mirror of https://github.com/acidanthera/audk.git
2 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Min Xu | 8b76f23534 |
OvmfPkg: Enable TDX in ResetVector
RFC: https://bugzilla.tianocore.org/show_bug.cgi?id=3429 Intel's Trust Domain Extensions (Intel TDX) refers to an Intel technology that extends Virtual Machines Extensions (VMX) and Multi-Key Total Memory Encryption (MKTME) with a new kind of virutal machines guest called a Trust Domain (TD). A TD is desinged to run in a CPU mode that protects the confidentiality of TD memory contents and the TD's CPU state from other software, including the hosting Virtual-Machine Monitor (VMM), unless explicitly shared by the TD itself. Note: Intel TDX is only available on X64, so the Tdx related changes are in X64 path. In IA32 path, there may be null stub to make the build success. This patch includes below major changes. 1. Ia32/IntelTdx.asm IntelTdx.asm includes below routines used in ResetVector - IsTdx Check if the running system is Tdx guest. - InitTdxWorkarea It initialize the TDX_WORK_AREA. Because it is called by both BSP and APs and to avoid the race condition, only BSP can initialize the WORK_AREA. AP will wait until the field of TDX_WORK_AREA_PGTBL_READY is set. - ReloadFlat32 After reset all CPUs in TDX are initialized to 32-bit protected mode. But GDT register is not set. So this routine loads the GDT then jump to Flat 32 protected mode again. - InitTdx This routine wrap above 3 routines together to do Tdx initialization in ResetVector phase. - IsTdxEnabled It is a OneTimeCall to probe if TDX is enabled by checking the CC_WORK_AREA. - CheckTdxFeaturesBeforeBuildPagetables This routine is called to check if it is Non-TDX guest, TDX-Bsp or TDX-APs. Because in TDX guest all the initialization is done by BSP (including the page tables). APs should not build the tables. - TdxPostBuildPageTables It is called after Page Tables are built by BSP. byte[TDX_WORK_AREA_PGTBL_READY] is set by BSP to indicate APs can leave spin and go. 2. Ia32/PageTables64.asm As described above only the TDX BSP build the page tables. So PageTables64.asm is updated to make sure only TDX BSP build the PageTables. TDX APs will skip the page table building and set Cr3 directly. 3. Ia16/ResetVectorVtf0.asm In Tdx all CPUs "reset" to run on 32-bit protected mode with flat descriptor (paging disabled). But in Non-Td guest the initial state of CPUs is 16-bit real mode. To resolve this conflict, BITS 16/32 is used in the ResetVectorVtf0.asm. It checks the 32-bit protected mode or 16-bit real mode, then jump to the corresponding entry point. Cc: Ard Biesheuvel <ardb+tianocore@kernel.org> Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Gerd Hoffmann <kraxel@redhat.com> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Erdem Aktas <erdemaktas@google.com> Cc: James Bottomley <jejb@linux.ibm.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Min Xu <min.m.xu@intel.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com> |
|
Tom Lendacky | 7cb96c47a9 |
OvmfPkg/ResetVector: Validate the encryption bit position for SEV/SEV-ES
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=3108 To help mitigate against ROP attacks, add some checks to validate the encryption bit position that is reported by the hypervisor. The first check is to ensure that the hypervisor reports a bit position above bit 31. After extracting the encryption bit position from the CPUID information, the code checks that the value is above 31. If the value is not above 31, then the bit position is not valid, so the code enters a HLT loop. The second check is specific to SEV-ES guests and is a two step process. The first step will obtain random data using RDRAND and store that data to memory before paging is enabled. When paging is not enabled, all writes to memory are encrypted. The random data is maintained in registers, which are protected. The second step is that, after enabling paging, the random data in memory is compared to the register contents. If they don't match, then the reported bit position is not valid, so the code enters a HLT loop. The third check is after switching to 64-bit long mode. Use the fact that instruction fetches are automatically decrypted, while a memory fetch is decrypted only if the encryption bit is set in the page table. By comparing the bytes of an instruction fetch against a memory read of that same instruction, the encryption bit position can be validated. If the compare is not equal, then SEV/SEV-ES is active but the reported bit position is not valid, so the code enters a HLT loop. To keep the changes local to the OvmfPkg, an OvmfPkg version of the Flat32ToFlat64.asm file has been created based on the UefiCpuPkg file UefiCpuPkg/ResetVector/Vtf0/Ia32/Flat32ToFlat64.asm. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Ard Biesheuvel <ard.biesheuvel@arm.com> Cc: Brijesh Singh <brijesh.singh@amd.com> Reviewed-by: Laszlo Ersek <lersek@redhat.com> Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <cb9c5ab23ab02096cd964ed64115046cc706ce67.1610045305.git.thomas.lendacky@amd.com> |