Switch the historical OvmfPkg* platforms from the AcpiPlatformDxe driver
to the QemuFwCfgAcpiPlatformDxe driver. (The latter is used by the
ArmVirtQemu* platforms as well.)
The change effectively replaces the following call tree:
InstallAcpiTables [AcpiPlatform.c]
XenDetected [XenPlatformLib] *
InstallXenTables [Xen.c] *
GetXenAcpiRsdp [Xen.c] *
InstallQemuFwCfgTables [QemuFwCfgAcpi.c]
...
InstallOvmfFvTables [AcpiPlatform.c] *
QemuDetected [Qemu.c] *
LocateFvInstanceWithTables [AcpiPlatform.c] *
QemuInstallAcpiTable [Qemu.c] *
QemuInstallAcpiMadtTable [Qemu.c] *
CountBits16 [Qemu.c] *
QemuInstallAcpiSsdtTable [Qemu.c] *
GetSuspendStates [Qemu.c] *
PopulateFwData [Qemu.c] *
with the one below:
InstallAcpiTables [QemuFwCfgAcpiPlatform.c]
InstallQemuFwCfgTables [QemuFwCfgAcpi.c]
...
eliminating the sub-trees highlighted with "*".
There are two consequences:
(1) Xen compatibility is removed from the ACPI platform driver of the
historical OvmfPkg* platforms.
(2) The ACPI tables that are statically built into OVMF (via
"OvmfPkg/AcpiTables/AcpiTables.inf") are never installed. In
particular, OVMF's own runtime preparation of the MADT and SSDT is
eliminated.
Because of (2), remove the "OvmfPkg/AcpiTables/AcpiTables.inf" module as
well -- and then the ACPITABLE build rule too.
Note that (2) only removes effectively dead code; the QEMU ACPI
linker-loader has taken priority since QEMU 1.7.1 (2014). References:
- https://wiki.qemu.org/Planning/1.7
- https://wiki.qemu.org/Features/ACPITableGeneration
- edk2 commit 96bbdbc856 ("OvmfPkg: AcpiPlatformDxe: download ACPI
tables from QEMU", 2014-03-31)
- edk2 commit 387536e472 ("OvmfPkg: AcpiPlatformDxe: implement QEMU's
full ACPI table loader interface", 2014-09-22)
Cc: Ard Biesheuvel <ardb+tianocore@kernel.org>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Philippe Mathieu-Daudé <philmd@redhat.com>
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=2122
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Message-Id: <20210526201446.12554-4-lersek@redhat.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Remove the three Xen drivers as the first step for removing Xen support
from the historical OvmfPkg* platforms. Xen (HVM and PVH) guests are
supported by the dedicated OvmfXen platform.
No module remains dependent on XenHypercallLib, so remove the
XenHypercallLib class resolutions too, from the DSC files.
Cc: Ard Biesheuvel <ardb+tianocore@kernel.org>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Philippe Mathieu-Daudé <philmd@redhat.com>
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=2122
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Message-Id: <20210526201446.12554-2-lersek@redhat.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=3345
During PEI, the MMIO range for the TPM is marked as encrypted when running
as an SEV guest. While this isn't an issue for an SEV guest because of
the way the nested page fault is handled, it does result in an SEV-ES
guest terminating because of a mitigation check in the #VC handler to
prevent MMIO to an encrypted address. For an SEV-ES guest, this range
must be marked as unencrypted.
Create a new x86 PEIM for TPM support that will map the TPM MMIO range as
unencrypted when SEV-ES is active. The gOvmfTpmMmioAccessiblePpiGuid PPI
will be unconditionally installed before exiting. The PEIM will exit with
the EFI_ABORTED status so that the PEIM does not stay resident. This new
PEIM will depend on the installation of the permanent PEI RAM, by
PlatformPei, so that in case page table splitting is required during the
clearing of the encryption bit, the new page table(s) will be allocated
from permanent PEI RAM.
Update all OVMF Ia32 and X64 build packages to include this new PEIM.
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Ard Biesheuvel <ardb+tianocore@kernel.org>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Erdem Aktas <erdemaktas@google.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Min Xu <min.m.xu@intel.com>
Cc: Marc-André Lureau <marcandre.lureau@redhat.com>
Cc: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <42794cec1f9d5bc24cbfb9dcdbe5e281ef259ef5.1619716333.git.thomas.lendacky@amd.com>
[lersek@redhat.com: refresh subject line]
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=3108
In order to be able to issue messages or make interface calls that cause
another #VC (e.g. GetLocalApicBaseAddress () issues RDMSR), add support
for nested #VCs.
