CryptoPkg: Add BigNum support

REF: https://bugzilla.tianocore.org/show_bug.cgi?id=3828

This patch is used to add CryptBn library, which is wrapped
over OpenSSL.

Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Jian J Wang <jian.j.wang@intel.com>
Cc: Xiaoyu Lu <xiaoyu1.lu@intel.com>
Cc: Guomin Jiang <guomin.jiang@intel.com>
Signed-off-by: Yi Li <yi1.li@intel.com>
Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
This commit is contained in:
Yi Li 2022-09-07 16:12:00 +08:00 committed by mergify[bot]
parent 5f403cdc6a
commit fd0ad0c346
8 changed files with 2043 additions and 0 deletions

View File

@ -2836,4 +2836,422 @@ HkdfSha384Expand (
IN UINTN OutSize IN UINTN OutSize
); );
// =====================================================================================
// Big number primitives
// =====================================================================================
/**
Allocate new Big Number.
@retval New BigNum opaque structure or NULL on failure.
**/
VOID *
EFIAPI
BigNumInit (
VOID
);
/**
Allocate new Big Number and assign the provided value to it.
@param[in] Buf Big endian encoded buffer.
@param[in] Len Buffer length.
@retval New BigNum opaque structure or NULL on failure.
**/
VOID *
EFIAPI
BigNumFromBin (
IN CONST UINT8 *Buf,
IN UINTN Len
);
/**
Convert the absolute value of Bn into big-endian form and store it at Buf.
The Buf array should have at least BigNumBytes() in it.
@param[in] Bn Big number to convert.
@param[out] Buf Output buffer.
@retval The length of the big-endian number placed at Buf or -1 on error.
**/
INTN
EFIAPI
BigNumToBin (
IN CONST VOID *Bn,
OUT UINT8 *Buf
);
/**
Free the Big Number.
@param[in] Bn Big number to free.
@param[in] Clear TRUE if the buffer should be cleared.
**/
VOID
EFIAPI
BigNumFree (
IN VOID *Bn,
IN BOOLEAN Clear
);
/**
Calculate the sum of two Big Numbers.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnB Big number.
@param[out] BnRes The result of BnA + BnB.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumAdd (
IN CONST VOID *BnA,
IN CONST VOID *BnB,
OUT VOID *BnRes
);
/**
Subtract two Big Numbers.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnB Big number.
@param[out] BnRes The result of BnA - BnB.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumSub (
IN CONST VOID *BnA,
IN CONST VOID *BnB,
OUT VOID *BnRes
);
/**
Calculate remainder: BnRes = BnA % BnB.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnB Big number.
@param[out] BnRes The result of BnA % BnB.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumMod (
IN CONST VOID *BnA,
IN CONST VOID *BnB,
OUT VOID *BnRes
);
/**
Compute BnA to the BnP-th power modulo BnM.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnP Big number (power).
@param[in] BnM Big number (modulo).
@param[out] BnRes The result of (BnA ^ BnP) % BnM.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumExpMod (
IN CONST VOID *BnA,
IN CONST VOID *BnP,
IN CONST VOID *BnM,
OUT VOID *BnRes
);
/**
Compute BnA inverse modulo BnM.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnM Big number (modulo).
@param[out] BnRes The result, such that (BnA * BnRes) % BnM == 1.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumInverseMod (
IN CONST VOID *BnA,
IN CONST VOID *BnM,
OUT VOID *BnRes
);
/**
Divide two Big Numbers.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnB Big number.
@param[out] BnRes The result, such that BnA / BnB.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumDiv (
IN CONST VOID *BnA,
IN CONST VOID *BnB,
OUT VOID *BnRes
);
/**
Multiply two Big Numbers modulo BnM.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnB Big number.
@param[in] BnM Big number (modulo).
@param[out] BnRes The result, such that (BnA * BnB) % BnM.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumMulMod (
IN CONST VOID *BnA,
IN CONST VOID *BnB,
IN CONST VOID *BnM,
OUT VOID *BnRes
);
/**
Compare two Big Numbers.
@param[in] BnA Big number.
@param[in] BnB Big number.
@retval 0 BnA == BnB.
@retval 1 BnA > BnB.
@retval -1 BnA < BnB.
**/
INTN
EFIAPI
BigNumCmp (
IN CONST VOID *BnA,
IN CONST VOID *BnB
);
/**
Get number of bits in Bn.
@param[in] Bn Big number.
@retval Number of bits.
**/
UINTN
EFIAPI
BigNumBits (
IN CONST VOID *Bn
);
/**
Get number of bytes in Bn.
@param[in] Bn Big number.
@retval Number of bytes.
**/
UINTN
EFIAPI
BigNumBytes (
IN CONST VOID *Bn
);
/**
Checks if Big Number equals to the given Num.
@param[in] Bn Big number.
@param[in] Num Number.
@retval TRUE iff Bn == Num.
@retval FALSE otherwise.
**/
BOOLEAN
EFIAPI
BigNumIsWord (
IN CONST VOID *Bn,
IN UINTN Num
);
/**
Checks if Big Number is odd.
@param[in] Bn Big number.
@retval TRUE Bn is odd (Bn % 2 == 1).
@retval FALSE otherwise.
**/
BOOLEAN
EFIAPI
BigNumIsOdd (
IN CONST VOID *Bn
);
/**
Copy Big number.
@param[out] BnDst Destination.
@param[in] BnSrc Source.
@retval BnDst on success.
@retval NULL otherwise.
**/
VOID *
EFIAPI
BigNumCopy (
OUT VOID *BnDst,
IN CONST VOID *BnSrc
);
/**
Get constant Big number with value of "1".
This may be used to save expensive allocations.
@retval Big Number with value of 1.
**/
CONST VOID *
EFIAPI
BigNumValueOne (
VOID
);
/**
Shift right Big Number.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] Bn Big number.
@param[in] N Number of bits to shift.
@param[out] BnRes The result.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumRShift (
IN CONST VOID *Bn,
IN UINTN N,
OUT VOID *BnRes
);
/**
Mark Big Number for constant time computations.
This function should be called before any constant time computations are
performed on the given Big number.
@param[in] Bn Big number.
**/
VOID
EFIAPI
BigNumConstTime (
IN VOID *Bn
);
/**
Calculate square modulo.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnM Big number (modulo).
@param[out] BnRes The result, such that (BnA ^ 2) % BnM.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumSqrMod (
IN CONST VOID *BnA,
IN CONST VOID *BnM,
OUT VOID *BnRes
);
/**
Create new Big Number computation context. This is an opaque structure
which should be passed to any function that requires it. The BN context is
needed to optimize calculations and expensive allocations.
@retval Big Number context struct or NULL on failure.
**/
VOID *
EFIAPI
BigNumNewContext (
VOID
);
/**
Free Big Number context that was allocated with BigNumNewContext().
@param[in] BnCtx Big number context to free.
**/
VOID
EFIAPI
BigNumContextFree (
IN VOID *BnCtx
);
/**
Set Big Number to a given value.
@param[in] Bn Big number to set.
@param[in] Val Value to set.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumSetUint (
IN VOID *Bn,
IN UINTN Val
);
/**
Add two Big Numbers modulo BnM.
@param[in] BnA Big number.
@param[in] BnB Big number.
@param[in] BnM Big number (modulo).
@param[out] BnRes The result, such that (BnA + BnB) % BnM.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumAddMod (
IN CONST VOID *BnA,
IN CONST VOID *BnB,
IN CONST VOID *BnM,
OUT VOID *BnRes
);
#endif // __BASE_CRYPT_LIB_H__ #endif // __BASE_CRYPT_LIB_H__

