOfHobList + sizeof (EFI_HOB_GENERIC_HEADER);
//
// We need convert the PPI desciptor's pointer
//
ConvertPpiPointers (OldCoreData, (UINTN)SecCoreData->TemporaryRamBase, (UINTN)SecCoreData->TemporaryRamBase + SecCoreData->TemporaryRamSize, OldCoreData->HeapOffset, OldCoreData->HeapOffsetPositive);
//
// After the whole temporary memory is migrated, then we can allocate page in
// permenent memory.
//
OldCoreData->PeiMemoryInstalled = TRUE;
//
// Indicate that PeiCore reenter
//
OldCoreData->PeimDispatcherReenter = TRUE;
if (PcdGet64(PcdLoadModuleAtFixAddressEnable) != 0 && (OldCoreData->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME)) {
//
// if Loading Module at Fixed Address is enabled, allocate the PEI code memory range usage bit map array.
// Every bit in the array indicate the status of the corresponding memory page available or not
//
OldCoreData->PeiCodeMemoryRangeUsageBitMap = AllocateZeroPool (((PcdGet32(PcdLoadFixAddressPeiCodePageNumber)>>6) + 1)*sizeof(UINT64));
}
//
// Process the Notify list and dispatch any notifies for
// newly installed PPIs.
//
ProcessNotifyList (OldCoreData);
//
// Shadow PEI Core. When permanent memory is avaiable, shadow
// PEI Core and PEIMs to get high performance.
//
OldCoreData->ShadowedPeiCore = ShadowPeiCore (OldCoreData);
//
// PeiCore has been shadowed to memory for first entering, so
// just jump to PeiCore in memory here.
//
OldCoreData->ShadowedPeiCore (SecCoreData, PpiList, OldCoreData);
}
CopyMem (&PrivateData, OldCoreData, sizeof (PEI_CORE_INSTANCE));
CopyMem (&PrivateData, OldCoreData, sizeof (PrivateData));
CpuIo = (VOID*)PrivateData.ServiceTableShadow.CpuIo;
PciCfg = (VOID*)PrivateData.ServiceTableShadow.PciCfg;

View File

@ -47,6 +47,8 @@ InitializePpiServices (
will be fixup for PpiData and PpiDescriptor.
@param Fixup The address difference between
the new Hob list and old Hob list.
@param FixupPositive TRUE if new Hob list is above the old Hob list.
Otherwise FALSE.
**/
VOID
@ -54,7 +56,8 @@ ConvertPpiPointers (
IN PEI_CORE_INSTANCE *PrivateData,
IN UINTN OldCheckingBottom,
IN UINTN OldCheckingTop,
IN INTN Fixup
IN UINTN Fixup,
IN BOOLEAN FixupPositive
)
{
UINT8 Index;
@ -71,7 +74,11 @@ ConvertPpiPointers (
// Convert the pointer to the PEIM descriptor from the old HOB heap
// to the relocated HOB heap.
//
PpiPointer->Raw = (VOID *) ((UINTN)PpiPointer->Raw + Fixup);
if (FixupPositive) {
PpiPointer->Raw = (VOID *) ((UINTN)PpiPointer->Raw + Fixup);
} else {
PpiPointer->Raw = (VOID *) ((UINTN)PpiPointer->Raw - Fixup);
}
//
// Only when the PEIM descriptor is in the old HOB should it be necessary
@ -84,7 +91,11 @@ ConvertPpiPointers (
// Convert the pointer to the GUID in the PPI or NOTIFY descriptor
// from the old HOB heap to the relocated HOB heap.
//
PpiPointer->Ppi->Guid = (VOID *) ((UINTN)PpiPointer->Ppi->Guid + Fixup);
if (FixupPositive) {
PpiPointer->Ppi->Guid = (VOID *) ((UINTN)PpiPointer->Ppi->Guid + Fixup);
} else {
PpiPointer->Ppi->Guid = (VOID *) ((UINTN)PpiPointer->Ppi->Guid - Fixup);
}
}
//
@ -98,7 +109,11 @@ ConvertPpiPointers (
// Convert the pointer to the PPI interface structure in the PPI descriptor
// from the old HOB heap to the relocated HOB heap.
//
PpiPointer->Ppi->Ppi = (VOID *) ((UINTN)PpiPointer->Ppi->Ppi+ Fixup);
if (FixupPositive) {
PpiPointer->Ppi->Ppi = (VOID *) ((UINTN)PpiPointer->Ppi->Ppi + Fixup);
} else {
PpiPointer->Ppi->Ppi = (VOID *) ((UINTN)PpiPointer->Ppi->Ppi - Fixup);
}
}
}
}