In order to support nested #VCs, GHCB backup pages are required. If a #VC
is received while currently processing a #VC, a backup of the current GHCB
content is made. This allows the #VC handler to continue processing the
new #VC. Upon completion of the new #VC, the GHCB is restored from the
backup page. The #VC recursion level is tracked in the per-vCPU variable
area.
Support is added to handle up to one nested #VC (or two #VCs total). If
a second nested #VC is encountered, an ASSERT will be issued and the vCPU
will enter CpuDeadLoop ().
For SEC, the GHCB backup pages are reserved in the OvmfPkgX64.fdf memory
layout, with two new fixed PCDs to provide the address and size of the
backup area.
For PEI/DXE, the GHCB backup pages are allocated as boot services pages
using the memory allocation library.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@arm.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Acked-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <ac2e8203fc41a351b43f60d68bdad6b57c4fb106.1610045305.git.thomas.lendacky@amd.com>
The purpose of the driver is to ease file exchange (file sharing) between
the guest firmware and the virtualization host. The driver is supposed to
interoperate with QEMU's "virtiofsd" (Virtio Filesystem Daemon).
References:
- https://virtio-fs.gitlab.io/
- https://libvirt.org/kbase/virtiofs.html
VirtioFsDxe will bind virtio-fs devices, and produce
EFI_SIMPLE_FILE_SYSTEM_PROTOCOL instances on them.
In the longer term, assuming QEMU will create "bootorder" fw_cfg file
entries for virtio-fs devices, booting guest OSes from host-side
directories should become possible (dependent on the matching
QemuBootOrderLib enhancement).
Add the skeleton of the driver. Install EFI_DRIVER_BINDING_PROTOCOL with
stub member functions. Install EFI_COMPONENT_NAME2_PROTOCOL with final
member functions. This suffices for the DRIVERS command in the UEFI Shell
to list the driver with a human-readable name.
The file permission model is described immediately in the INF file as a
comment block, for future reference.
Cc: Ard Biesheuvel <ard.biesheuvel@arm.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Philippe Mathieu-Daudé <philmd@redhat.com>
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=3097
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Message-Id: <20201216211125.19496-2-lersek@redhat.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@arm.com>
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=2198
Reserve a fixed area of memory for SEV-ES use and set a fixed PCD,
PcdSevEsWorkAreaBase, to this value.
This area will be used by SEV-ES support for two purposes:
1. Communicating the SEV-ES status during BSP boot to SEC:
Using a byte of memory from the page, the BSP reset vector code can
communicate the SEV-ES status to SEC for use before exception
handling can be enabled in SEC. After SEC, this field is no longer
valid and the standard way of determine if SEV-ES is active should
be used.
2. Establishing an area of memory for AP boot support:
A hypervisor is not allowed to update an SEV-ES guest's register
state, so when booting an SEV-ES guest AP, the hypervisor is not
allowed to set the RIP to the guest requested value. Instead an
SEV-ES AP must be re-directed from within the guest to the actual
requested staring location as specified in the INIT-SIPI-SIPI
sequence.
Use this memory for reset vector code that can be programmed to have
the AP jump to the desired RIP location after starting the AP. This
is required for only the very first AP reset.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@arm.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Regression-tested-by: Laszlo Ersek <lersek@redhat.com>
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=2198
A GHCB page is needed during the Sec phase, so this new page must be
created. Since the #VC exception handler routines assume that a per-CPU
variable area is immediately after the GHCB, this per-CPU variable area
must also be created. Since the GHCB must be marked as an un-encrypted,
or shared, page, an additional pagetable page is required to break down
the 2MB region where the GHCB page lives into 4K pagetable entries.
Create a new entry in the OVMF memory layout for the new page table
page and for the SEC GHCB and per-CPU variable pages. After breaking down
the 2MB page, update the GHCB page table entry to remove the encryption
mask.
The GHCB page will be used by the SEC #VC exception handler. The #VC
exception handler will fill in the necessary fields of the GHCB and exit
to the hypervisor using the VMGEXIT instruction. The hypervisor then
accesses the GHCB in order to perform the requested function.