View File

@ -54,6 +54,7 @@
Pk/CryptRsaPss.c Pk/CryptRsaPss.c
Pk/CryptRsaPssSign.c Pk/CryptRsaPssSign.c
Pem/CryptPem.c Pem/CryptPem.c
Bn/CryptBn.c
SysCall/CrtWrapper.c SysCall/CrtWrapper.c
SysCall/TimerWrapper.c SysCall/TimerWrapper.c

View File

@ -0,0 +1,581 @@
/** @file Big number API implementation based on OpenSSL
Copyright (c) 2022, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "InternalCryptLib.h"
#include <openssl/bn.h>
/**
Allocate new Big Number.
@retval New BigNum opaque structure or NULL on failure.
**/
VOID *
EFIAPI
BigNumInit (
VOID
)
{
return BN_new ();
}
/**
Allocate new Big Number and assign the provided value to it.
@param[in] Buf Big endian encoded buffer.
@param[in] Len Buffer length.
@retval New BigNum opaque structure or NULL on failure.
**/
VOID *
EFIAPI
BigNumFromBin (
IN CONST UINT8 *Buf,
IN UINTN Len
)
{
return BN_bin2bn (Buf, (INT32)Len, NULL);
}
/**
Convert the absolute value of Bn into big-endian form and store it at Buf.
The Buf array should have at least BigNumBytes() in it.
@param[in] Bn Big number to convert.
@param[out] Buf Output buffer.
@retval The length of the big-endian number placed at Buf or -1 on error.
**/
INTN
EFIAPI
BigNumToBin (
IN CONST VOID *Bn,
OUT UINT8 *Buf
)
{
return BN_bn2bin (Bn, Buf);
}
/**
Free the Big Number.
@param[in] Bn Big number to free.
@param[in] Clear TRUE if the buffer should be cleared.
**/
VOID
EFIAPI
BigNumFree (
IN VOID *Bn,
IN BOOLEAN Clear
)
{
if (Clear) {
BN_clear_free (Bn);
} else {
BN_free (Bn);
}
}
/**
Calculate the sum of two Big Numbers.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnB Big number.
@param[out] BnRes The result of BnA + BnB.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumAdd (
IN CONST VOID *BnA,
IN CONST VOID *BnB,
OUT VOID *BnRes
)
{
return (BOOLEAN)BN_add (BnRes, BnA, BnB);
}
/**
Subtract two Big Numbers.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnB Big number.
@param[out] BnRes The result of BnA - BnB.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumSub (
IN CONST VOID *BnA,
IN CONST VOID *BnB,
OUT VOID *BnRes
)
{
return (BOOLEAN)BN_sub (BnRes, BnA, BnB);
}
/**
Calculate remainder: BnRes = BnA % BnB.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnB Big number.
@param[out] BnRes The result of BnA % BnB.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumMod (
IN CONST VOID *BnA,
IN CONST VOID *BnB,
OUT VOID *BnRes
)
{
BOOLEAN RetVal;
BN_CTX *Ctx;
Ctx = BN_CTX_new ();
if (Ctx == NULL) {
return FALSE;
}
RetVal = (BOOLEAN)BN_mod (BnRes, BnA, BnB, Ctx);
BN_CTX_free (Ctx);
return RetVal;
}
/**
Compute BnA to the BnP-th power modulo BnM.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnP Big number (power).
@param[in] BnM Big number (modulo).
@param[out] BnRes The result of (BnA ^ BnP) % BnM.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumExpMod (
IN CONST VOID *BnA,
IN CONST VOID *BnP,
IN CONST VOID *BnM,
OUT VOID *BnRes
)
{
BOOLEAN RetVal;
BN_CTX *Ctx;
Ctx = BN_CTX_new ();
if (Ctx == NULL) {
return FALSE;
}
RetVal = (BOOLEAN)BN_mod_exp (BnRes, BnA, BnP, BnM, Ctx);
BN_CTX_free (Ctx);
return RetVal;
}
/**
Compute BnA inverse modulo BnM.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnM Big number (modulo).
@param[out] BnRes The result, such that (BnA * BnRes) % BnM == 1.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumInverseMod (
IN CONST VOID *BnA,
IN CONST VOID *BnM,
OUT VOID *BnRes
)
{
BOOLEAN RetVal;
BN_CTX *Ctx;
Ctx = BN_CTX_new ();
if (Ctx == NULL) {
return FALSE;
}
RetVal = FALSE;
if (BN_mod_inverse (BnRes, BnA, BnM, Ctx) != NULL) {
RetVal = TRUE;
}
BN_CTX_free (Ctx);
return RetVal;
}
/**
Divide two Big Numbers.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnB Big number.
@param[out] BnRes The result, such that BnA / BnB.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumDiv (
IN CONST VOID *BnA,
IN CONST VOID *BnB,
OUT VOID *BnRes
)
{
BOOLEAN RetVal;
BN_CTX *Ctx;
Ctx = BN_CTX_new ();
if (Ctx == NULL) {
return FALSE;
}
RetVal = (BOOLEAN)BN_div (BnRes, NULL, BnA, BnB, Ctx);
BN_CTX_free (Ctx);
return RetVal;
}
/**
Multiply two Big Numbers modulo BnM.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnB Big number.
@param[in] BnM Big number (modulo).
