The DBG2_DEBUG_PORT_DDI() macro supports adding only one
Generic Base Address Register. Therefore, removed the
superfluous parameter NumReg and updated the macro to
use DBG2_NUMBER_OF_GENERIC_ADDRESS_REGISTERS which has
a value 1.
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Sami Mujawar <sami.mujawar@arm.com>
Reviewed-by: Alexei Fedorov <alexei.fedorov@arm.com>
Added option for OEMs to provide OEM Table ID and
OEM Revision for ACPI tables.
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Sami Mujawar <sami.mujawar@arm.com>
Reviewed-by: Alexei Fedorov <alexei.fedorov@arm.com>
Renamed the enum EArmObjIdMapping to EArmObjIdMappingArray
and updated the IORT generator accordingly.
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Sami Mujawar <sami.mujawar@arm.com>
Reviewed-by: Alexei Fedorov <alexei.fedorov@arm.com>
Add support for 16550 UART to ACPI SPCR table as it is a
supported UART type by HLOS.
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Ashish Singhal <ashishsingha@nvidia.com>
Reviewed-by: Sami Mujawar <sami.mujawar@arm.com>
Reviewed-by: Alexei Fedorov <alexei.fedorov@arm.com>
The IORT generator uses the configuration manager protocol
to obtain information about the PCI Root Complex, SMMU,
GIC ITS, Performance Monitoring counters etc. and generates
the IORT table.
The mappings between the components are represented using
tokens. The generator invokes the configuration manager
protocol interfaces and requests for objects referenced by
tokens to establish the link.
This table data is then used by the Table Manager to install
the IORT table.
The Table Manager then invokes the generator interface to free
any resources allocated by the IORT table generator.
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Sami Mujawar <sami.mujawar@arm.com>
Reviewed-by: Alexei Fedorov <alexei.fedorov@arm.com>
The MCFG generator uses the configuration manager protocol
to obtain the PCI Configuration space information from the
platform configuration manager and builds the MCFG table.
This table data is then used by the Table Manager to install
the MCFG table.
The Table Manager then invokes the generator interface to free
any resources allocated by the MCFG table generator.
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Sami Mujawar <sami.mujawar@arm.com>
Reviewed-by: Alexei Fedorov <alexei.fedorov@arm.com>
The DBG2 generator uses the configuration manager protocol
to obtain the debug serial port information from the platform
configuration manager. It then updates a template DBG2 table
structure. This table data is used by the Table Manager to
install the DBG2 table.
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Sami Mujawar <sami.mujawar@arm.com>
Reviewed-by: Alexei Fedorov <alexei.fedorov@arm.com>
The SPCR generator uses the configuration manager protocol to
obtain the serial port information from the platform configuration
manager. It then updates a template SPCR table structure. This
table data is used by the Table Manager to install the SPCR table.
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Sami Mujawar <sami.mujawar@arm.com>
Reviewed-by: Alexei Fedorov <alexei.fedorov@arm.com>
The GTDT generator uses the configuration manager protocol to
obtain information about the architectural and platform timers
available on the platform and generates the ACPI GTDT table.
This table data is then used by the Table Manager to install
the GTDT table.
The Table Manager then invokes the generator interface to free
any resources allocated by the GTDT table generator.
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Sami Mujawar <sami.mujawar@arm.com>
Reviewed-by: Alexei Fedorov <alexei.fedorov@arm.com>
The MADT generator uses the configuration manager protocol to
obtain information about the Arm interrupt controllers (GICC,
GICD, etc.) and generates the ACPI MADT table. This table data
is then used by the Table Manager to install the MADT table.
The Table Manager then invokes the generator interface to free
any resources allocated by the MADT table generator.
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Sami Mujawar <sami.mujawar@arm.com>
Reviewed-by: Alexei Fedorov <alexei.fedorov@arm.com>
The FADT generator collates the relevant information required
for generating a FADT table from configuration manager using
the configuration manager protocol. It then updates a template
FADT table structure. This table data is used by the Table
Manager to install the FADT table.
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Sami Mujawar <sami.mujawar@arm.com>
Reviewed-by: Alexei Fedorov <alexei.fedorov@arm.com>
A Raw generator is a simple generator. This generator provides
the ability to install a binary blob (that contains ACPI table
data) as an ACPI table. The binary blob could be pre-generated
ACPI table data or it may be the pre-compiled output from an
iAsl compiler for a DSDT or SSDT table.
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Sami Mujawar <sami.mujawar@arm.com>
Reviewed-by: Alexei Fedorov <alexei.fedorov@arm.com>
A helper library that implements common functionality
for use by table generators.
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Sami Mujawar <sami.mujawar@arm.com>
Reviewed-by: Alexei Fedorov <alexei.fedorov@arm.com>