Four new fixed PCDs are needed to support the SEC GHCB page:
- PcdOvmfSecGhcbBase UINT32 value that is the base address of the
GHCB used during the SEC phase.
- PcdOvmfSecGhcbSize UINT32 value that is the size, in bytes, of the
GHCB area used during the SEC phase.
- PcdOvmfSecGhcbPageTableBase UINT32 value that is address of a page
table page used to break down the 2MB page into
512 4K pages.
- PcdOvmfSecGhcbPageTableSize UINT32 value that is the size, in bytes,
of the page table page.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@arm.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Regression-tested-by: Laszlo Ersek <lersek@redhat.com>
Create the driver with only a dummy LsiScsiEntryPoint() for the further
implementation of the driver for LSI 53C895A SCSI controller.
v2: Fix the mixed-case GUID string
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@arm.com>
Signed-off-by: Gary Lin <glin@suse.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Message-Id: <20200717061130.8881-2-glin@suse.com>
OVMF booting stops with the assert if built with Xcode on macOS:
Loading driver at 0x0001FAB8000 EntryPoint=0x0001FABF249 LinuxInitrdDynamicShellCommand.efi
InstallProtocolInterface: BC62157E-3E33-4FEC-9920-2D3B36D750DF 1F218398
ProtectUefiImageCommon - 0x1F218140
- 0x000000001FAB8000 - 0x0000000000008A60
ASSERT_EFI_ERROR (Status = Unsupported)
ASSERT LinuxInitrdDynamicShellCommand.c(378): !EFI_ERROR (Status)
The assert comes from InitializeHiiPackage() after an attempt to
retrieve HII package list from ImageHandle.
Xcode still doesn't support HII resource section and
LinuxInitrdDynamicShellCommand depends on it. Likewise 277a3958d9
("OvmfPkg: Don't include TftpDynamicCommand in XCODE5 tool chain"),
disable initrd command if built with Xcode toolchain
Fixes: ec41733cfd ("OvmfPkg: add the 'initrd' dynamic shell command")
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Liming Gao <liming.gao@intel.com>
Cc: Andrew Fish <afish@apple.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Roman Bolshakov <r.bolshakov@yadro.com>
Message-Id: <20200514134820.62047-1-r.bolshakov@yadro.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
In preparation for support booting from PvScsi devices, create a
basic scaffolding for a driver.
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=2567
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Message-Id: <20200328200100.60786-2-liran.alon@oracle.com>
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Leif suggested that FDF include files should preferably refer with their
names to the FDF file sections from which they are included.
Therefore
- rename "OvmfPkg.fdf.inc" to "OvmfPkgDefines.fdf.inc" (included from the
[Defines] section),
- rename "DecomprScratchEnd.fdf.inc" to "FvmainCompactScratchEnd.fdf.inc"
(included under the [FV.FVMAIN_COMPACT] section).
Cc: Anthony Perard <anthony.perard@citrix.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Julien Grall <julien@xen.org>
Cc: Leif Lindholm <leif@nuviainc.com>
Cc: Philippe Mathieu-Daudé <philmd@redhat.com>
Ref: http://mid.mail-archive.com/20200312142006.GG23627@bivouac.eciton.net
Ref: https://edk2.groups.io/g/devel/message/55812
Suggested-by: Leif Lindholm <leif@nuviainc.com>
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Message-Id: <20200312223555.29267-3-lersek@redhat.com>
Reviewed-by: Leif Lindholm <leif@nuviainc.com>
FaultTolerantWritePei consumes:
- PcdFlashNvStorageFtwWorkingBase,
- PcdFlashNvStorageFtwSpareBase.
VariablePei consumes:
- PcdFlashNvStorageVariableBase64.
Due to the previous patches in this series, the above PCDs are available
in the PEI phase, in the SMM_REQUIRE build.
FaultTolerantWritePei produces a GUID-ed HOB with
FAULT_TOLERANT_WRITE_LAST_WRITE_DATA as contents. It also installs a Null
PPI that carries the same gEdkiiFaultTolerantWriteGuid as the HOB.
VariablePei depends on the Null PPI mentioned above with a DEPEX, consumes
the HOB (which is safe due to the DEPEX), and produces
EFI_PEI_READ_ONLY_VARIABLE2_PPI.
This enables read-only access to non-volatile UEFI variables in the PEI
phase, in the SMM_REQUIRE build.