@param[out] BnRes The result, such that (BnA * BnB) % BnM.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumMulMod (
IN CONST VOID *BnA,
IN CONST VOID *BnB,
IN CONST VOID *BnM,
OUT VOID *BnRes
)
{
BOOLEAN RetVal;
BN_CTX *Ctx;
Ctx = BN_CTX_new ();
if (Ctx == NULL) {
return FALSE;
}
RetVal = (BOOLEAN)BN_mod_mul (BnRes, BnA, BnB, BnM, Ctx);
BN_CTX_free (Ctx);
return RetVal;
}
/**
Compare two Big Numbers.
@param[in] BnA Big number.
@param[in] BnB Big number.
@retval 0 BnA == BnB.
@retval 1 BnA > BnB.
@retval -1 BnA < BnB.
**/
INTN
EFIAPI
BigNumCmp (
IN CONST VOID *BnA,
IN CONST VOID *BnB
)
{
return BN_cmp (BnA, BnB);
}
/**
Get number of bits in Bn.
@param[in] Bn Big number.
@retval Number of bits.
**/
UINTN
EFIAPI
BigNumBits (
IN CONST VOID *Bn
)
{
return BN_num_bits (Bn);
}
/**
Get number of bytes in Bn.
@param[in] Bn Big number.
@retval Number of bytes.
**/
UINTN
EFIAPI
BigNumBytes (
IN CONST VOID *Bn
)
{
return BN_num_bytes (Bn);
}
/**
Checks if Big Number equals to the given Num.
@param[in] Bn Big number.
@param[in] Num Number.
@retval TRUE iff Bn == Num.
@retval FALSE otherwise.
**/
BOOLEAN
EFIAPI
BigNumIsWord (
IN CONST VOID *Bn,
IN UINTN Num
)
{
return (BOOLEAN)BN_is_word (Bn, Num);
}
/**
Checks if Big Number is odd.
@param[in] Bn Big number.
@retval TRUE Bn is odd (Bn % 2 == 1).
@retval FALSE otherwise.
**/
BOOLEAN
EFIAPI
BigNumIsOdd (
IN CONST VOID *Bn
)
{
return (BOOLEAN)BN_is_odd (Bn);
}
/**
Copy Big number.
@param[out] BnDst Destination.
@param[in] BnSrc Source.
@retval BnDst on success.
@retval NULL otherwise.
**/
VOID *
EFIAPI
BigNumCopy (
OUT VOID *BnDst,
IN CONST VOID *BnSrc
)
{
return BN_copy (BnDst, BnSrc);
}
/**
Get constant Big number with value of "1".
This may be used to save expensive allocations.
@retval Big Number with value of 1.
**/
CONST VOID *
EFIAPI
BigNumValueOne (
VOID
)
{
return BN_value_one ();
}
/**
Shift right Big Number.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] Bn Big number.
@param[in] N Number of bits to shift.
@param[out] BnRes The result.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumRShift (
IN CONST VOID *Bn,
IN UINTN N,
OUT VOID *BnRes
)
{
return (BOOLEAN)BN_rshift (BnRes, Bn, (INT32)N);
}
/**
Mark Big Number for constant time computations.
This function should be called before any constant time computations are
performed on the given Big number.
@param[in] Bn Big number
**/
VOID
EFIAPI
BigNumConstTime (
IN VOID *Bn
)
{
BN_set_flags (Bn, BN_FLG_CONSTTIME);
}
/**
Calculate square modulo.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnM Big number (modulo).
@param[out] BnRes The result, such that (BnA ^ 2) % BnM.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumSqrMod (
IN CONST VOID *BnA,
IN CONST VOID *BnM,
OUT VOID *BnRes
)
{
BOOLEAN RetVal;
BN_CTX *Ctx;
Ctx = BN_CTX_new ();
if (Ctx == NULL) {
return FALSE;
}
RetVal = (BOOLEAN)BN_mod_sqr (BnRes, BnA, BnM, Ctx);
BN_CTX_free (Ctx);
return RetVal;
}
/**
Create new Big Number computation context. This is an opaque structure
which should be passed to any function that requires it. The BN context is
needed to optimize calculations and expensive allocations.
@retval Big Number context struct or NULL on failure.
**/
VOID *
EFIAPI
BigNumNewContext (
VOID
)
{
return BN_CTX_new ();
}
/**
Free Big Number context that was allocated with BigNumNewContext().
@param[in] BnCtx Big number context to free.
**/
VOID
EFIAPI
BigNumContextFree (
IN VOID *BnCtx
)
{
BN_CTX_free (BnCtx);
}
/**
Set Big Number to a given value.
@param[in] Bn Big number to set.
@param[in] Val Value to set.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumSetUint (
IN VOID *Bn,
IN UINTN Val
)
{
return (BOOLEAN)BN_set_word (Bn, Val);
}
/**
Add two Big Numbers modulo BnM.
@param[in] BnA Big number.
@param[in] BnB Big number.
@param[in] BnM Big number (modulo).
@param[out] BnRes The result, such that (BnA + BnB) % BnM.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumAddMod (
IN CONST VOID *BnA,
IN CONST VOID *BnB,
IN CONST VOID *BnM,
OUT VOID *BnRes
)
{
BOOLEAN RetVal;
BN_CTX *Ctx;
Ctx = BN_CTX_new ();
if (Ctx == NULL) {
return FALSE;
}
RetVal = (BOOLEAN)BN_mod_add (BnRes, BnA, BnB, BnM, Ctx);
BN_CTX_free (Ctx);
return RetVal;
}

