UefiCpuPkg: Add PEI/DXE Register CPU Features Library instances

PEI Register CPU Features Library instance is used to register/manager/program
CPU features on PEI phase.
DXE Register CPU Features Library instance is used to register/manager/program
CPU features on DXE phase.

v2:
  Format debug messages.

v3:
  Trim white space at end of line.

v4:
  Remove unused local variable.

Cc: Feng Tian <feng.tian@intel.com>
Cc: Michael Kinney <michael.d.kinney@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jeff Fan <jeff.fan@intel.com>
Reviewed-by: Feng Tian <feng.tian@intel.com>
This commit is contained in:
Jeff Fan 2017-03-07 16:49:35 +08:00
parent 548013c07f
commit eff78ac35b
9 changed files with 2517 additions and 1 deletions

View File

@ -0,0 +1,745 @@
/** @file
CPU Features Initialize functions.
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "RegisterCpuFeatures.h"
/**
Worker function to save PcdCpuFeaturesCapability.
@param[in] SupportedFeatureMask The pointer to CPU feature bits mask buffer
*/
VOID
SetCapabilityPcd (
IN UINT8 *SupportedFeatureMask
)
{
EFI_STATUS Status;
UINTN BitMaskSize;
BitMaskSize = PcdGetSize (PcdCpuFeaturesCapability);
Status = PcdSetPtrS (PcdCpuFeaturesCapability, &BitMaskSize, SupportedFeatureMask);
ASSERT_EFI_ERROR (Status);
}
/**
Worker function to save PcdCpuFeaturesSetting.
@param[in] SupportedFeatureMask The pointer to CPU feature bits mask buffer
**/
VOID
SetSettingPcd (
IN UINT8 *SupportedFeatureMask
)
{
EFI_STATUS Status;
UINTN BitMaskSize;
BitMaskSize = PcdGetSize (PcdCpuFeaturesSetting);
Status = PcdSetPtrS (PcdCpuFeaturesSetting, &BitMaskSize, SupportedFeatureMask);
ASSERT_EFI_ERROR (Status);
}
/**
Worker function to get PcdCpuFeaturesSupport.
@return The pointer to CPU feature bits mask buffer.
**/
UINT8 *
GetSupportPcds (
VOID
)
{
UINTN BitMaskSize;
UINT8 *SupportBitMask;
BitMaskSize = PcdGetSize (PcdCpuFeaturesSupport);
SupportBitMask = AllocateZeroPool (BitMaskSize);
SupportBitMask = (UINT8 *) PcdGetPtr (PcdCpuFeaturesSupport);
return SupportBitMask;
}
/**
Worker function to get PcdCpuFeaturesUserConfiguration.
@return The pointer to CPU feature bits mask buffer.
**/
UINT8 *
GetConfigurationPcds (
VOID
)
{
UINTN BitMaskSize;
UINT8 *SupportBitMask;
BitMaskSize = PcdGetSize (PcdCpuFeaturesUserConfiguration);
SupportBitMask = AllocateZeroPool (BitMaskSize);
SupportBitMask = (UINT8 *) PcdGetPtr (PcdCpuFeaturesUserConfiguration);
return SupportBitMask;
}
/**
Collects CPU type and feature information.
@param[in, out] CpuInfo The pointer to CPU feature information
**/
VOID
FillProcessorInfo (
IN OUT REGISTER_CPU_FEATURE_INFORMATION *CpuInfo
)
{
CPUID_VERSION_INFO_EAX Eax;
CPUID_VERSION_INFO_ECX Ecx;
CPUID_VERSION_INFO_EDX Edx;
UINT32 DisplayedFamily;
UINT32 DisplayedModel;
AsmCpuid (CPUID_VERSION_INFO, &Eax.Uint32, NULL, &Ecx.Uint32, &Edx.Uint32);
DisplayedFamily = Eax.Bits.FamilyId;
if (Eax.Bits.FamilyId == 0x0F) {
DisplayedFamily |= (Eax.Bits.ExtendedFamilyId << 4);
}
DisplayedModel = Eax.Bits.Model;
if (Eax.Bits.FamilyId == 0x06 || Eax.Bits.FamilyId == 0x0f) {
DisplayedModel |= (Eax.Bits.ExtendedModelId << 4);
}
CpuInfo->DisplayFamily = DisplayedFamily;
CpuInfo->DisplayModel = DisplayedModel;
CpuInfo->SteppingId = Eax.Bits.SteppingId;
CpuInfo->ProcessorType = Eax.Bits.ProcessorType;
CpuInfo->CpuIdVersionInfoEcx.Uint32 = Ecx.Uint32;
CpuInfo->CpuIdVersionInfoEdx.Uint32 = Edx.Uint32;
}
/**
Prepares for private data used for CPU features.
@param[in] NumberOfCpus Number of processor in system
**/
VOID
CpuInitDataInitialize (
IN UINTN NumberOfCpus
)
{
EFI_STATUS Status;
UINTN ProcessorNumber;
EFI_PROCESSOR_INFORMATION ProcessorInfoBuffer;
CPU_FEATURES_ENTRY *CpuFeature;
CPU_FEATURES_INIT_ORDER *InitOrder;
CPU_FEATURES_DATA *CpuFeaturesData;
LIST_ENTRY *Entry;
CpuFeaturesData = GetCpuFeaturesData ();
CpuFeaturesData->InitOrder = AllocateZeroPool (sizeof (CPU_FEATURES_INIT_ORDER) * NumberOfCpus);
ASSERT (CpuFeaturesData->InitOrder != NULL);
CpuFeaturesData->BitMaskSize = PcdGetSize (PcdCpuFeaturesSupport);
//
// Collect CPU Features information
//
Entry = GetFirstNode (&CpuFeaturesData->FeatureList);
while (!IsNull (&CpuFeaturesData->FeatureList, Entry)) {
CpuFeature = CPU_FEATURE_ENTRY_FROM_LINK (Entry);
ASSERT (CpuFeature->InitializeFunc != NULL);
if (CpuFeature->GetConfigDataFunc != NULL) {
CpuFeature->ConfigData = CpuFeature->GetConfigDataFunc (NumberOfCpus);
}
Entry = Entry->ForwardLink;
}
for (ProcessorNumber = 0; ProcessorNumber < NumberOfCpus; ProcessorNumber++) {
InitOrder = &CpuFeaturesData->InitOrder[ProcessorNumber];
InitOrder->FeaturesSupportedMask = AllocateZeroPool (CpuFeaturesData->BitMaskSize);
InitializeListHead (&InitOrder->OrderList);
Status = GetProcessorInformation (ProcessorNumber, &ProcessorInfoBuffer);
ASSERT_EFI_ERROR (Status);
CopyMem (
&InitOrder->CpuInfo.ProcessorInfo,
&ProcessorInfoBuffer,
sizeof (EFI_PROCESSOR_INFORMATION)
);
}
//
// Get support and configuration PCDs
//
CpuFeaturesData->SupportPcds = GetSupportPcds ();
CpuFeaturesData->ConfigurationPcds = GetConfigurationPcds ();
}
/**
Worker function to do OR operation on CPU feature supported bits mask buffer.
@param[in] SupportedFeatureMask The pointer to CPU feature bits mask buffer
@param[in] OrFeatureBitMask The feature bit mask to do OR operation
**/
VOID
SupportedMaskOr (
IN UINT8 *SupportedFeatureMask,
IN UINT8 *OrFeatureBitMask
)
{
UINTN Index;
UINTN BitMaskSize;
UINT8 *Data1;
UINT8 *Data2;
BitMaskSize = PcdGetSize (PcdCpuFeaturesSupport);
Data1 = SupportedFeatureMask;
Data2 = OrFeatureBitMask;
for (Index = 0; Index < BitMaskSize; Index++) {
*(Data1++) |= *(Data2++);
}
}
/**
Worker function to do AND operation on CPU feature supported bits mask buffer.
@param[in] SupportedFeatureMask The pointer to CPU feature bits mask buffer
@param[in] AndFeatureBitMask The feature bit mask to do AND operation
**/
VOID
SupportedMaskAnd (
IN UINT8 *SupportedFeatureMask,
IN UINT8 *AndFeatureBitMask
)
{
UINTN Index;
UINTN BitMaskSize;
UINT8 *Data1;
UINT8 *Data2;
BitMaskSize = PcdGetSize (PcdCpuFeaturesSupport);
Data1 = SupportedFeatureMask;
Data2 = AndFeatureBitMask;
for (Index = 0; Index < BitMaskSize; Index++) {
*(Data1++) &= *(Data2++);
}
}
/**
Worker function to check if the compared CPU feature set in the CPU feature
supported bits mask buffer.
@param[in] SupportedFeatureMask The pointer to CPU feature bits mask buffer
@param[in] ComparedFeatureBitMask The feature bit mask to be compared
@retval TRUE The ComparedFeatureBitMask is set in CPU feature supported bits
mask buffer.
@retval FALSE The ComparedFeatureBitMask is not set in CPU feature supported bits
mask buffer.
**/
BOOLEAN
IsBitMaskMatch (
IN UINT8 *SupportedFeatureMask,
IN UINT8 *ComparedFeatureBitMask
)
{
UINTN Index;
UINTN BitMaskSize;
UINT8 *Data1;
UINT8 *Data2;
BitMaskSize = PcdGetSize (PcdCpuFeaturesSupport);
Data1 = SupportedFeatureMask;
Data2 = ComparedFeatureBitMask;
for (Index = 0; Index < BitMaskSize; Index++) {
if (((*(Data1++)) & (*(Data2++))) != 0) {
return TRUE;
}
}
return FALSE;
}
/**
Collects processor data for calling processor.
@param[in,out] Buffer The pointer to private data buffer.
**/
VOID
EFIAPI
CollectProcessorData (
IN OUT VOID *Buffer
)
{
UINTN ProcessorNumber;
CPU_FEATURES_ENTRY *CpuFeature;
REGISTER_CPU_FEATURE_INFORMATION *CpuInfo;
LIST_ENTRY *Entry;
CPU_FEATURES_DATA *CpuFeaturesData;
CpuFeaturesData = GetCpuFeaturesData ();
ProcessorNumber = GetProcessorIndex ();
CpuInfo = &CpuFeaturesData->InitOrder[ProcessorNumber].CpuInfo;
//
// collect processor information
//
FillProcessorInfo (CpuInfo);
Entry = GetFirstNode (&CpuFeaturesData->FeatureList);
while (!IsNull (&CpuFeaturesData->FeatureList, Entry)) {
CpuFeature = CPU_FEATURE_ENTRY_FROM_LINK (Entry);
if (IsBitMaskMatch (CpuFeaturesData->SupportPcds, CpuFeature->FeatureMask)) {
if (CpuFeature->SupportFunc == NULL) {
//
// If SupportFunc is NULL, then the feature is supported.
//
SupportedMaskOr (
CpuFeaturesData->InitOrder[ProcessorNumber].FeaturesSupportedMask,
CpuFeature->FeatureMask
);
} else if (CpuFeature->SupportFunc (ProcessorNumber, CpuInfo, CpuFeature->ConfigData)) {
SupportedMaskOr (
CpuFeaturesData->InitOrder[ProcessorNumber].FeaturesSupportedMask,
CpuFeature->FeatureMask
);
}
}
Entry = Entry->ForwardLink;
}
}
/**
Dump the contents of a CPU register table.
@param[in] ProcessorNumber The index of the CPU to show the register table contents
@note This service could be called by BSP only.
**/
VOID
DumpRegisterTableOnProcessor (
IN UINTN ProcessorNumber
)
{
CPU_FEATURES_DATA *CpuFeaturesData;
UINTN FeatureIndex;
CPU_REGISTER_TABLE *RegisterTable;
CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry;
CPU_REGISTER_TABLE_ENTRY *RegisterTableEntryHead;
UINT32 DebugPrintErrorLevel;
DebugPrintErrorLevel = (ProcessorNumber == 0) ? DEBUG_INFO : DEBUG_VERBOSE;
CpuFeaturesData = GetCpuFeaturesData ();
//
// Debug information
//
RegisterTable = &CpuFeaturesData->RegisterTable[ProcessorNumber];
DEBUG ((DebugPrintErrorLevel, "RegisterTable->TableLength = %d\n", RegisterTable->TableLength));
RegisterTableEntryHead = (CPU_REGISTER_TABLE_ENTRY *) (UINTN) RegisterTable->RegisterTableEntry;
for (FeatureIndex = 0; FeatureIndex < RegisterTable->TableLength; FeatureIndex++) {
RegisterTableEntry = &RegisterTableEntryHead[FeatureIndex];
switch (RegisterTableEntry->RegisterType) {
case Msr:
DEBUG ((
DebugPrintErrorLevel,
"Processor: %d: MSR: %x, Bit Start: %d, Bit Length: %d, Value: %lx\r\n",
ProcessorNumber,
RegisterTableEntry->Index,
RegisterTableEntry->ValidBitStart,