For now, the DxeLoadCore() function in
"MdeModulePkg/Core/DxeIplPeim/DxeLoad.c" will not access the
"MemoryTypeInformation" variable, because OVMF's PlatformPei always
produces the MemoryTypeInformation HOB.
(Note: when the boot mode is BOOT_ON_S3_RESUME, PlatformPei doesn't build
the HOB, but that's in sync with DxeLoadCore() also not looking for either
the HOB or the UEFI variable.)
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Philippe Mathieu-Daudé <philmd@redhat.com>
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=386
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Message-Id: <20200310222739.26717-5-lersek@redhat.com>
Acked-by: Leif Lindholm <leif@nuviainc.com>
Similarly to the "cadence" mentioned in commit d272449d9e ("OvmfPkg:
raise DXEFV size to 11 MB", 2018-05-29), it's been ~1.75 years, and we've
outgrown DXEFV again. Increase the DXEFV size to 12MB now.
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Gary Lin <glin@suse.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Leif Lindholm <leif@nuviainc.com>
Cc: Philippe Mathieu-Daudé <philmd@redhat.com>
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=2585
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Message-Id: <20200310175025.18849-1-lersek@redhat.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Add the components that expose the QEMU abstract loader file system so
that we can switch over our PlatformBmLib over to it in a subsequent
patch.
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=2566
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
The @file comments in UefiCpuPkg/CpuS3DataDxe say,
[...] It also only supports the number of CPUs reported by the MP
Services Protocol, so this module does not support hot plug CPUs. This
module can be copied into a CPU specific package and customized if these
additional features are required. [...]
The driver is so small that the simplest way to extend it with hotplug
support is indeed to clone it at first. In this patch, customize the
driver only with the following no-op steps:
- Update copyright notices.
- Update INF_VERSION to the latest INF spec version (1.29).
- Update FILE_GUID.
- Drop the UNI files.
- Replace EFI_D_VERBOSE with DEBUG_VERBOSE, to appease "PatchCheck.py".
This patch is best reviewed with:
$ git show --find-copies-harder
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Michael Kinney <michael.d.kinney@intel.com>
Cc: Philippe Mathieu-Daudé <philmd@redhat.com>
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=1512
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Message-Id: <20200226221156.29589-15-lersek@redhat.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Philippe Mathieu-Daude <philmd@redhat.com>
Tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Add a new SMM driver skeleton that registers a root SMI handler, and
checks if the SMI control value (written to 0xB2) indicates a CPU hotplug
SMI.
QEMU's ACPI payload will cause the OS to raise a broadcast SMI when a CPU
hotplug event occurs, namely by writing value 4 to IO Port 0xB2. In other
words, control value 4 is now allocated for this purpose; introduce the
ICH9_APM_CNT_CPU_HOTPLUG macro for it.
The standard identifiers in this driver use the new MM (Management Mode)
terminology from the PI spec, not the earlier SMM (System Management Mode)
terms.
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Michael Kinney <michael.d.kinney@intel.com>
Cc: Philippe Mathieu-Daudé <philmd@redhat.com>
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=1512
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Message-Id: <20200226221156.29589-7-lersek@redhat.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
A following patch is going to use the same configuration for TPM1.2
and TPM2.0, and it's simpler to support both than variable
configurations.
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Message-Id: <20200226152433.1295789-2-marcandre.lureau@redhat.com>
Tested-by: Simon Hardy <simon.hardy@itdev.co.uk>
Add the 'initrd' dynamic shell command to the build so we can load
Linux initrds straight from the shell using the new generic protocol,
which does not rely on initrd= being passed on the command line.
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=2564
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Put the TPM2 related DXE modules together in the DSC, and add a
TPM2 support header comment while at it.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Currently some tests check the value of SOURCE_DEBUG_ENABLE, and some
tests check if it's defined or not. Additionally, in UefiPayloadPkg as
well as some other trees, we define it as FALSE in the .dsc file.
This patch changes all of the Ovmf platforms to explicitly define it as
FALSE by default, and changes all of the checks to test if the value is
TRUE.