View File

@ -0,0 +1,520 @@
/** @file
Big number API implementation based on OpenSSL
Copyright (c) 2022, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Library/BaseCryptLib.h>
#include <Library/DebugLib.h>
/**
Allocate new Big Number.
@retval New BigNum opaque structure or NULL on failure.
**/
VOID *
EFIAPI
BigNumInit (
VOID
)
{
ASSERT (FALSE);
return NULL;
}
/**
Allocate new Big Number and assign the provided value to it.
@param[in] Buf Big endian encoded buffer.
@param[in] Len Buffer length.
@retval New BigNum opaque structure or NULL on failure.
**/
VOID *
EFIAPI
BigNumFromBin (
IN CONST UINT8 *Buf,
IN UINTN Len
)
{
ASSERT (FALSE);
return NULL;
}
/**
Convert the absolute value of Bn into big-endian form and store it at Buf.
The Buf array should have at least BigNumBytes() in it.
@param[in] Bn Big number to convert.
@param[out] Buf Output buffer.
@retval The length of the big-endian number placed at Buf or -1 on error.
**/
INTN
EFIAPI
BigNumToBin (
IN CONST VOID *Bn,
OUT UINT8 *Buf
)
{
ASSERT (FALSE);
return -1;
}
/**
Free the Big Number.
@param[in] Bn Big number to free.
@param[in] Clear TRUE if the buffer should be cleared.
**/
VOID
EFIAPI
BigNumFree (
IN VOID *Bn,
IN BOOLEAN Clear
)
{
ASSERT (FALSE);
}
/**
Calculate the sum of two Big Numbers.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnB Big number.
@param[out] BnRes The result of BnA + BnB.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumAdd (
IN CONST VOID *BnA,
IN CONST VOID *BnB,
OUT VOID *BnRes
)
{
ASSERT (FALSE);
return FALSE;
}
/**
Subtract two Big Numbers.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnB Big number.
@param[out] BnRes The result of BnA - BnB.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumSub (
IN CONST VOID *BnA,
IN CONST VOID *BnB,
OUT VOID *BnRes
)
{
ASSERT (FALSE);
return FALSE;
}
/**
Calculate remainder: BnRes = BnA % BnB.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnB Big number.
@param[out] BnRes The result of BnA % BnB.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumMod (
IN CONST VOID *BnA,
IN CONST VOID *BnB,
OUT VOID *BnRes
)
{
ASSERT (FALSE);
return FALSE;
}
/**
Compute BnA to the BnP-th power modulo BnM.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnP Big number (power).
@param[in] BnM Big number (modulo).
@param[out] BnRes The result of (BnA ^ BnP) % BnM.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumExpMod (
IN CONST VOID *BnA,
IN CONST VOID *BnP,
IN CONST VOID *BnM,
OUT VOID *BnRes
)
{
ASSERT (FALSE);
return FALSE;
}
/**
Compute BnA inverse modulo BnM.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnM Big number (modulo).
@param[out] BnRes The result, such that (BnA * BnRes) % BnM == 1.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumInverseMod (
IN CONST VOID *BnA,
IN CONST VOID *BnM,
OUT VOID *BnRes
)
{
ASSERT (FALSE);
return FALSE;
}
/**
Divide two Big Numbers.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnB Big number.
@param[out] BnRes The result, such that BnA / BnB.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumDiv (
IN CONST VOID *BnA,
IN CONST VOID *BnB,
OUT VOID *BnRes
)
{
ASSERT (FALSE);
return FALSE;
}
/**
Multiply two Big Numbers modulo BnM.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnB Big number.
@param[in] BnM Big number (modulo).
@param[out] BnRes The result, such that (BnA * BnB) % BnM.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumMulMod (
IN CONST VOID *BnA,
IN CONST VOID *BnB,
IN CONST VOID *BnM,
OUT VOID *BnRes
)
{