RegisterTableEntry->ValidBitLength,
RegisterTableEntry->Value
));
break;
case ControlRegister:
DEBUG ((
DebugPrintErrorLevel,
"Processor: %d: CR: %x, Bit Start: %d, Bit Length: %d, Value: %lx\r\n",
ProcessorNumber,
RegisterTableEntry->Index,
RegisterTableEntry->ValidBitStart,
RegisterTableEntry->ValidBitLength,
RegisterTableEntry->Value
));
break;
case MemoryMapped:
DEBUG ((
DebugPrintErrorLevel,
"Processor: %d: MMIO: %x, Bit Start: %d, Bit Length: %d, Value: %lx\r\n",
ProcessorNumber,
RegisterTableEntry->Index,
RegisterTableEntry->ValidBitStart,
RegisterTableEntry->ValidBitLength,
RegisterTableEntry->Value
));
break;
case CacheControl:
DEBUG ((
DebugPrintErrorLevel,
"Processor: %d: CACHE: %x, Bit Start: %d, Bit Length: %d, Value: %lx\r\n",
ProcessorNumber,
RegisterTableEntry->Index,
RegisterTableEntry->ValidBitStart,
RegisterTableEntry->ValidBitLength,
RegisterTableEntry->Value
));
break;
default:
break;
}
}
}
/**
Analysis register CPU features on each processor and save CPU setting in CPU register table.
@param[in] NumberOfCpus Number of processor in system
**/
VOID
AnalysisProcessorFeatures (
IN UINTN NumberOfCpus
)
{
EFI_STATUS Status;
UINTN ProcessorNumber;
CPU_FEATURES_ENTRY *CpuFeature;
CPU_FEATURES_ENTRY *CpuFeatureInOrder;
CPU_FEATURES_INIT_ORDER *CpuInitOrder;
REGISTER_CPU_FEATURE_INFORMATION *CpuInfo;
LIST_ENTRY *Entry;
CPU_FEATURES_DATA *CpuFeaturesData;
CpuFeaturesData = GetCpuFeaturesData ();
CpuFeaturesData->CapabilityPcds = AllocatePool (CpuFeaturesData->BitMaskSize);
SetMem (CpuFeaturesData->CapabilityPcds, CpuFeaturesData->BitMaskSize, 0xFF);
for (ProcessorNumber = 0; ProcessorNumber < NumberOfCpus; ProcessorNumber++) {
CpuInitOrder = &CpuFeaturesData->InitOrder[ProcessorNumber];
//
// Calculate the last capability on all processors
//
SupportedMaskAnd (CpuFeaturesData->CapabilityPcds, CpuInitOrder->FeaturesSupportedMask);
}
//
// Calculate the last setting
//
CpuFeaturesData->SettingPcds = AllocateCopyPool (CpuFeaturesData->BitMaskSize, CpuFeaturesData->CapabilityPcds);
SupportedMaskAnd (CpuFeaturesData->SettingPcds, CpuFeaturesData->ConfigurationPcds);
//
// Save PCDs and display CPU PCDs
//
SetCapabilityPcd (CpuFeaturesData->CapabilityPcds);
SetSettingPcd (CpuFeaturesData->SettingPcds);
//
// Dump the last CPU feature list
//
DEBUG_CODE (
DEBUG ((DEBUG_INFO, "Last CPU features list...\n"));
Entry = GetFirstNode (&CpuFeaturesData->FeatureList);
while (!IsNull (&CpuFeaturesData->FeatureList, Entry)) {
CpuFeature = CPU_FEATURE_ENTRY_FROM_LINK (Entry);
if (IsBitMaskMatch (CpuFeature->FeatureMask, CpuFeaturesData->CapabilityPcds)) {
if (IsBitMaskMatch (CpuFeature->FeatureMask, CpuFeaturesData->SettingPcds)) {
DEBUG ((DEBUG_INFO, "[Enable ] "));
} else {
DEBUG ((DEBUG_INFO, "[Disable ] "));
}
} else {
DEBUG ((DEBUG_INFO, "[Unsupport] "));
}
DumpCpuFeature (CpuFeature);
Entry = Entry->ForwardLink;
}
DEBUG ((DEBUG_INFO, "PcdCpuFeaturesSupport:\n"));
DumpCpuFeatureMask (CpuFeaturesData->SupportPcds);
DEBUG ((DEBUG_INFO, "PcdCpuFeaturesUserConfiguration:\n"));
DumpCpuFeatureMask (CpuFeaturesData->ConfigurationPcds);
DEBUG ((DEBUG_INFO, "PcdCpuFeaturesCapability:\n"));
DumpCpuFeatureMask (CpuFeaturesData->CapabilityPcds);
DEBUG ((DEBUG_INFO, "PcdCpuFeaturesSetting:\n"));
DumpCpuFeatureMask (CpuFeaturesData->SettingPcds);
);
for (ProcessorNumber = 0; ProcessorNumber < NumberOfCpus; ProcessorNumber++) {
CpuInitOrder = &CpuFeaturesData->InitOrder[ProcessorNumber];
Entry = GetFirstNode (&CpuFeaturesData->FeatureList);
while (!IsNull (&CpuFeaturesData->FeatureList, Entry)) {
//
// Insert each feature into processor's order list
//
CpuFeature = CPU_FEATURE_ENTRY_FROM_LINK (Entry);
if (IsBitMaskMatch (CpuFeature->FeatureMask, CpuFeaturesData->CapabilityPcds)) {
CpuFeatureInOrder = AllocateCopyPool (sizeof (CPU_FEATURES_ENTRY), CpuFeature);
InsertTailList (&CpuInitOrder->OrderList, &CpuFeatureInOrder->Link);
}
Entry = Entry->ForwardLink;
}
//
// Go through ordered feature list to initialize CPU features
//
CpuInfo = &CpuFeaturesData->InitOrder[ProcessorNumber].CpuInfo;
Entry = GetFirstNode (&CpuInitOrder->OrderList);
while (!IsNull (&CpuInitOrder->OrderList, Entry)) {
CpuFeatureInOrder = CPU_FEATURE_ENTRY_FROM_LINK (Entry);
if (IsBitMaskMatch (CpuFeatureInOrder->FeatureMask, CpuFeaturesData->SettingPcds)) {
Status = CpuFeatureInOrder->InitializeFunc (ProcessorNumber, CpuInfo, CpuFeatureInOrder->ConfigData, TRUE);
} else {
Status = CpuFeatureInOrder->InitializeFunc (ProcessorNumber, CpuInfo, CpuFeatureInOrder->ConfigData, FALSE);
}
ASSERT_EFI_ERROR (Status);
Entry = Entry->ForwardLink;
}
//
// Dump the RegisterTable
//
DumpRegisterTableOnProcessor (ProcessorNumber);
}
}
/**
Initialize the CPU registers from a register table.
@param[in] ProcessorNumber The index of the CPU executing this function.
@note This service could be called by BSP/APs.
**/
VOID
ProgramProcessorRegister (
IN UINTN ProcessorNumber
)
{
CPU_FEATURES_DATA *CpuFeaturesData;
CPU_REGISTER_TABLE *RegisterTable;
CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry;
UINTN Index;
UINTN Value;
CPU_REGISTER_TABLE_ENTRY *RegisterTableEntryHead;
CpuFeaturesData = GetCpuFeaturesData ();
RegisterTable = &CpuFeaturesData->RegisterTable[ProcessorNumber];
//
// Traverse Register Table of this logical processor
//
RegisterTableEntryHead = (CPU_REGISTER_TABLE_ENTRY *) (UINTN) RegisterTable->RegisterTableEntry;
for (Index = 0; Index < RegisterTable->TableLength; Index++) {
RegisterTableEntry = &RegisterTableEntryHead[Index];
//
// Check the type of specified register
//
switch (RegisterTableEntry->RegisterType) {
//
// The specified register is Control Register
//
case ControlRegister:
switch (RegisterTableEntry->Index) {
case 0:
Value = AsmReadCr0 ();
Value = (UINTN) BitFieldWrite64 (
Value,
RegisterTableEntry->ValidBitStart,
RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
RegisterTableEntry->Value
);
AsmWriteCr0 (Value);
break;
case 2:
Value = AsmReadCr2 ();
Value = (UINTN) BitFieldWrite64 (
Value,
RegisterTableEntry->ValidBitStart,
RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
RegisterTableEntry->Value
);
AsmWriteCr2 (Value);
break;
case 3:
Value = AsmReadCr3 ();
Value = (UINTN) BitFieldWrite64 (
Value,
RegisterTableEntry->ValidBitStart,
RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
RegisterTableEntry->Value
);
AsmWriteCr3 (Value);
break;
case 4:
Value = AsmReadCr4 ();
Value = (UINTN) BitFieldWrite64 (
Value,
RegisterTableEntry->ValidBitStart,
RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
RegisterTableEntry->Value
);
AsmWriteCr4 (Value);
break;
case 8:
//
// Do we need to support CR8?
//
break;
default:
break;
}
break;
//
// The specified register is Model Specific Register
//
case Msr:
//
// Get lock to avoid Package/Core scope MSRs programming issue in parallel execution mode
//
AcquireSpinLock (&CpuFeaturesData->MsrLock);
if (RegisterTableEntry->ValidBitLength >= 64) {
//
// If length is not less than 64 bits, then directly write without reading
//
AsmWriteMsr64 (
RegisterTableEntry->Index,
RegisterTableEntry->Value
);
} else {
//
// Set the bit section according to bit start and length
//
AsmMsrBitFieldWrite64 (
RegisterTableEntry->Index,
RegisterTableEntry->ValidBitStart,
RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
RegisterTableEntry->Value
);
}
ReleaseSpinLock (&CpuFeaturesData->MsrLock);
break;
//
// MemoryMapped operations
//
case MemoryMapped:
AcquireSpinLock (&CpuFeaturesData->MemoryMappedLock);
MmioBitFieldWrite32 (
RegisterTableEntry->Index,
RegisterTableEntry->ValidBitStart,
RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
(UINT32)RegisterTableEntry->Value
);
ReleaseSpinLock (&CpuFeaturesData->MemoryMappedLock);
break;
//
// Enable or disable cache
//
case CacheControl:
//
// If value of the entry is 0, then disable cache. Otherwise, enable cache.
//
if (RegisterTableEntry->Value == 0) {
AsmDisableCache ();
} else {
AsmEnableCache ();
}
break;
default:
break;
}
}
}
/**
Programs registers for the calling processor.
@param[in,out] Buffer The pointer to private data buffer.
**/
VOID
EFIAPI
SetProcessorRegister (
IN OUT VOID *Buffer
)
{
UINTN ProcessorNumber;
ProcessorNumber = GetProcessorIndex ();
ProgramProcessorRegister (ProcessorNumber);
}
/**
Performs CPU features detection.
This service will invoke MP service to check CPU features'
capabilities on BSP/APs.
@note This service could be called by BSP only.
**/
VOID
EFIAPI
CpuFeaturesDetect (
VOID
)
{
UINTN NumberOfCpus;
UINTN NumberOfEnabledProcessors;
GetNumberOfProcessor (&NumberOfCpus, &NumberOfEnabledProcessors);
CpuInitDataInitialize (NumberOfCpus);
//
// Wakeup all APs for data collection.
//
StartupAPsWorker (CollectProcessorData);
//
// Collect data on BSP
//
CollectProcessorData (NULL);
AnalysisProcessorFeatures (NumberOfCpus);
}
/**
Performs CPU features Initialization.
This service will invoke MP service to perform CPU features
initialization on BSP/APs per user configuration.
@note This service could be called by BSP only.
**/
VOID
EFIAPI
CpuFeaturesInitialize (
VOID
)
{
CPU_FEATURES_DATA *CpuFeaturesData;
UINTN OldBspNumber;
CpuFeaturesData = GetCpuFeaturesData ();
OldBspNumber = GetProcessorIndex();
CpuFeaturesData->BspNumber = OldBspNumber;
//
// Wakeup all APs for programming.
//
StartupAPsWorker (SetProcessorRegister);
//
// Programming BSP
//
SetProcessorRegister (NULL);
//
// Switch to new BSP if required
//
if (CpuFeaturesData->BspNumber != OldBspNumber) {
SwitchNewBsp (CpuFeaturesData->BspNumber);
}
}