Signed-off-by: Peter Jones <pjones@redhat.com>
Message-Id: <20190920184507.909884-1-pjones@redhat.com>
[lersek@redhat.com: drop Contributed-under line, per TianoCore BZ#1373]
[lersek@redhat.com: replace "!= TRUE" with more idiomatic "== FALSE"]
Cc: Andrew Fish <afish@apple.com>
Cc: Anthony Perard <anthony.perard@citrix.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Julien Grall <julien.grall@arm.com>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Michael Kinney <michael.d.kinney@intel.com>
Cc: Peter Jones <pjones@redhat.com>
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
Acked-by: Anthony PERARD <anthony.perard@citrix.com>
Reviewed-by: Philippe Mathieu-Daude <philmd@redhat.com>
QemuVideoDxe installs its own legacy INT 10h handler for the benefit of
systems like Windows 2008r2 which attempt to use INT 10h even when booted
via EFI.
This interacts extremely badly with a CSM actually attempting to install
a real video BIOS.
The last thing done before invoking a legacy OpROM is to call INT 10h to
set a plain text mode. In the case where it's the video BIOS OpROM being
loaded, INT 10h will normally point to an iret stub in the CSM itself.
Unless QemuVideoDxe has changed INT10h to point to a location in the
0xC0000 segment that it didn't allocate properly, so the real OpROM has
been shadowed over them top of it, and the INT 10h vector now points to
some random place in the middle of the newly-shadowed OpROM.
Don't Do That Then. QemuVideoDxe doesn't do any acceleration and just
sets up a linear framebuffer, so we don't lose much by just
unconditionally using BiosVideoDxe instead when CSM is present.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Message-Id: <20190626113742.819933-4-dwmw2@infradead.org>
REF:https://bugzilla.tianocore.org/show_bug.cgi?id=1811
This commit updates the OVMF DSC/FDF files to consume the copied CSM
components within OvmfPkg.
Cc: Ray Ni <ray.ni@intel.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Hao A Wu <hao.a.wu@intel.com>
Reviewed-by: David Woodhouse <dwmw2@infradead.org>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
REF:https://bugzilla.tianocore.org/show_bug.cgi?id=1842
According to the discussion at:
https://edk2.groups.io/g/devel/topic/30918343#38093
For OVMF, we keep both ISA stacks:
* The legacy one in PcAtChipsetPkg/IntelFrameworkModulePkg
* The Sio bus based OVMF-specified one introduced by commit a5cc178aeb
for a period of time (includes 1 stable tag: edk2-stable201905). And we
also keep the Sio bus based OVMF-specified stack as the default one (via a
build option 'USE_LEGACY_ISA_STACK') to validate its stability.
This commit will propose to drop the legacy ISA stack from OVMF and remove
the usage of the build flag 'USE_LEGACY_ISA_STACK' at the same time. This
is considered as a preparation for the removal of
PcAtChipsetPkg/IsaAcpiDxe & IntelFrameworkModulePkg.
Cc: Ray Ni <ray.ni@intel.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Hao A Wu <hao.a.wu@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
This patch updates the platform DSC/FDF files to use the include fragment
files provided by NetworkPkg.
The feature enabling flags in [Defines] section have been updated to use
the NetworkPkg's terms, and the value has been overridden with the original
default value on this platform.
v2:1.Make the comments before Network definition align other parts.
2.Set NETWORK_ALLOW_HTTP_CONNECTIONS true.
3.Remove TcpIoLib in lib classes section.
4.Withdraw the removal of [PcdsFixedAtBuild.X64].
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Anthony Perard <anthony.perard@citrix.com>
Cc: Julien Grall <julien.grall@linaro.org>
Signed-off-by: Shenglei Zhang <shenglei.zhang@intel.com>
Message-Id: <20190516081810.27840-2-shenglei.zhang@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=1293
[lersek@redhat.com: add TianoCore Bugzilla reference]
REF:https://bugzilla.tianocore.org/show_bug.cgi?id=1496
This commit updates the OVMF DSC/FDF files to consume the copied
8259InterruptControllerDxe and 8254TimerDxe drivers within OvmfPkg.
The unconsumed PCD:
gPcAtChipsetPkgTokenSpaceGuid.Pcd8259LegacyModeEdgeLevel
is removed from DSC files as well.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Ray Ni <ray.ni@intel.com>
Signed-off-by: Hao Wu <hao.a.wu@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
REF:https://bugzilla.tianocore.org/show_bug.cgi?id=1495
This commit will add a static build flag 'USE_LEGACY_ISA_STACK' to select
the ISA driver stack.