ASSERT (FALSE);
return FALSE;
}
/**
Compare two Big Numbers.
@param[in] BnA Big number.
@param[in] BnB Big number.
@retval 0 BnA == BnB.
@retval 1 BnA > BnB.
@retval -1 BnA < BnB.
**/
INTN
EFIAPI
BigNumCmp (
IN CONST VOID *BnA,
IN CONST VOID *BnB
)
{
ASSERT (FALSE);
return 0;
}
/**
Get number of bits in Bn.
@param[in] Bn Big number.
@retval Number of bits.
**/
UINTN
EFIAPI
BigNumBits (
IN CONST VOID *Bn
)
{
ASSERT (FALSE);
return 0;
}
/**
Get number of bytes in Bn.
@param[in] Bn Big number.
@retval Number of bytes.
**/
UINTN
EFIAPI
BigNumBytes (
IN CONST VOID *Bn
)
{
ASSERT (FALSE);
return 0;
}
/**
Checks if Big Number equals to the given Num.
@param[in] Bn Big number.
@param[in] Num Number.
@retval TRUE iff Bn == Num.
@retval FALSE otherwise.
**/
BOOLEAN
EFIAPI
BigNumIsWord (
IN CONST VOID *Bn,
IN UINTN Num
)
{
ASSERT (FALSE);
return FALSE;
}
/**
Checks if Big Number is odd.
@param[in] Bn Big number.
@retval TRUE Bn is odd (Bn % 2 == 1).
@retval FALSE otherwise.
**/
BOOLEAN
EFIAPI
BigNumIsOdd (
IN CONST VOID *Bn
)
{
ASSERT (FALSE);
return FALSE;
}
/**
Copy Big number.
@param[out] BnDst Destination.
@param[in] BnSrc Source.
@retval BnDst on success.
@retval NULL otherwise.
**/
VOID *
EFIAPI
BigNumCopy (
OUT VOID *BnDst,
IN CONST VOID *BnSrc
)
{
ASSERT (FALSE);
return NULL;
}
/**
Get constant Big number with value of "1".
This may be used to save expensive allocations.
@retval Big Number with value of 1.
**/
CONST VOID *
EFIAPI
BigNumValueOne (
VOID
)
{
ASSERT (FALSE);
return NULL;
}
/**
Shift right Big Number.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] Bn Big number.
@param[in] N Number of bits to shift.
@param[out] BnRes The result.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumRShift (
IN CONST VOID *Bn,
IN UINTN N,
OUT VOID *BnRes
)
{
ASSERT (FALSE);
return FALSE;
}
/**
Mark Big Number for constant time computations.
This function should be called before any constant time computations are
performed on the given Big number.
@param[in] Bn Big number
**/
VOID
EFIAPI
BigNumConstTime (
IN VOID *Bn
)
{
ASSERT (FALSE);
}
/**
Calculate square modulo.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnM Big number (modulo).
@param[out] BnRes The result, such that (BnA ^ 2) % BnM.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumSqrMod (
IN CONST VOID *BnA,
IN CONST VOID *BnM,
OUT VOID *BnRes
)
{
ASSERT (FALSE);
return FALSE;
}
/**
Create new Big Number computation context. This is an opaque structure
which should be passed to any function that requires it. The BN context is
needed to optimize calculations and expensive allocations.
@retval Big Number context struct or NULL on failure.
**/
VOID *
EFIAPI
BigNumNewContext (
VOID
)
{
ASSERT (FALSE);
return NULL;
}
/**
Free Big Number context that was allocated with BigNumNewContext().
@param[in] BnCtx Big number context to free.
**/
VOID
EFIAPI
BigNumContextFree (
IN VOID *BnCtx
)
{
ASSERT (FALSE);
}
/**
Set Big Number to a given value.
@param[in] Bn Big number to set.
@param[in] Val Value to set.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumSetUint (
IN VOID *Bn,
IN UINTN Val
)
{
ASSERT (FALSE);
return FALSE;
}
/**
Add two Big Numbers modulo BnM.
@param[in] BnA Big number.
@param[in] BnB Big number.
@param[in] BnM Big number (modulo).
@param[out] BnRes The result, such that (BnA + BnB) % BnM.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumAddMod (
IN CONST VOID *BnA,
IN CONST VOID *BnB,
IN CONST VOID *BnM,
OUT VOID *BnRes
)
{
ASSERT (FALSE);
return FALSE;
}