View File

@ -0,0 +1,266 @@
/** @file
CPU Register Table Library functions.
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <PiDxe.h>
#include <Library/UefiBootServicesTableLib.h>
#include "RegisterCpuFeatures.h"
CPU_FEATURES_DATA mCpuFeaturesData = {0};
static EFI_MP_SERVICES_PROTOCOL *mMpServices = NULL;
/**
Worker function to get CPU_FEATURES_DATA pointer.
@return Pointer to CPU_FEATURES_DATA.
**/
CPU_FEATURES_DATA *
GetCpuFeaturesData (
VOID
)
{
return &mCpuFeaturesData;
}
/**
Worker function to get EFI_MP_SERVICES_PROTOCOL pointer.
@return Pointer to EFI_MP_SERVICES_PROTOCOL.
**/
EFI_MP_SERVICES_PROTOCOL *
GetMpProtocol (
VOID
)
{
EFI_STATUS Status;
if (mMpServices == NULL) {
//
// Get MP Services Protocol
//
Status = gBS->LocateProtocol (
&gEfiMpServiceProtocolGuid,
NULL,
(VOID **)&mMpServices
);
ASSERT_EFI_ERROR (Status);
}
ASSERT (mMpServices != NULL);
return mMpServices;
}
/**
Worker function to return processor index.
@return The processor index.
**/
UINTN
GetProcessorIndex (
VOID
)
{
EFI_STATUS Status;
UINTN ProcessorIndex;
EFI_MP_SERVICES_PROTOCOL *MpServices;
MpServices = GetMpProtocol ();
Status = MpServices->WhoAmI(MpServices, &ProcessorIndex);
ASSERT_EFI_ERROR (Status);
return ProcessorIndex;
}
/**
Gets detailed MP-related information on the requested processor at the
instant this call is made.
@param[in] ProcessorNumber The handle number of processor.
@param[out] ProcessorInfoBuffer A pointer to the buffer where information for
the requested processor is deposited.
@return Status of MpServices->GetProcessorInfo().
**/
EFI_STATUS
GetProcessorInformation (
IN UINTN ProcessorNumber,
OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer
)
{
EFI_STATUS Status;
EFI_MP_SERVICES_PROTOCOL *MpServices;
MpServices = GetMpProtocol ();
Status = MpServices->GetProcessorInfo (
MpServices,
ProcessorNumber,
ProcessorInfoBuffer
);
return Status;
}
/**
Worker function to execute a caller provided function on all enabled APs.
@param[in] Procedure A pointer to the function to be run on
enabled APs of the system.
**/
VOID
StartupAPsWorker (
IN EFI_AP_PROCEDURE Procedure
)
{
EFI_STATUS Status;
EFI_MP_SERVICES_PROTOCOL *MpServices;
MpServices = GetMpProtocol ();
//
// Wakeup all APs
//
Status = MpServices->StartupAllAPs (
MpServices,
Procedure,
FALSE,
NULL,
0,
NULL,
NULL
);
ASSERT_EFI_ERROR (Status);
}
/**
Worker function to switch the requested AP to be the BSP from that point onward.
@param[in] ProcessorNumber The handle number of AP that is to become the new BSP.
**/
VOID
SwitchNewBsp (
IN UINTN ProcessorNumber
)
{
EFI_STATUS Status;
EFI_MP_SERVICES_PROTOCOL *MpServices;
MpServices = GetMpProtocol ();
//
// Wakeup all APs
//
Status = MpServices->SwitchBSP (
MpServices,
ProcessorNumber,
TRUE
);
ASSERT_EFI_ERROR (Status);
}
/**
Worker function to retrieve the number of logical processor in the platform.
@param[out] NumberOfProcessors Pointer to the total number of logical
processors in the system, including the BSP
and disabled APs.
@param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical
processors that exist in system, including
the BSP.
**/
VOID
GetNumberOfProcessor (
OUT UINTN *NumberOfCpus,
OUT UINTN *NumberOfEnabledProcessors
)
{
EFI_STATUS Status;
EFI_MP_SERVICES_PROTOCOL *MpServices;
MpServices = GetMpProtocol ();
//
// Get the number of CPUs
//
Status = MpServices->GetNumberOfProcessors (
MpServices,
NumberOfCpus,
NumberOfEnabledProcessors
);
ASSERT_EFI_ERROR (Status);
}
/**
Allocates ACPI NVS memory to save ACPI_CPU_DATA.
@return Pointer to allocated ACPI_CPU_DATA.
**/
ACPI_CPU_DATA *
AllocateAcpiCpuData (
VOID
)
{
//
// CpuS3DataDxe will do it.
//
ASSERT (FALSE);
return NULL;
}
/**
Enlarges CPU register table for each processor.
@param[in, out] RegisterTable Pointer processor's CPU register table
**/
VOID
EnlargeRegisterTable (
IN OUT CPU_REGISTER_TABLE *RegisterTable
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS Address;
UINTN AllocatePages;
Address = BASE_4GB - 1;
AllocatePages = RegisterTable->AllocatedSize / EFI_PAGE_SIZE;
Status = gBS->AllocatePages (
AllocateMaxAddress,
EfiACPIMemoryNVS,
AllocatePages + 1,
&Address
);
ASSERT_EFI_ERROR (Status);
//
// If there are records existing in the register table, then copy its contents
// to new region and free the old one.
//
if (RegisterTable->AllocatedSize > 0) {
CopyMem (
(VOID *) (UINTN) Address,
(VOID *) (UINTN) RegisterTable->RegisterTableEntry,
RegisterTable->AllocatedSize
);
//
// RegisterTableEntry is allocated by gBS->AllocatePages() service.
// So, gBS->FreePages() service is used to free it.
//
gBS->FreePages (
RegisterTable->RegisterTableEntry,
AllocatePages
);
}
//
// Adjust the allocated size and register table base address.
//
RegisterTable->AllocatedSize += EFI_PAGE_SIZE;
RegisterTable->RegisterTableEntry = Address;
}