If the flag is set to TRUE, the below driver stack will be used:
PcAtChipsetPkg/IsaAcpiDxe/IsaAcpi.inf
IntelFrameworkModulePkg/Bus/Isa/IsaBusDxe/IsaBusDxe.inf
IntelFrameworkModulePkg/Bus/Isa/IsaSerialDxe/IsaSerialDxe.inf
IntelFrameworkModulePkg/Bus/Isa/Ps2KeyboardDxe/Ps2keyboardDxe.inf
If the flag is set to FALSE, the below driver stack will be used:
OvmfPkg/SioBusDxe/SioBusDxe.inf
MdeModulePkg/Bus/Pci/PciSioSerialDxe/PciSioSerialDxe.inf
MdeModulePkg/Bus/Isa/Ps2KeyboardDxe/Ps2KeyboardDxe.inf
The default value is set to FALSE in OVMF DSC files.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Ray Ni <ray.ni@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Hao Wu <hao.a.wu@intel.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Anthony PERARD <anthony.perard@citrix.com>
REF:https://bugzilla.tianocore.org/show_bug.cgi?id=1495
There is a plan to remove the IntelFrameworkModulePkg:
https://bugzilla.tianocore.org/show_bug.cgi?id=1605
And for driver:
IntelFrameworkModulePkg/Bus/Isa/IsaFloppyDxe
This patch proposes to drop the ISA Floppy device support in OVMF.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Hao Wu <hao.a.wu@intel.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Anthony PERARD <anthony.perard@citrix.com>
This patch adds the TCG2 Configuration menu to the Device Manager
menu. We can apparently reuse the sample Tcg2ConfigDxe from
SecurityPkg/Tcg/Tcg2Config without obvious adverse effects. The
added TCG2 Configuration menu now shows details about the attached
TPM 2.0 and lets one for example configure the active PCR banks
or issue commands, among other things.
The code is added to Ovmf by building with -DTPM2_ENABLE and
-DTPM2_CONFIG_ENABLE.
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Stefan Berger <stefanb@linux.ibm.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com>
https://bugzilla.tianocore.org/show_bug.cgi?id=1355
XCODE doesn't support HII resource section. TftpDynamicCommand driver depends
on HII resource section. To let OvmfPkg boot to shell on XCODE5 tool chain,
don't include TftpDynamicCommand driver.
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Liming Gao <liming.gao@intel.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Remove EdkShellBinPkg in OvmfPkgIa32.fdf,
OvmfPkg/OvmfPkgIa32X64.fdf amd OvmfPkg/OvmfPkgX64.fdf.
https://bugzilla.tianocore.org/show_bug.cgi?id=1108
v2: Remove USE_OLD_SHELL in DSC and FDF because it will be
unnecessary to use it.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Shenglei Zhang <shenglei.zhang@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
V2:
Add missed library instance for NetworkPkg iSCSI driver.
This patch replaces the MdeModulePkg TCP, PXE and iSCSI driver with those
ones in NetworkPkg. These 3 drivers in MdeModulePkg are not being actively
maintained and will be removed from edk2 master soon.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Anthony Perard <anthony.perard@citrix.com>
Cc: Julien Grall <julien.grall@linaro.org>
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Fu Siyuan <siyuan.fu@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Almost exactly two years after commit 2f7b34b208, we've grown out the
10MB DXEFV:
> build -a IA32 -a X64 -p OvmfPkg/OvmfPkgIa32X64.dsc -b NOOPT -t GCC48 \
> -D SMM_REQUIRE -D SECURE_BOOT_ENABLE -D TLS_ENABLE -D E1000_ENABLE \
> -D HTTP_BOOT_ENABLE -D NETWORK_IP6_ENABLE
>
> [...]
>
> GenFv: ERROR 3000: Invalid
> the required fv image size 0xa28d48 exceeds the set fv image size
> 0xa00000
Raise the DXEFV size to 11MB.
(For builds that don't need this DXEFV bump, I've checked the
FVMAIN_COMPACT increase stemming from the additional 1MB padding, using
NOOPT + GCC48 + FD_SIZE_2MB, and no other "-D" flags. In the IA32 build,
FVMAIN_COMPACT grows by 232 bytes. In the IA32X64 build, FVMAIN_COMPACT
shrinks by 64 bytes. In the X64 build, FVMAIN_COMPACT shrinks by 376
bytes.)