View File

@ -61,6 +61,7 @@
Pk/CryptRsaPssSignNull.c Pk/CryptRsaPssSignNull.c
Pem/CryptPemNull.c Pem/CryptPemNull.c
Rand/CryptRandNull.c Rand/CryptRandNull.c
Bn/CryptBnNull.c
SysCall/CrtWrapper.c SysCall/CrtWrapper.c
SysCall/ConstantTimeClock.c SysCall/ConstantTimeClock.c

View File

@ -61,6 +61,7 @@
Pk/CryptRsaPss.c Pk/CryptRsaPss.c
Pk/CryptRsaPssSignNull.c Pk/CryptRsaPssSignNull.c
Pem/CryptPem.c Pem/CryptPem.c
Bn/CryptBnNull.c
SysCall/CrtWrapper.c SysCall/CrtWrapper.c
SysCall/ConstantTimeClock.c SysCall/ConstantTimeClock.c

View File

@ -54,6 +54,7 @@
Rand/CryptRandNull.c Rand/CryptRandNull.c
Pk/CryptRsaPssNull.c Pk/CryptRsaPssNull.c
Pk/CryptRsaPssSignNull.c Pk/CryptRsaPssSignNull.c
Bn/CryptBnNull.c
[Packages] [Packages]
MdePkg/MdePkg.dec MdePkg/MdePkg.dec