View File

@ -0,0 +1,62 @@
## @file
# Register CPU Features Library DXE instance.
#
# Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
# This program and the accompanying materials
# are licensed and made available under the terms and conditions of the BSD License
# which accompanies this distribution. The full text of the license may be found at
# http://opensource.org/licenses/bsd-license.php
#
# THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
# WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#
##
[Defines]
INF_VERSION = 0x00010005
BASE_NAME = DxeRegisterCpuFeaturesLib
MODULE_UNI_FILE = DxeRegisterCpuFeaturesLib.uni
FILE_GUID = ADE8F745-AA2E-49f6-8ED4-746B34867E52
MODULE_TYPE = DXE_DRIVER
VERSION_STRING = 1.0
LIBRARY_CLASS = RegisterCpuFeaturesLib|DXE_DRIVER
#
# The following information is for reference only and not required by the build tools.
#
# VALID_ARCHITECTURES = IA32 X64
#
[Sources.common]
DxeRegisterCpuFeaturesLib.c
RegisterCpuFeaturesLib.c
RegisterCpuFeatures.h
CpuFeaturesInitialize.c
[Packages]
MdePkg/MdePkg.dec
UefiCpuPkg/UefiCpuPkg.dec
[LibraryClasses]
BaseLib
DebugLib
PcdLib
LocalApicLib
BaseMemoryLib
MemoryAllocationLib
SynchronizationLib
UefiBootServicesTableLib
IoLib
[Protocols]
gEfiMpServiceProtocolGuid ## CONSUMES
[Pcd]
gUefiCpuPkgTokenSpaceGuid.PcdCpuS3DataAddress ## CONSUMES
gUefiCpuPkgTokenSpaceGuid.PcdCpuFeaturesSupport ## CONSUMES
gUefiCpuPkgTokenSpaceGuid.PcdCpuFeaturesUserConfiguration ## CONSUMES
gUefiCpuPkgTokenSpaceGuid.PcdCpuFeaturesCapability ## PRODUCES
gUefiCpuPkgTokenSpaceGuid.PcdCpuFeaturesSetting ## PRODUCES
[Depex]
gEfiMpServiceProtocolGuid AND gEdkiiCpuFeaturesSetDoneGuid

View File

@ -0,0 +1,390 @@
/** @file
CPU Register Table Library functions.
Copyright (c) 2016, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <PiPei.h>
#include <Library/HobLib.h>
#include <Library/PeiServicesLib.h>
#include <Library/PeiServicesTablePointerLib.h>
#include <Ppi/MpServices.h>
#include "RegisterCpuFeatures.h"
#define REGISTER_CPU_FEATURES_GUID \
{ \
0xa694c467, 0x697a, 0x446b, { 0xb9, 0x29, 0x5b, 0x14, 0xa0, 0xcf, 0x39, 0xf } \
}
EFI_GUID mRegisterCpuFeaturesHobGuid = REGISTER_CPU_FEATURES_GUID;
/**
Worker function to get CPU_FEATURES_DATA pointer.
@return Pointer to CPU_FEATURES_DATA.
**/
CPU_FEATURES_DATA *
GetCpuFeaturesData (
VOID
)
{
CPU_FEATURES_DATA *CpuInitData;
EFI_HOB_GUID_TYPE *GuidHob;
VOID *DataInHob;
UINT64 Data64;
CpuInitData = NULL;
GuidHob = GetFirstGuidHob (&mRegisterCpuFeaturesHobGuid);
if (GuidHob != NULL) {
DataInHob = GET_GUID_HOB_DATA (GuidHob);
CpuInitData = (CPU_FEATURES_DATA *) (*(UINTN *) DataInHob);
ASSERT (CpuInitData != NULL);
} else {
CpuInitData = AllocateZeroPool (sizeof (CPU_FEATURES_DATA));
ASSERT (CpuInitData != NULL);
//
// Build location of CPU MP DATA buffer in HOB
//
Data64 = (UINT64) (UINTN) CpuInitData;
BuildGuidDataHob (
&mRegisterCpuFeaturesHobGuid,
(VOID *) &Data64,
sizeof (UINT64)
);
}
return CpuInitData;
}
/**
Worker function to get MP PPI service pointer.
@return PEI PPI service pointer.
**/
EFI_PEI_MP_SERVICES_PPI *
GetMpPpi (
VOID
)
{
EFI_STATUS Status;
EFI_PEI_MP_SERVICES_PPI *CpuMpPpi;
//
// Get MP Services Protocol
//
Status = PeiServicesLocatePpi (
&gEfiPeiMpServicesPpiGuid,
0,
NULL,
(VOID **)&CpuMpPpi
);
ASSERT_EFI_ERROR (Status);
return CpuMpPpi;
}
/**
Worker function to return processor index.
@return The processor index.
**/
UINTN
GetProcessorIndex (
VOID
)
{
EFI_STATUS Status;
EFI_PEI_MP_SERVICES_PPI *CpuMpPpi;
UINTN ProcessorIndex;
CpuMpPpi = GetMpPpi ();
Status = CpuMpPpi->WhoAmI(GetPeiServicesTablePointer (), CpuMpPpi, &ProcessorIndex);
ASSERT_EFI_ERROR (Status);
return ProcessorIndex;
}
/**
Worker function to MP-related information on the requested processor at the
instant this call is made.
@param[in] ProcessorNumber The handle number of processor.
@param[out] ProcessorInfoBuffer A pointer to the buffer where information for
the requested processor is deposited.
@return Status of MpServices->GetProcessorInfo().
**/
EFI_STATUS
GetProcessorInformation (
IN UINTN ProcessorNumber,
OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer
)
{
EFI_PEI_MP_SERVICES_PPI *CpuMpPpi;
EFI_STATUS Status;
CpuMpPpi = GetMpPpi ();
Status = CpuMpPpi->GetProcessorInfo (
GetPeiServicesTablePointer(),
CpuMpPpi,
ProcessorNumber,
ProcessorInfoBuffer
);
return Status;
}
/**
Worker function to execute a caller provided function on all enabled APs.
@param[in] Procedure A pointer to the function to be run on
enabled APs of the system.
**/
VOID
StartupAPsWorker (
IN EFI_AP_PROCEDURE Procedure
)
{
EFI_STATUS Status;
EFI_PEI_MP_SERVICES_PPI *CpuMpPpi;
//
// Get MP Services Protocol
//
Status = PeiServicesLocatePpi (
&gEfiPeiMpServicesPpiGuid,
0,
NULL,
(VOID **)&CpuMpPpi
);
ASSERT_EFI_ERROR (Status);
//
// Wakeup all APs for data collection.
//
Status = CpuMpPpi->StartupAllAPs (
GetPeiServicesTablePointer (),
CpuMpPpi,
Procedure,
FALSE,
0,
NULL
);
ASSERT_EFI_ERROR (Status);
}
/**
Worker function to switch the requested AP to be the BSP from that point onward.
@param[in] ProcessorNumber The handle number of AP that is to become the new BSP.
**/
VOID
SwitchNewBsp (
IN UINTN ProcessorNumber
)
{
EFI_STATUS Status;
EFI_PEI_MP_SERVICES_PPI *CpuMpPpi;
//
// Get MP Services Protocol
//
Status = PeiServicesLocatePpi (
&gEfiPeiMpServicesPpiGuid,
0,
NULL,
(VOID **)&CpuMpPpi
);
ASSERT_EFI_ERROR (Status);
//
// Wakeup all APs for data collection.
//
Status = CpuMpPpi->SwitchBSP (
GetPeiServicesTablePointer (),
CpuMpPpi,
ProcessorNumber,
TRUE
);
ASSERT_EFI_ERROR (Status);
}
/**
Worker function to retrieve the number of logical processor in the platform.
@param[out] NumberOfProcessors Pointer to the total number of logical
processors in the system, including the BSP
and disabled APs.
@param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical
processors that exist in system, including
the BSP.
**/
VOID
GetNumberOfProcessor (
OUT UINTN *NumberOfCpus,
OUT UINTN *NumberOfEnabledProcessors
)
{
EFI_STATUS Status;
EFI_PEI_MP_SERVICES_PPI *CpuMpPpi;
//
// Get MP Services Protocol
//
Status = PeiServicesLocatePpi (
&gEfiPeiMpServicesPpiGuid,
0,
NULL,
(VOID **)&CpuMpPpi
);
ASSERT_EFI_ERROR (Status);
//
// Get the number of CPUs
//
Status = CpuMpPpi->GetNumberOfProcessors (
GetPeiServicesTablePointer (),
CpuMpPpi,
NumberOfCpus,
NumberOfEnabledProcessors
);
ASSERT_EFI_ERROR (Status);
}
/**
Allocates ACPI NVS memory to save ACPI_CPU_DATA.
@return Pointer to allocated ACPI_CPU_DATA.
**/
ACPI_CPU_DATA *
AllocateAcpiCpuData (
VOID
)
{
EFI_STATUS Status;
EFI_PEI_MP_SERVICES_PPI *CpuMpPpi;
UINTN NumberOfCpus;
UINTN NumberOfEnabledProcessors;
ACPI_CPU_DATA *AcpiCpuData;
EFI_PHYSICAL_ADDRESS Address;
UINTN TableSize;
CPU_REGISTER_TABLE *RegisterTable;
UINTN Index;
EFI_PROCESSOR_INFORMATION ProcessorInfoBuffer;
Status = PeiServicesAllocatePages (
EfiACPIMemoryNVS,
EFI_SIZE_TO_PAGES (sizeof (ACPI_CPU_DATA)),
&Address
);
ASSERT_EFI_ERROR (Status);
AcpiCpuData = (ACPI_CPU_DATA *) (UINTN) Address;
ASSERT (AcpiCpuData != NULL);
//
// Get MP Services Protocol
//
Status = PeiServicesLocatePpi (
&gEfiPeiMpServicesPpiGuid,
0,
NULL,
(VOID **)&CpuMpPpi
);
ASSERT_EFI_ERROR (Status);
//
// Get the number of CPUs
//
Status = CpuMpPpi->GetNumberOfProcessors (
GetPeiServicesTablePointer (),
CpuMpPpi,
&NumberOfCpus,
&NumberOfEnabledProcessors
);
ASSERT_EFI_ERROR (Status);
AcpiCpuData->NumberOfCpus = (UINT32)NumberOfCpus;
//
// Allocate buffer for empty RegisterTable and PreSmmInitRegisterTable for all CPUs
//
TableSize = 2 * NumberOfCpus * sizeof (CPU_REGISTER_TABLE);
Status = PeiServicesAllocatePages (
EfiACPIMemoryNVS,
EFI_SIZE_TO_PAGES (TableSize),
&Address
);
ASSERT_EFI_ERROR (Status);
RegisterTable = (CPU_REGISTER_TABLE *) (UINTN) Address;
for (Index = 0; Index < NumberOfCpus; Index++) {
Status = CpuMpPpi->GetProcessorInfo (
GetPeiServicesTablePointer (),
CpuMpPpi,
Index,
&ProcessorInfoBuffer
);
ASSERT_EFI_ERROR (Status);
RegisterTable[Index].InitialApicId = (UINT32)ProcessorInfoBuffer.ProcessorId;
RegisterTable[Index].TableLength = 0;
RegisterTable[Index].AllocatedSize = 0;
RegisterTable[Index].RegisterTableEntry = 0;
RegisterTable[NumberOfCpus + Index].InitialApicId = (UINT32)ProcessorInfoBuffer.ProcessorId;
RegisterTable[NumberOfCpus + Index].TableLength = 0;
RegisterTable[NumberOfCpus + Index].AllocatedSize = 0;
RegisterTable[NumberOfCpus + Index].RegisterTableEntry = 0;
}
AcpiCpuData->RegisterTable = (EFI_PHYSICAL_ADDRESS)(UINTN)RegisterTable;
AcpiCpuData->PreSmmInitRegisterTable = (EFI_PHYSICAL_ADDRESS)(UINTN)(RegisterTable + NumberOfCpus);
return AcpiCpuData;
}
/**
Enlarges CPU register table for each processor.
@param[in, out] RegisterTable Pointer processor's CPU register table
**/
VOID
EnlargeRegisterTable (
IN OUT CPU_REGISTER_TABLE *RegisterTable
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS Address;
UINTN AllocatePages;
AllocatePages = RegisterTable->AllocatedSize / EFI_PAGE_SIZE;
Status = PeiServicesAllocatePages (
EfiACPIMemoryNVS,
AllocatePages + 1,
&Address
);
ASSERT_EFI_ERROR (Status);
//
// If there are records existing in the register table, then copy its contents
// to new region and free the old one.
//
if (RegisterTable->AllocatedSize > 0) {
CopyMem (
(VOID *) (UINTN) Address,
(VOID *) (UINTN) RegisterTable->RegisterTableEntry,
RegisterTable->AllocatedSize
);
}
//
// Adjust the allocated size and register table base address.
//
RegisterTable->AllocatedSize += EFI_PAGE_SIZE;
RegisterTable->RegisterTableEntry = Address;
}

