V2 changes:
Resource cleanup logic update in UfsEndOfPei().
V1 history:
Update the UfsBlockIoPei driver to consume IOMMU_PPI to allocate DMA
buffer.
If no IOMMU_PPI exists, this driver still calls PEI service
to allocate DMA buffer, with assumption that DRAM==DMA.
This is a compatible change.
Cc: Jiewen Yao <jiewen.yao@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Hao Wu <hao.a.wu@intel.com>
Reviewed-by: Star Zeng <star.zeng@intel.com>
In function UfsBlockIoPeimGetMediaInfo(), the following expression:
Private->Media[DeviceIndex].LastBlock = (Capacity16.LastLba3 << 24) |
(Capacity16.LastLba2 << 16) |
(Capacity16.LastLba1 << 8) |
Capacity16.LastLba0;
(There is also a similar case in this function.)
will involve undefined behavior in signed left shift operations.
Since Capacity16.LastLbaX is of type UINT8, and
Private->Media[DeviceIndex].LastBlock is of type UINT64. Therefore,
Capacity16.LastLbaX will be promoted to int (32 bits, signed) first, and
then perform the left shift operation.
According to the C11 spec, Section 6.5.7:
4 The result of E1 << E2 is E1 left-shifted E2 bit positions; vacated
bits are filled with zeros. If E1 has an unsigned type, the value
of the result is E1 * 2^E2 , reduced modulo one more than the
maximum value representable in the result type. If E1 has a signed
type and nonnegative value, and E1 * 2^E2 is representable in the
result type, then that is the resulting value; otherwise, the
behavior is undefined.
So if bit 7 of Capacity16.LastLba3 is 1, (Capacity16.LastLba3 << 24) will
be out of the range within int type. The undefined behavior of the signed
left shift will lead to a potential of setting the high 32 bits of
Private->Media[DeviceIndex].LastBlock to 1 during the cast from type int
to type UINT64.
This commit will add an explicit UINT32 type cast for Capacity16.LastLba3
to resolve this issue.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Hao Wu <hao.a.wu@intel.com>
Reviewed-by: Feng Tian <feng.tian@intel.com>
It includes 4 drivers:
1. UfsPassThruDxe, which is a UEFI driver and consumes EFI_UFS_HOST_CONTROLLER_PROTOCOL and produces EFI_EXT_SCSI_PASS_THRU_PROTOCOL
2. UfsPciHcDxe, which is specific for pci-based UFS HC implementation and is a UEFI driver to produce EFI_UFS_HOST_CONTROLLER_PROTOCOL.
3. UfsBlockIoPei, which is a PEI driver and consumes EFI_UFS_HOST_CONTROLLER_PPI and produces EFI_PEI_VIRTUAL_BLOCK_IO_PPI.
4. UfsPciHcPei, which is specific for pci-based UFS HC implementation and is a PEI driver to produce EFI_UFS_HOST_CONTROLLER_PPI.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Feng Tian <feng.tian@intel.com>
Reviewed-by: Star Zeng <star.zeng@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@17246 6f19259b-4bc3-4df7-8a09-765794883524