Because of a bug, current EL gets passed to DC IVAC instruction instead
of the VA entry that needs to be invalidated.
Signed-off-by: Ashish Singhal <ashishsingha@nvidia.com>
Reviewed-by: Leif Lindholm <leif@nuviainc.com>
In the AARCH64 version of ArmMmuLib, we are currently relying on
set/way invalidation to ensure that the caches are in a consistent
state with respect to main memory once we turn the MMU on. Even if
set/way operations were the appropriate method to achieve this, doing
an invalidate-all first and then populating the page table entries
creates a window where page table entries could be loaded speculatively
into the caches before we modify them, and shadow the new values that
we write there.
So let's get rid of the blanket clean/invalidate operations, and
instead, update ArmUpdateTranslationTableEntry () to invalidate each
page table entry *after* it is written if the MMU is still disabled
at this point.
On ARMv8, it is guaranteed that memory accesses done by the page table
walker are cache coherent, and so we can ignore the case where the
MMU is on.
Since the MMU and D-cache are already off when we reach this point, we
can drop the MMU and D-cache disables as well. Maintenance of the I-cache
is unnecessary, since we are not modifying any code, and the installed
mapping is guaranteed to be 1:1. This means we can also leave it enabled
while the page table population code is running.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif@nuviainc.com>
Currently, we always invalidate the TLBs entirely after making
any modification to the page tables. Now that we have introduced
strict memory permissions in quite a number of places, such
modifications occur much more often, and it is better for performance
to flush only those TLB entries that are actually affected by
the changes.
At the same time, relax some system wide data synchronization barriers
to non-shared. When running in UEFI, we don't share virtual address
translations with other masters, unless we are running under virt, but
in that case, the host will upgrade them as appropriate (by setting
an override at EL2)
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
Add a helper function that returns the maximum physical address space
size as supported by the current CPU.
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Acked-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
This currently isn't needed by anything in the edk2 tree but
it's useful for externally maintained platforms which have
to set this register e.g. to disable alignment aborts.
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Michael Zimmermann <sigmaepsilon92@gmail.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
For historical reasons, the files under ArmLib are split up into 'common'
files under Common/, containing common C files as well as AArch64 and Arm
specific asm files, and ArmV7 and AArch64 files under ArmV7/ and AArch64/,
respectively. This presumably dates back to the time when ArmLib supported
different revisions of the 32-bit architecture (i.e., pre-V7)
Since the PI spec requires V7 or later, we can simplify this to Arm/ and
AArch64, which aligns ArmLib with the majority of other modules that carry
ARM or AArch64 specific code.
So move the files around so that shared files live at the same level as
ArmBaseLib.inf, and ARM/AArch64 specific files live in Arm/ or AArch64/,
respectively.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>