View File

@ -0,0 +1,64 @@
## @file
# Register CPU Features Library PEI instance.
#
# Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
# This program and the accompanying materials
# are licensed and made available under the terms and conditions of the BSD License
# which accompanies this distribution. The full text of the license may be found at
# http://opensource.org/licenses/bsd-license.php
#
# THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
# WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#
##
[Defines]
INF_VERSION = 0x00010005
BASE_NAME = PeiRegisterCpuFeaturesLib
MODULE_UNI_FILE = PeiRegisterCpuFeaturesLib.uni
FILE_GUID = D8855DB3-8348-41B5-BDA4-385351767D41
MODULE_TYPE = PEIM
VERSION_STRING = 1.0
LIBRARY_CLASS = RegisterCpuFeaturesLib|PEIM
#
# The following information is for reference only and not required by the build tools.
#
# VALID_ARCHITECTURES = IA32 X64
#
[Sources.common]
PeiRegisterCpuFeaturesLib.c
RegisterCpuFeaturesLib.c
RegisterCpuFeatures.h
CpuFeaturesInitialize.c
[Packages]
MdePkg/MdePkg.dec
UefiCpuPkg/UefiCpuPkg.dec
[LibraryClasses]
BaseLib
DebugLib
PcdLib
LocalApicLib
BaseMemoryLib
MemoryAllocationLib
SynchronizationLib
HobLib
PeiServicesLib
PeiServicesTablePointerLib
IoLib
[Ppis]
gEfiPeiMpServicesPpiGuid ## CONSUMES
[Pcd]
gUefiCpuPkgTokenSpaceGuid.PcdCpuS3DataAddress ## CONSUMES
gUefiCpuPkgTokenSpaceGuid.PcdCpuFeaturesSupport ## CONSUMES
gUefiCpuPkgTokenSpaceGuid.PcdCpuFeaturesUserConfiguration ## CONSUMES
gUefiCpuPkgTokenSpaceGuid.PcdCpuFeaturesCapability ## PRODUCES
gUefiCpuPkgTokenSpaceGuid.PcdCpuFeaturesSetting ## PRODUCES
[Depex]
gEfiPeiMpServicesPpiGuid AND gEdkiiCpuFeaturesSetDoneGuid

View File

@ -0,0 +1,193 @@
/** @file
CPU Register Table Library definitions.
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#ifndef _REGISTER_CPU_FEATURES_H_
#define _REGISTER_CPU_FEATURES_H_
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/PcdLib.h>
#include <Library/RegisterCpuFeaturesLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/SynchronizationLib.h>
#include <Library/IoLib.h>
#include <AcpiCpuData.h>
#define CPU_FEATURE_ENTRY_SIGNATURE SIGNATURE_32 ('C', 'F', 'E', 'S')
#define CPU_FEATURE_NAME_SIZE 128
typedef struct {
REGISTER_CPU_FEATURE_INFORMATION CpuInfo;
UINT8 *FeaturesSupportedMask;
LIST_ENTRY OrderList;
} CPU_FEATURES_INIT_ORDER;
typedef struct {
UINT32 Signature;
LIST_ENTRY Link;
UINT8 *FeatureMask;
CHAR8 *FeatureName;
CPU_FEATURE_GET_CONFIG_DATA GetConfigDataFunc;
CPU_FEATURE_SUPPORT SupportFunc;
CPU_FEATURE_INITIALIZE InitializeFunc;
UINT8 *BeforeFeatureBitMask;
UINT8 *AfterFeatureBitMask;
VOID *ConfigData;
BOOLEAN BeforeAll;
BOOLEAN AfterAll;
} CPU_FEATURES_ENTRY;
typedef struct {
UINTN FeaturesCount;
UINT32 BitMaskSize;
SPIN_LOCK MsrLock;
SPIN_LOCK MemoryMappedLock;
LIST_ENTRY FeatureList;
CPU_FEATURES_INIT_ORDER *InitOrder;
UINT8 *SupportPcds;
UINT8 *CapabilityPcds;
UINT8 *ConfigurationPcds;
UINT8 *SettingPcds;
CPU_REGISTER_TABLE *RegisterTable;
CPU_REGISTER_TABLE *PreSmmRegisterTable;
UINTN BspNumber;
} CPU_FEATURES_DATA;
#define CPU_FEATURE_ENTRY_FROM_LINK(a) \
CR ( \
(a), \
CPU_FEATURES_ENTRY, \
Link, \
CPU_FEATURE_ENTRY_SIGNATURE \
)
/**
Worker function to get CPU_FEATURES_DATA pointer.
@return Pointer to CPU_FEATURES_DATA.
**/
CPU_FEATURES_DATA *
GetCpuFeaturesData (
VOID
);
/**
Enlarges CPU register table for each processor.
@param[in, out] RegisterTable Pointer processor's CPU register table
**/
VOID
EnlargeRegisterTable (
IN OUT CPU_REGISTER_TABLE *RegisterTable
);
/**
Allocates ACPI NVS memory to save ACPI_CPU_DATA.
@return Pointer to allocated ACPI_CPU_DATA.
**/
ACPI_CPU_DATA *
AllocateAcpiCpuData (
VOID
);
/**
Worker function to return processor index.
@return The processor index.
**/
UINTN
GetProcessorIndex (
VOID
);
/**
Gets detailed MP-related information on the requested processor at the
instant this call is made.
@param[in] ProcessorNumber The handle number of processor.
@param[out] ProcessorInfoBuffer A pointer to the buffer where information for
the requested processor is deposited.
@return Status of MpServices->GetProcessorInfo().
**/
EFI_STATUS
GetProcessorInformation (
IN UINTN ProcessorNumber,
OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer
);
/**
Worker function to execute a caller provided function on all enabled APs.
@param[in] Procedure A pointer to the function to be run on
enabled APs of the system.
**/
VOID
StartupAPsWorker (
IN EFI_AP_PROCEDURE Procedure
);
/**
Worker function to retrieve the number of logical processor in the platform.
@param[out] NumberOfProcessors Pointer to the total number of logical
processors in the system, including the BSP
and disabled APs.
@param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical
processors that exist in system, including
the BSP.
**/
VOID
GetNumberOfProcessor (
OUT UINTN *NumberOfCpus,
OUT UINTN *NumberOfEnabledProcessors
);
/**
Worker function to switch the requested AP to be the BSP from that point onward.
@param[in] ProcessorNumber The handle number of AP that is to become the new BSP.
**/
VOID
SwitchNewBsp (
IN UINTN ProcessorNumber
);
/**
Function that uses DEBUG() macros to display the contents of a a CPU feature bit mask.
@param[in] FeatureMask A pointer to the CPU feature bit mask.
**/
VOID
DumpCpuFeatureMask (
IN UINT8 *FeatureMask
);
/**
Dump CPU feature name or CPU feature bit mask.
@param[in] CpuFeature Pointer to CPU_FEATURES_ENTRY
**/
VOID
DumpCpuFeature (
IN CPU_FEATURES_ENTRY *CpuFeature
);
#endif

View File

@ -0,0 +1,22 @@
// /** @file
// CPU Register Table Library instance.
//
// CPU Register Table Library instance.
//
// Copyright (c) 2016, Intel Corporation. All rights reserved.<BR>
//
// This program and the accompanying materials
// are licensed and made available under the terms and conditions of the BSD License
// which accompanies this distribution. The full text of the license may be found at
// http://opensource.org/licenses/bsd-license.php
//
// THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
// WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
//
// **/
#string STR_MODULE_ABSTRACT #language en-US "CPU Register Table Library instance"
#string STR_MODULE_DESCRIPTION #language en-US "CPU Register Table Library instance."