View File

@ -0,0 +1,520 @@
/** @file
Big number API implementation based on OpenSSL
Copyright (c) 2022, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Library/BaseCryptLib.h>
#include <Library/DebugLib.h>
/**
Allocate new Big Number.
@retval New BigNum opaque structure or NULL on failure.
**/
VOID *
EFIAPI
BigNumInit (
VOID
)
{
ASSERT (FALSE);
return NULL;
}
/**
Allocate new Big Number and assign the provided value to it.
@param[in] Buf Big endian encoded buffer.
@param[in] Len Buffer length.
@retval New BigNum opaque structure or NULL on failure.
**/
VOID *
EFIAPI
BigNumFromBin (
IN CONST UINT8 *Buf,
IN UINTN Len
)
{
ASSERT (FALSE);
return NULL;
}
/**
Convert the absolute value of Bn into big-endian form and store it at Buf.
The Buf array should have at least BigNumBytes() in it.
@param[in] Bn Big number to convert.
@param[out] Buf Output buffer.
@retval The length of the big-endian number placed at Buf or -1 on error.
**/
INTN
EFIAPI
BigNumToBin (
IN CONST VOID *Bn,
OUT UINT8 *Buf
)
{
ASSERT (FALSE);
return -1;
}
/**
Free the Big Number.
@param[in] Bn Big number to free.
@param[in] Clear TRUE if the buffer should be cleared.
**/
VOID
EFIAPI
BigNumFree (
IN VOID *Bn,
IN BOOLEAN Clear
)
{
ASSERT (FALSE);
}
/**
Calculate the sum of two Big Numbers.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnB Big number.
@param[out] BnRes The result of BnA + BnB.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumAdd (
IN CONST VOID *BnA,
IN CONST VOID *BnB,
OUT VOID *BnRes
)
{
ASSERT (FALSE);
return FALSE;
}
/**
Subtract two Big Numbers.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnB Big number.
@param[out] BnRes The result of BnA - BnB.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumSub (
IN CONST VOID *BnA,
IN CONST VOID *BnB,
OUT VOID *BnRes
)
{
ASSERT (FALSE);
return FALSE;
}
/**
Calculate remainder: BnRes = BnA % BnB.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnB Big number.
@param[out] BnRes The result of BnA % BnB.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumMod (
IN CONST VOID *BnA,
IN CONST VOID *BnB,
OUT VOID *BnRes
)
{
ASSERT (FALSE);
return FALSE;
}
/**
Compute BnA to the BnP-th power modulo BnM.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnP Big number (power).
@param[in] BnM Big number (modulo).
@param[out] BnRes The result of (BnA ^ BnP) % BnM.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumExpMod (
IN CONST VOID *BnA,
IN CONST VOID *BnP,
IN CONST VOID *BnM,
OUT VOID *BnRes
)
{
ASSERT (FALSE);
return FALSE;
}
/**
Compute BnA inverse modulo BnM.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnM Big number (modulo).
@param[out] BnRes The result, such that (BnA * BnRes) % BnM == 1.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumInverseMod (
IN CONST VOID *BnA,
IN CONST VOID *BnM,
OUT VOID *BnRes
)
{
ASSERT (FALSE);
return FALSE;
}
/**
Divide two Big Numbers.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnB Big number.
@param[out] BnRes The result, such that BnA / BnB.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumDiv (
IN CONST VOID *BnA,
IN CONST VOID *BnB,
OUT VOID *BnRes
)
{
ASSERT (FALSE);
return FALSE;
}
/**
Multiply two Big Numbers modulo BnM.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnB Big number.
@param[in] BnM Big number (modulo).
@param[out] BnRes The result, such that (BnA * BnB) % BnM.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumMulMod (
IN CONST VOID *BnA,
IN CONST VOID *BnB,
IN CONST VOID *BnM,
OUT VOID *BnRes
)
{
ASSERT (FALSE);
return FALSE;
}
/**
Compare two Big Numbers.
