BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=3275
An SEV-SNP guest requires that private memory (aka pages mapped encrypted)
must be validated before being accessed.
The validation process consist of the following sequence:
1) Set the memory encryption attribute in the page table (aka C-bit).
Note: If the processor is in non-PAE mode, then all the memory accesses
are considered private.
2) Add the memory range as private in the RMP table. This can be performed
using the Page State Change VMGEXIT defined in the GHCB specification.
3) Use the PVALIDATE instruction to set the Validated Bit in the RMP table.
During the guest creation time, the VMM encrypts the OVMF_CODE.fd using
the SEV-SNP firmware provided LAUNCH_UPDATE_DATA command. In addition to
encrypting the content, the command also validates the memory region.
This allows us to execute the code without going through the validation
sequence.
During execution, the reset vector need to access some data pages
(such as page tables, SevESWorkarea, Sec stack). The data pages are
accessed as private memory. The data pages are not part of the
OVMF_CODE.fd, so they were not validated during the guest creation.
There are two approaches we can take to validate the data pages before
the access:
a) Enhance the OVMF reset vector code to validate the pages as described
above (go through step 2 - 3).
OR
b) Validate the pages during the guest creation time. The SEV firmware
provides a command which can be used by the VMM to validate the pages
without affecting the measurement of the launch.
Approach #b seems much simpler; it does not require any changes to the
OVMF reset vector code.
Update the OVMF metadata with the list of regions that must be
pre-validated by the VMM before the boot.
Cc: Michael Roth <michael.roth@amd.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: Min Xu <min.m.xu@intel.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ard Biesheuvel <ardb+tianocore@kernel.org>
Cc: Erdem Aktas <erdemaktas@google.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=3275
Platform features and capabilities are traditionally discovered via the
CPUID instruction. Hypervisors typically trap and emulate the CPUID
instruction for a variety of reasons. There are some cases where incorrect
CPUID information can potentially lead to a security issue. The SEV-SNP
firmware provides a feature to filter the CPUID results through the PSP.
The filtered CPUID values are saved on a special page for the guest to
consume. Reserve a page in MEMFD that will contain the results of
filtered CPUID values.
Cc: Michael Roth <michael.roth@amd.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: Min Xu <min.m.xu@intel.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ard Biesheuvel <ardb+tianocore@kernel.org>
Cc: Erdem Aktas <erdemaktas@google.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Acked-by: Jiewen Yao <Jiewen.yao@intel.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=3275
During the SNP guest launch sequence, a special secrets page needs to be
inserted by the VMM. The PSP will populate the page; it will contain the
VM Platform Communication Key (VMPCKs) used by the guest to send and
receive secure messages to the PSP.
The purpose of the secrets page in the SEV-SNP is different from the one
used in SEV guests. In SEV, the secrets page contains the guest owner's
private data after the remote attestation.
Cc: Michael Roth <michael.roth@amd.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: Min Xu <min.m.xu@intel.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ard Biesheuvel <ardb+tianocore@kernel.org>
Cc: Erdem Aktas <erdemaktas@google.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Acked-by: Jiewen Yao <Jiewen.yao@intel.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=3275
The OvmfPkgX86 build reserves memory regions in MEMFD. The memory regions
get accessed in the SEC phase. AMD SEV-SNP require that the guest's
private memory be accepted or validated before access.
Introduce a Guided metadata structure that describes the reserved memory
regions. The VMM can locate the metadata structure by iterating through
the reset vector guid and process the areas based on the platform
specific requirements.
Cc: Michael Roth <michael.roth@amd.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: Min Xu <min.m.xu@intel.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ard Biesheuvel <ardb+tianocore@kernel.org>
Cc: Erdem Aktas <erdemaktas@google.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
RFC: https://bugzilla.tianocore.org/show_bug.cgi?id=3429
In TDX when host VMM creates a new guest TD, some initial set of
TD-private pages are added using the TDH.MEM.PAGE.ADD function. These
pages typically contain Virtual BIOS code and data along with some clear
pages for stacks and heap. In the meanwhile, some configuration data
need be measured by host VMM. Tdx Metadata is designed for this purpose
to indicate host VMM how to do the above tasks.
More detailed information of Metadata is in [TDVF] Section 11.
Tdx Metadata describes the information about the image for VMM use.
For example, the base address and length of the TdHob, Bfv, Cfv, etc.
The offset of the Metadata is stored in a GUID-ed structure which is
appended in the GUID-ed chain from a fixed GPA (0xffffffd0).
In this commit there are 2 new definitions of BFV & CFV.
Tdx Virtual Firmware (TDVF) includes one Firmware Volume (FV) known
as the Boot Firmware Volume (BFV). The FV format is defined in the
UEFI Platform Initialization (PI) spec. BFV includes all TDVF
components required during boot.
TDVF also include a configuration firmware volume (CFV) that is
separated from the BFV. The reason is because the CFV is measured in
RTMR, while the BFV is measured in MRTD.
In practice BFV is the code part of Ovmf image (OVMF_CODE.fd). CFV is
the vars part of Ovmf image (OVMF_VARS.fd).
Since AMD SEV has already defined some SEV specific memory region in
MEMFD. TDX re-uses some of the memory regions defined by SEV.
- MailBox : PcdOvmfSecGhcbBackupBase|PcdOvmfSecGhcbBackupSize
- TdHob : PcdOvmfSecGhcbBase|PcdOvmfSecGhcbSize
[TDVF] https://software.intel.com/content/dam/develop/external/us/en/
documents/tdx-virtual-firmware-design-guide-rev-1.pdf
Cc: Ard Biesheuvel <ardb+tianocore@kernel.org>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Erdem Aktas <erdemaktas@google.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Signed-off-by: Min Xu <min.m.xu@intel.com>
Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>