View File

@ -0,0 +1,770 @@
/** @file
CPU Register Table Library functions.
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "RegisterCpuFeatures.h"
/**
Checks if two CPU feature bit masks are equal.
@param[in] FirstFeatureMask The first input CPU feature bit mask
@param[in] SecondFeatureMask The second input CPU feature bit mask
@retval TRUE Two CPU feature bit masks are equal.
@retval FALSE Two CPU feature bit masks are not equal.
**/
BOOLEAN
IsCpuFeatureMatch (
IN UINT8 *FirstFeatureMask,
IN UINT8 *SecondFeatureMask
)
{
UINT32 BitMaskSize;
BitMaskSize = PcdGetSize (PcdCpuFeaturesSupport);
if (CompareMem (FirstFeatureMask, SecondFeatureMask, BitMaskSize) == 0) {
return TRUE;
} else {
return FALSE;
}
}
/**
Function that uses DEBUG() macros to display the contents of a a CPU feature bit mask.
@param[in] FeatureMask A pointer to the CPU feature bit mask.
**/
VOID
DumpCpuFeatureMask (
IN UINT8 *FeatureMask
)
{
UINTN Index;
UINT8 *Data8;
UINT32 BitMaskSize;
BitMaskSize = PcdGetSize (PcdCpuFeaturesSupport);
Data8 = (UINT8 *) FeatureMask;
for (Index = 0; Index < BitMaskSize; Index++) {
DEBUG ((DEBUG_INFO, " %02x ", *Data8++));
}
DEBUG ((DEBUG_INFO, "\n"));
}
/**
Dump CPU feature name or CPU feature bit mask.
@param[in] CpuFeature Pointer to CPU_FEATURES_ENTRY
**/
VOID
DumpCpuFeature (
IN CPU_FEATURES_ENTRY *CpuFeature
)
{
if (CpuFeature->FeatureName != NULL) {
DEBUG ((DEBUG_INFO, "FeatureName: %a\n", CpuFeature->FeatureName));
} else {
DEBUG ((DEBUG_INFO, "FeatureMask = "));
DumpCpuFeatureMask (CpuFeature->FeatureMask);
}
}
/**
Determines if the feature bit mask is in dependent CPU feature bit mask buffer.
@param[in] FeatureMask Pointer to CPU feature bit mask
@param[in] DependentBitMask Pointer to dependent CPU feature bit mask buffer
@retval TRUE The feature bit mask is in dependent CPU feature bit mask buffer.
@retval FALSE The feature bit mask is not in dependent CPU feature bit mask buffer.
**/
BOOLEAN
IsBitMaskMatchCheck (
IN UINT8 *FeatureMask,
IN UINT8 *DependentBitMask
)
{
UINTN Index;
UINTN BitMaskSize;
UINT8 *Data1;
UINT8 *Data2;
BitMaskSize = PcdGetSize (PcdCpuFeaturesSupport);
Data1 = FeatureMask;
Data2 = DependentBitMask;
for (Index = 0; Index < BitMaskSize; Index++) {
if (((*(Data1++)) & (*(Data2++))) != 0) {
return TRUE;
}
}
return FALSE;
}
/**
Checks and adjusts CPU features order per dependency relationship.
@param[in] FeatureList Pointer to CPU feature list
**/
VOID
CheckCpuFeaturesDependency (
IN LIST_ENTRY *FeatureList
)
{
LIST_ENTRY *CurrentEntry;
CPU_FEATURES_ENTRY *CpuFeature;
LIST_ENTRY *CheckEntry;
CPU_FEATURES_ENTRY *CheckFeature;
BOOLEAN Swapped;
LIST_ENTRY *TempEntry;
CurrentEntry = GetFirstNode (FeatureList);
while (!IsNull (FeatureList, CurrentEntry)) {
Swapped = FALSE;
CpuFeature = CPU_FEATURE_ENTRY_FROM_LINK (CurrentEntry);
if (CpuFeature->BeforeAll) {
//
// Check all features dispatched before this entry
//
CheckEntry = GetFirstNode (FeatureList);
while (CheckEntry != CurrentEntry) {
CheckFeature = CPU_FEATURE_ENTRY_FROM_LINK (CheckEntry);
if (!CheckFeature->BeforeAll) {
//
// If this feature has no BeforeAll flag and is dispatched before CpuFeature,
// insert currentEntry before Checked feature
//
RemoveEntryList (CurrentEntry);
InsertTailList (CheckEntry, CurrentEntry);
Swapped = TRUE;
break;
}
CheckEntry = CheckEntry->ForwardLink;
}
if (Swapped) {
continue;
}
}
if (CpuFeature->AfterAll) {
//
// Check all features dispatched after this entry
//
CheckEntry = GetNextNode (FeatureList, CurrentEntry);
while (!IsNull (FeatureList, CheckEntry)) {
CheckFeature = CPU_FEATURE_ENTRY_FROM_LINK (CheckEntry);
if (!CheckFeature->AfterAll) {
//
// If this feature has no AfterAll flag and is dispatched after CpuFeature,
// insert currentEntry after Checked feature
//
TempEntry = GetNextNode (FeatureList, CurrentEntry);
RemoveEntryList (CurrentEntry);
InsertHeadList (CheckEntry, CurrentEntry);
CurrentEntry = TempEntry;
Swapped = TRUE;
break;
}
CheckEntry = CheckEntry->ForwardLink;
}
if (Swapped) {
continue;
}
}
if (CpuFeature->BeforeFeatureBitMask != NULL) {
//
// Check all features dispatched before this entry
//
CheckEntry = GetFirstNode (FeatureList);
while (CheckEntry != CurrentEntry) {
CheckFeature = CPU_FEATURE_ENTRY_FROM_LINK (CheckEntry);
if (IsBitMaskMatchCheck (CheckFeature->FeatureMask, CpuFeature->BeforeFeatureBitMask)) {
//
// If there is dependency, swap them
//
RemoveEntryList (CurrentEntry);
InsertTailList (CheckEntry, CurrentEntry);
Swapped = TRUE;
break;
}
CheckEntry = CheckEntry->ForwardLink;
}
if (Swapped) {
continue;
}
}
if (CpuFeature->AfterFeatureBitMask != NULL) {
//
// Check all features dispatched after this entry
//
CheckEntry = GetNextNode (FeatureList, CurrentEntry);
while (!IsNull (FeatureList, CheckEntry)) {
CheckFeature = CPU_FEATURE_ENTRY_FROM_LINK (CheckEntry);
if (IsBitMaskMatchCheck (CheckFeature->FeatureMask, CpuFeature->AfterFeatureBitMask)) {
//
// If there is dependency, swap them
//
TempEntry = GetNextNode (FeatureList, CurrentEntry);
RemoveEntryList (CurrentEntry);
InsertHeadList (CheckEntry, CurrentEntry);
CurrentEntry = TempEntry;
Swapped = TRUE;
break;
}
CheckEntry = CheckEntry->ForwardLink;
}
if (Swapped) {
continue;
}
}
//
// No swap happened, check the next feature
//
CurrentEntry = CurrentEntry->ForwardLink;
}
}
/**
Worker function to register CPU Feature.
@param[in] CpuFeature Pointer to CPU feature entry
@retval RETURN_SUCCESS The CPU feature was successfully registered.
@retval RETURN_OUT_OF_RESOURCES There are not enough resources to register
the CPU feature.
@retval RETURN_UNSUPPORTED Registration of the CPU feature is not
supported due to a circular dependency between
BEFORE and AFTER features.
**/
RETURN_STATUS
RegisterCpuFeatureWorker (
IN CPU_FEATURES_ENTRY *CpuFeature
)
{
EFI_STATUS Status;
CPU_FEATURES_DATA *CpuFeaturesData;
CPU_FEATURES_ENTRY *CpuFeatureEntry;
LIST_ENTRY *Entry;
UINT32 BitMaskSize;
BOOLEAN FeatureExist;
BitMaskSize = PcdGetSize (PcdCpuFeaturesSupport);
CpuFeaturesData = GetCpuFeaturesData ();
if (CpuFeaturesData->FeaturesCount == 0) {
InitializeListHead (&CpuFeaturesData->FeatureList);
InitializeSpinLock (&CpuFeaturesData->MsrLock);
InitializeSpinLock (&CpuFeaturesData->MemoryMappedLock);
CpuFeaturesData->BitMaskSize = BitMaskSize;
}
ASSERT (CpuFeaturesData->BitMaskSize == BitMaskSize);
FeatureExist = FALSE;
Entry = GetFirstNode (&CpuFeaturesData->FeatureList);
while (!IsNull (&CpuFeaturesData->FeatureList, Entry)) {
CpuFeatureEntry = CPU_FEATURE_ENTRY_FROM_LINK (Entry);
if (IsCpuFeatureMatch (CpuFeature->FeatureMask, CpuFeatureEntry->FeatureMask)) {
//
// If this feature already registered
//
FeatureExist = TRUE;
break;
}
Entry = Entry->ForwardLink;
}
if (!FeatureExist) {
DEBUG ((DEBUG_INFO, "[NEW] "));
DumpCpuFeature (CpuFeature);
InsertTailList (&CpuFeaturesData->FeatureList, &CpuFeature->Link);
CpuFeaturesData->FeaturesCount++;
} else {
DEBUG ((DEBUG_INFO, "[OVERRIDE] "));
DumpCpuFeature (CpuFeature);
//
// Overwrite original parameters of CPU feature
//
if (CpuFeature->GetConfigDataFunc != NULL) {
CpuFeatureEntry->GetConfigDataFunc = CpuFeature->GetConfigDataFunc;
}
if (CpuFeature->SupportFunc != NULL) {
CpuFeatureEntry->SupportFunc = CpuFeature->SupportFunc;
}
if (CpuFeature->InitializeFunc != NULL) {
CpuFeatureEntry->InitializeFunc = CpuFeature->InitializeFunc;
}
if (CpuFeature->FeatureName != NULL) {
if (CpuFeatureEntry->FeatureName == NULL) {
CpuFeatureEntry->FeatureName = AllocatePool (CPU_FEATURE_NAME_SIZE);
ASSERT (CpuFeatureEntry->FeatureName != NULL);
}
Status = AsciiStrCpyS (CpuFeatureEntry->FeatureName, CPU_FEATURE_NAME_SIZE, CpuFeature->FeatureName);
ASSERT_EFI_ERROR (Status);
FreePool (CpuFeature->FeatureName);
}
if (CpuFeature->BeforeFeatureBitMask != NULL) {
if (CpuFeatureEntry->BeforeFeatureBitMask != NULL) {
FreePool (CpuFeatureEntry->BeforeFeatureBitMask);
}
CpuFeatureEntry->BeforeFeatureBitMask = CpuFeature->BeforeFeatureBitMask;
}
if (CpuFeature->AfterFeatureBitMask != NULL) {
if (CpuFeatureEntry->AfterFeatureBitMask != NULL) {
FreePool (CpuFeatureEntry->AfterFeatureBitMask);
}
CpuFeatureEntry->AfterFeatureBitMask = CpuFeature->AfterFeatureBitMask;
}
CpuFeatureEntry->BeforeAll = CpuFeature->BeforeAll;
CpuFeatureEntry->AfterAll = CpuFeature->AfterAll;
FreePool (CpuFeature->FeatureMask);
FreePool (CpuFeature);
}
//
// Verify CPU features dependency can change CPU feature order
//
CheckCpuFeaturesDependency (&CpuFeaturesData->FeatureList);
return RETURN_SUCCESS;
}
/**
Sets CPU feature bit mask in CPU feature bit mask buffer.
@param[in] FeaturesBitMask Pointer to CPU feature bit mask buffer
@param[in] Feature The bit number of the CPU feature
@param[in] BitMaskSize CPU feature bit mask buffer size
**/
VOID
SetCpuFeaturesBitMask (
IN UINT8 **FeaturesBitMask,
IN UINT32 Feature,
IN UINTN BitMaskSize
)
{
UINT8 *CpuFeaturesBitMask;
ASSERT (FeaturesBitMask != NULL);
CpuFeaturesBitMask = *FeaturesBitMask;
if (CpuFeaturesBitMask == NULL) {
CpuFeaturesBitMask = AllocateZeroPool (BitMaskSize);
ASSERT (CpuFeaturesBitMask != NULL);
*FeaturesBitMask = CpuFeaturesBitMask;
}
CpuFeaturesBitMask += (Feature / 8);
*CpuFeaturesBitMask |= (UINT8) (1 << (Feature % 8));
}
/**
Registers a CPU Feature.
@param GetConfigDataFunc CPU feature get configuration data function. This
is an optional parameter that may be NULL. If NULL,
then the most recently registered function for the
CPU feature is used. If no functions are registered
for a CPU feature, then the CPU configuration data
for the registered feature is NULL.
@param SupportFunc CPU feature support function. This is an optional
parameter that may be NULL. If NULL, then the most
recently registered function for the CPU feature is
used. If no functions are registered for a CPU
feature, then the CPU feature is assumed to be
supported by all CPUs.
@param InitializeFunc CPU feature initialize function. This is an optional
parameter that may be NULL. If NULL, then the most
recently registered function for the CPU feature is
used. If no functions are registered for a CPU
feature, then the CPU feature initialization is
skipped.
@param ... Variable argument list of UINT32 CPU feature value.
Values with no modifiers are the features provided
by the registered functions.
Values with CPU_FEATURE_BEFORE modifier are features
that must be initialized after the features provided
by the registered functions are used.
Values with CPU_FEATURE_AFTER modifier are features
that must be initialized before the features provided
by the registered functions are used.
The last argument in this variable argument list must