@param[in] BnA Big number.
@param[in] BnB Big number.
@retval 0 BnA == BnB.
@retval 1 BnA > BnB.
@retval -1 BnA < BnB.
**/
INTN
EFIAPI
BigNumCmp (
IN CONST VOID *BnA,
IN CONST VOID *BnB
)
{
ASSERT (FALSE);
return 0;
}
/**
Get number of bits in Bn.
@param[in] Bn Big number.
@retval Number of bits.
**/
UINTN
EFIAPI
BigNumBits (
IN CONST VOID *Bn
)
{
ASSERT (FALSE);
return 0;
}
/**
Get number of bytes in Bn.
@param[in] Bn Big number.
@retval Number of bytes.
**/
UINTN
EFIAPI
BigNumBytes (
IN CONST VOID *Bn
)
{
ASSERT (FALSE);
return 0;
}
/**
Checks if Big Number equals to the given Num.
@param[in] Bn Big number.
@param[in] Num Number.
@retval TRUE iff Bn == Num.
@retval FALSE otherwise.
**/
BOOLEAN
EFIAPI
BigNumIsWord (
IN CONST VOID *Bn,
IN UINTN Num
)
{
ASSERT (FALSE);
return FALSE;
}
/**
Checks if Big Number is odd.
@param[in] Bn Big number.
@retval TRUE Bn is odd (Bn % 2 == 1).
@retval FALSE otherwise.
**/
BOOLEAN
EFIAPI
BigNumIsOdd (
IN CONST VOID *Bn
)
{
ASSERT (FALSE);
return FALSE;
}
/**
Copy Big number.
@param[out] BnDst Destination.
@param[in] BnSrc Source.
@retval BnDst on success.
@retval NULL otherwise.
**/
VOID *
EFIAPI
BigNumCopy (
OUT VOID *BnDst,
IN CONST VOID *BnSrc
)
{
ASSERT (FALSE);
return NULL;
}
/**
Get constant Big number with value of "1".
This may be used to save expensive allocations.
@retval Big Number with value of 1.
**/
CONST VOID *
EFIAPI
BigNumValueOne (
VOID
)
{
ASSERT (FALSE);
return NULL;
}
/**
Shift right Big Number.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] Bn Big number.
@param[in] N Number of bits to shift.
@param[out] BnRes The result.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumRShift (
IN CONST VOID *Bn,
IN UINTN N,
OUT VOID *BnRes
)
{
ASSERT (FALSE);
return FALSE;
}
/**
Mark Big Number for constant time computations.
This function should be called before any constant time computations are
performed on the given Big number.
@param[in] Bn Big number
**/
VOID
EFIAPI
BigNumConstTime (
IN VOID *Bn
)
{
ASSERT (FALSE);
}
/**
Calculate square modulo.
Please note, all "out" Big number arguments should be properly initialized
by calling to BigNumInit() or BigNumFromBin() functions.
@param[in] BnA Big number.
@param[in] BnM Big number (modulo).
@param[out] BnRes The result, such that (BnA ^ 2) % BnM.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumSqrMod (
IN CONST VOID *BnA,
IN CONST VOID *BnM,
OUT VOID *BnRes
)
{
ASSERT (FALSE);
return FALSE;
}
/**
Create new Big Number computation context. This is an opaque structure
which should be passed to any function that requires it. The BN context is
needed to optimize calculations and expensive allocations.
@retval Big Number context struct or NULL on failure.
**/
VOID *
EFIAPI
BigNumNewContext (
VOID
)
{
ASSERT (FALSE);
return NULL;
}
/**
Free Big Number context that was allocated with BigNumNewContext().
@param[in] BnCtx Big number context to free.
**/
VOID
EFIAPI
BigNumContextFree (
IN VOID *BnCtx
)
{
ASSERT (FALSE);
}
/**
Set Big Number to a given value.
@param[in] Bn Big number to set.
@param[in] Val Value to set.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumSetUint (
IN VOID *Bn,
IN UINTN Val
)
{
ASSERT (FALSE);
return FALSE;
}
/**
Add two Big Numbers modulo BnM.
@param[in] BnA Big number.
@param[in] BnB Big number.
@param[in] BnM Big number (modulo).
@param[out] BnRes The result, such that (BnA + BnB) % BnM.
@retval TRUE On success.
@retval FALSE Otherwise.
**/
BOOLEAN
EFIAPI
BigNumAddMod (
IN CONST VOID *BnA,
IN CONST VOID *BnB,
IN CONST VOID *BnM,
OUT VOID *BnRes
)
{
ASSERT (FALSE);
return FALSE;
}