always be CPU_FEATURE_END.
@retval RETURN_SUCCESS The CPU feature was successfully registered.
@retval RETURN_OUT_OF_RESOURCES There are not enough resources to register
the CPU feature.
@retval RETURN_UNSUPPORTED Registration of the CPU feature is not
supported due to a circular dependency between
BEFORE and AFTER features.
@note This service could be called by BSP only.
**/
RETURN_STATUS
EFIAPI
RegisterCpuFeature (
IN CHAR8 *FeatureName, OPTIONAL
IN CPU_FEATURE_GET_CONFIG_DATA GetConfigDataFunc, OPTIONAL
IN CPU_FEATURE_SUPPORT SupportFunc, OPTIONAL
IN CPU_FEATURE_INITIALIZE InitializeFunc, OPTIONAL
...
)
{
EFI_STATUS Status;
VA_LIST Marker;
UINT32 Feature;
UINTN BitMaskSize;
CPU_FEATURES_ENTRY *CpuFeature;
UINT8 *FeatureMask;
UINT8 *BeforeFeatureBitMask;
UINT8 *AfterFeatureBitMask;
BOOLEAN BeforeAll;
BOOLEAN AfterAll;
FeatureMask = NULL;
BeforeFeatureBitMask = NULL;
AfterFeatureBitMask = NULL;
BeforeAll = FALSE;
AfterAll = FALSE;
BitMaskSize = PcdGetSize (PcdCpuFeaturesSupport);
VA_START (Marker, InitializeFunc);
Feature = VA_ARG (Marker, UINT32);
while (Feature != CPU_FEATURE_END) {
ASSERT ((Feature & (CPU_FEATURE_BEFORE | CPU_FEATURE_AFTER))
!= (CPU_FEATURE_BEFORE | CPU_FEATURE_AFTER));
ASSERT ((Feature & (CPU_FEATURE_BEFORE_ALL | CPU_FEATURE_AFTER_ALL))
!= (CPU_FEATURE_BEFORE_ALL | CPU_FEATURE_AFTER_ALL));
if (Feature < CPU_FEATURE_BEFORE) {
BeforeAll = ((Feature & CPU_FEATURE_BEFORE_ALL) != 0) ? TRUE : FALSE;
AfterAll = ((Feature & CPU_FEATURE_AFTER_ALL) != 0) ? TRUE : FALSE;
Feature &= ~(CPU_FEATURE_BEFORE_ALL | CPU_FEATURE_AFTER_ALL);
ASSERT (FeatureMask == NULL);
SetCpuFeaturesBitMask (&FeatureMask, Feature, BitMaskSize);
} else if ((Feature & CPU_FEATURE_BEFORE) != 0) {
SetCpuFeaturesBitMask (&BeforeFeatureBitMask, Feature & ~CPU_FEATURE_BEFORE, BitMaskSize);
} else if ((Feature & CPU_FEATURE_AFTER) != 0) {
SetCpuFeaturesBitMask (&AfterFeatureBitMask, Feature & ~CPU_FEATURE_AFTER, BitMaskSize);
}
Feature = VA_ARG (Marker, UINT32);
}
VA_END (Marker);
CpuFeature = AllocateZeroPool (sizeof (CPU_FEATURES_ENTRY));
ASSERT (CpuFeature != NULL);
CpuFeature->Signature = CPU_FEATURE_ENTRY_SIGNATURE;
CpuFeature->FeatureMask = FeatureMask;
CpuFeature->BeforeFeatureBitMask = BeforeFeatureBitMask;
CpuFeature->AfterFeatureBitMask = AfterFeatureBitMask;
CpuFeature->BeforeAll = BeforeAll;
CpuFeature->AfterAll = AfterAll;
CpuFeature->GetConfigDataFunc = GetConfigDataFunc;
CpuFeature->SupportFunc = SupportFunc;
CpuFeature->InitializeFunc = InitializeFunc;
if (FeatureName != NULL) {
CpuFeature->FeatureName = AllocatePool (CPU_FEATURE_NAME_SIZE);
ASSERT (CpuFeature->FeatureName != NULL);
Status = AsciiStrCpyS (CpuFeature->FeatureName, CPU_FEATURE_NAME_SIZE, FeatureName);
ASSERT_EFI_ERROR (Status);
}
Status = RegisterCpuFeatureWorker (CpuFeature);
ASSERT_EFI_ERROR (Status);
return RETURN_SUCCESS;
}
/**
Add an entry in specified register table.
This function adds an entry in specified register table, with given register type,
register index, bit section and value.
@param[in] PreSmmFlag If TRUE, entry will be added into PreSmm register table
If FALSE, entry will be added into register table
@param[in] ProcessorNumber The index of the CPU to add a register table entry
@param[in] RegisterType Type of the register to program
@param[in] Index Index of the register to program
@param[in] ValidBitStart Start of the bit section
@param[in] ValidBitLength Length of the bit section
@param[in] Value Value to write
**/
VOID
CpuRegisterTableWriteWorker (
IN BOOLEAN PreSmmFlag,
IN UINTN ProcessorNumber,
IN REGISTER_TYPE RegisterType,
IN UINT32 Index,
IN UINT8 ValidBitStart,
IN UINT8 ValidBitLength,
IN UINT64 Value
)
{
EFI_STATUS Status;
CPU_FEATURES_DATA *CpuFeaturesData;
ACPI_CPU_DATA *AcpiCpuData;
CPU_REGISTER_TABLE *RegisterTable;
CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry;
CpuFeaturesData = GetCpuFeaturesData ();
if (CpuFeaturesData->RegisterTable == NULL) {
AcpiCpuData = (ACPI_CPU_DATA *) (UINTN) PcdGet64 (PcdCpuS3DataAddress);
if (AcpiCpuData == NULL) {
AcpiCpuData = AllocateAcpiCpuData ();
ASSERT (AcpiCpuData != NULL);
//
// Set PcdCpuS3DataAddress to the base address of the ACPI_CPU_DATA structure
//
Status = PcdSet64S (PcdCpuS3DataAddress, (UINT64)(UINTN)AcpiCpuData);
ASSERT_EFI_ERROR (Status);
}
ASSERT (AcpiCpuData->RegisterTable != 0);
CpuFeaturesData->RegisterTable = (CPU_REGISTER_TABLE *) (UINTN) AcpiCpuData->RegisterTable;
CpuFeaturesData->PreSmmRegisterTable = (CPU_REGISTER_TABLE *) (UINTN) AcpiCpuData->PreSmmInitRegisterTable;
}
if (PreSmmFlag) {
RegisterTable = &CpuFeaturesData->PreSmmRegisterTable[ProcessorNumber];
} else {
RegisterTable = &CpuFeaturesData->RegisterTable[ProcessorNumber];
}
if (RegisterTable->TableLength == RegisterTable->AllocatedSize / sizeof (CPU_REGISTER_TABLE_ENTRY)) {
EnlargeRegisterTable (RegisterTable);
}
//
// Append entry in the register table.
//
RegisterTableEntry = (CPU_REGISTER_TABLE_ENTRY *) (UINTN) RegisterTable->RegisterTableEntry;
RegisterTableEntry[RegisterTable->TableLength].RegisterType = RegisterType;
RegisterTableEntry[RegisterTable->TableLength].Index = Index;
RegisterTableEntry[RegisterTable->TableLength].ValidBitStart = ValidBitStart;
RegisterTableEntry[RegisterTable->TableLength].ValidBitLength = ValidBitLength;
RegisterTableEntry[RegisterTable->TableLength].Value = Value;
RegisterTable->TableLength++;
}
/**
Adds an entry in specified register table.
This function adds an entry in specified register table, with given register type,
register index, bit section and value.
@param[in] ProcessorNumber The index of the CPU to add a register table entry
@param[in] RegisterType Type of the register to program
@param[in] Index Index of the register to program
@param[in] ValueMask Mask of bits in register to write
@param[in] Value Value to write
@note This service could be called by BSP only.
**/
VOID
EFIAPI
CpuRegisterTableWrite (
IN UINTN ProcessorNumber,
IN REGISTER_TYPE RegisterType,
IN UINT32 Index,
IN UINT64 ValueMask,
IN UINT64 Value
)
{
UINT8 Start;
UINT8 End;
UINT8 Length;
Start = (UINT8)LowBitSet64 (ValueMask);
End = (UINT8)HighBitSet64 (ValueMask);
Length = End - Start + 1;
CpuRegisterTableWriteWorker (FALSE, ProcessorNumber, RegisterType, Index, Start, Length, Value);
}
/**
Adds an entry in specified Pre-SMM register table.
This function adds an entry in specified register table, with given register type,
register index, bit section and value.
@param[in] ProcessorNumber The index of the CPU to add a register table entry.
@param[in] RegisterType Type of the register to program
@param[in] Index Index of the register to program
@param[in] ValueMask Mask of bits in register to write
@param[in] Value Value to write
@note This service could be called by BSP only.
**/
VOID
EFIAPI
PreSmmCpuRegisterTableWrite (
IN UINTN ProcessorNumber,
IN REGISTER_TYPE RegisterType,
IN UINT32 Index,
IN UINT64 ValueMask,
IN UINT64 Value
)
{
UINT8 Start;
UINT8 End;
UINT8 Length;
Start = (UINT8)LowBitSet64 (ValueMask);
End = (UINT8)HighBitSet64 (ValueMask);
Length = End - Start + 1;
CpuRegisterTableWriteWorker (TRUE, ProcessorNumber, RegisterType, Index, Start, Length, Value);
}
/**
Worker function to determine if a CPU feature is set in input CPU feature bit mask buffer.
@param[in] CpuBitMask CPU feature bit mask buffer
@param[in] CpuBitMaskSize The size of CPU feature bit mask buffer
@param[in] Feature The bit number of the CPU feature
@retval TRUE The CPU feature is set in PcdCpuFeaturesSupport.
@retval FALSE The CPU feature is not set in PcdCpuFeaturesSupport.
**/
BOOLEAN
IsCpuFeatureSetInCpuPcd (
IN UINT8 *CpuBitMask,
IN UINTN CpuBitMaskSize,
IN UINT32 Feature
)
{
if ((Feature >> 3) >= CpuBitMaskSize) {
return FALSE;
}
return ((*(CpuBitMask + (Feature >> 3)) & (1 << (Feature & 0x07))) != 0);
}
/**
Determines if a CPU feature is enabled in PcdCpuFeaturesSupport bit mask.
If a CPU feature is disabled in PcdCpuFeaturesSupport then all the code/data
associated with that feature should be optimized away if compiler
optimizations are enabled.
@param[in] Feature The bit number of the CPU feature to check in the PCD
PcdCpuFeaturesSupport
@retval TRUE The CPU feature is set in PcdCpuFeaturesSupport.
@retval FALSE The CPU feature is not set in PcdCpuFeaturesSupport.
@note This service could be called by BSP only.
**/
BOOLEAN
EFIAPI
IsCpuFeatureSupported (
IN UINT32 Feature
)
{
return IsCpuFeatureSetInCpuPcd (
(UINT8 *)PcdGetPtr (PcdCpuFeaturesSupport),
PcdGetSize (PcdCpuFeaturesSupport),
Feature
);
}
/**
Determines if a CPU feature is set in PcdCpuFeaturesSetting bit mask.
@param[in] Feature The bit number of the CPU feature to check in the PCD
PcdCpuFeaturesSetting
@retval TRUE The CPU feature is set in PcdCpuFeaturesSetting.
@retval FALSE The CPU feature is not set in PcdCpuFeaturesSetting.
@note This service could be called by BSP only.
**/
BOOLEAN
EFIAPI
IsCpuFeatureInSetting (
IN UINT32 Feature
)
{
return IsCpuFeatureSetInCpuPcd (
(UINT8 *)PcdGetPtr (PcdCpuFeaturesSetting),
PcdGetSize (PcdCpuFeaturesSetting),
Feature
);
}
/**
Determines if a CPU feature is set in PcdCpuFeaturesCapability bit mask.
@param[in] Feature The bit number of the CPU feature to check in the PCD
PcdCpuFeaturesCapability
@retval TRUE The CPU feature is set in PcdCpuFeaturesCapability.
@retval FALSE The CPU feature is not set in PcdCpuFeaturesCapability.
@note This service could be called by BSP only.
**/
BOOLEAN
EFIAPI
IsCpuFeatureCapability (
IN UINT32 Feature
)
{
return IsCpuFeatureSetInCpuPcd (
(UINT8 *)PcdGetPtr (PcdCpuFeaturesCapability),
PcdGetSize (PcdCpuFeaturesCapability),
Feature
);
}
/**
Determines if a CPU feature is set in PcdCpuFeaturesUserConfiguration bit mask.
@param[in] Feature The bit number of the CPU feature to check in the PCD
PcdCpuFeaturesUserConfiguration
@retval TRUE The CPU feature is set in PcdCpuFeaturesUserConfiguration.
@retval FALSE The CPU feature is not set in PcdCpuFeaturesUserConfiguration.
@note This service could be called by BSP only.
**/
BOOLEAN
EFIAPI
IsCpuFeatureUserConfiguration (
IN UINT32 Feature
)
{
return IsCpuFeatureSetInCpuPcd (
(UINT8 *)PcdGetPtr (PcdCpuFeaturesUserConfiguration),
PcdGetSize (PcdCpuFeaturesUserConfiguration),
Feature
);
}
/**
Switches to assigned BSP after CPU features initialization.
@param[in] ProcessorNumber The index of the CPU executing this function.
@note This service could be called by BSP only.
**/
VOID
EFIAPI
SwitchBspAfterFeaturesInitialize (
IN UINTN ProcessorNumber
)
{
CPU_FEATURES_DATA *CpuFeaturesData;
CpuFeaturesData = GetCpuFeaturesData ();
CpuFeaturesData->BspNumber = ProcessorNumber;
}

View File

@ -1,7 +1,7 @@
## @file
# UefiCpuPkg Package
#
# Copyright (c) 2007 - 2016, Intel Corporation. All rights reserved.<BR>
# Copyright (c) 2007 - 2017, Intel Corporation. All rights reserved.<BR>
#
# This program and the accompanying materials
# are licensed and made available under the terms and conditions of the BSD License
@ -76,6 +76,7 @@
HobLib|MdePkg/Library/PeiHobLib/PeiHobLib.inf
LockBoxLib|MdeModulePkg/Library/SmmLockBoxLib/SmmLockBoxPeiLib.inf
MpInitLib|UefiCpuPkg/Library/MpInitLib/PeiMpInitLib.inf
RegisterCpuFeaturesLib|UefiCpuPkg/Library/RegisterCpuFeaturesLib/PeiRegisterCpuFeaturesLib.inf
[LibraryClasses.IA32.PEIM, LibraryClasses.X64.PEIM]
PeiServicesTablePointerLib|MdePkg/Library/PeiServicesTablePointerLibIdt/PeiServicesTablePointerLibIdt.inf
@ -89,6 +90,7 @@
HobLib|MdePkg/Library/DxeHobLib/DxeHobLib.inf
CpuExceptionHandlerLib|UefiCpuPkg/Library/CpuExceptionHandlerLib/DxeCpuExceptionHandlerLib.inf
MpInitLib|UefiCpuPkg/Library/MpInitLib/DxeMpInitLib.inf
RegisterCpuFeaturesLib|UefiCpuPkg/Library/RegisterCpuFeaturesLib/DxeRegisterCpuFeaturesLib.inf
[LibraryClasses.common.DXE_SMM_DRIVER]
SmmServicesTableLib|MdePkg/Library/SmmServicesTableLib/SmmServicesTableLib.inf
@ -126,6 +128,8 @@
UefiCpuPkg/Library/MpInitLib/DxeMpInitLib.inf
UefiCpuPkg/Library/MtrrLib/MtrrLib.inf
UefiCpuPkg/Library/PlatformSecLibNull/PlatformSecLibNull.inf
UefiCpuPkg/Library/RegisterCpuFeaturesLib/PeiRegisterCpuFeaturesLib.inf
UefiCpuPkg/Library/RegisterCpuFeaturesLib/DxeRegisterCpuFeaturesLib.inf
UefiCpuPkg/Library/SmmCpuPlatformHookLibNull/SmmCpuPlatformHookLibNull.inf
UefiCpuPkg/Library/SmmCpuFeaturesLib/SmmCpuFeaturesLib.inf
UefiCpuPkg/Library/SmmCpuFeaturesLib/SmmCpuFeaturesLibStm.inf