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Gary Lin <glin@suse.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Gary Lin <glin@suse.com>
BLOCK_MMIO_PROTOCOL and BlockMmioToBlockIoDxe were introduced to OvmfPkg
in March 2010, in adjacent commits b0f5144676 and efd82c5794. In the
past eight years, no driver or application seems to have materialized that
produced BLOCK_MMIO_PROTOCOL instances. Meanwhile the UEFI spec has
developed the EFI_RAM_DISK_PROTOCOL, which edk2 implements (and OVMF
includes) as RamDiskDxe.
Rather than fixing issues in the unused BlockMmioToBlockIoDxe driver,
remove the driver, together with the BLOCK_MMIO_PROTOCOL definition that
now becomes unused too.
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Steven Shi <steven.shi@intel.com>
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=926
Reported-by: Steven Shi <steven.shi@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
This module measures and log the boot environment. It also produces
the Tcg2 protocol, which allows for example to read the log from OS.
The linux kernel doesn't yet read the EFI_TCG2_EVENT_LOG_FORMAT_TCG_2,
which is required for crypto-agile log. In fact, only upcoming 4.16
adds support EFI_TCG2_EVENT_LOG_FORMAT_TCG_1_2:
[ 0.000000] efi: EFI v2.70 by EDK II
[ 0.000000] efi: SMBIOS=0x3fa1f000 ACPI=0x3fbb6000 ACPI 2.0=0x3fbb6014 MEMATTR=0x3e7d4318 TPMEventLog=0x3db21018
$ python chipsec_util.py tpm parse_log binary_bios_measurements
[CHIPSEC] Version 1.3.5.dev2
[CHIPSEC] API mode: using OS native API (not using CHIPSEC kernel module)
[CHIPSEC] Executing command 'tpm' with args ['parse_log', '/tmp/binary_bios_measurements']
PCR: 0 type: EV_S_CRTM_VERSION size: 0x2 digest: 1489f923c4dca729178b3e3233458550d8dddf29
+ version:
PCR: 0 type: EV_EFI_PLATFORM_FIRMWARE_BLOB size: 0x10 digest: fd39ced7c0d2a61f6830c78c7625f94826b05bcc
+ base: 0x820000 length: 0xe0000
PCR: 0 type: EV_EFI_PLATFORM_FIRMWARE_BLOB size: 0x10 digest: 39ebc6783b72bc1e73c7d5bcfeb5f54a3f105d4c
+ base: 0x900000 length: 0xa00000
PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x35 digest: 57cd4dc19442475aa82743484f3b1caa88e142b8
PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x24 digest: 9b1387306ebb7ff8e795e7be77563666bbf4516e
PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x26 digest: 9afa86c507419b8570c62167cb9486d9fc809758
PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x24 digest: 5bf8faa078d40ffbd03317c93398b01229a0e1e0
PCR: 7 type: EV_EFI_VARIABLE_DRIVER_CONFIG size: 0x26 digest: 734424c9fe8fc71716c42096f4b74c88733b175e
PCR: 7 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473
PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x3e digest: 252f8ebb85340290b64f4b06a001742be8e5cab6
PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x6e digest: 22a4f6ee9af6dba01d3528deb64b74b582fc182b
PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x80 digest: b7811d5bf30a7efd4e385c6179fe10d9290bb9e8
PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x84 digest: 425e502c24fc924e231e0a62327b6b7d1f704573
PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x9a digest: 0b5d2c98ac5de6148a4a1490ff9d5df69039f04e
PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0xbd digest: 20bd5f402271d57a88ea314fe35c1705956b1f74
PCR: 1 type: EV_EFI_VARIABLE_BOOT size: 0x88 digest: df5d6605cb8f4366d745a8464cfb26c1efdc305c
PCR: 4 type: EV_EFI_ACTION size: 0x28 digest: cd0fdb4531a6ec41be2753ba042637d6e5f7f256
PCR: 0 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473
PCR: 1 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473
PCR: 2 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473
PCR: 3 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473
PCR: 4 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473
PCR: 5 type: EV_SEPARATOR size: 0x4 digest: 9069ca78e7450a285173431b3e52c5c25299e473
$ tpm2_pcrlist
sha1 :
0 : 35bd1786b6909daad610d7598b1d620352d33b8a
1 : ec0511e860206e0af13c31da2f9e943fb6ca353d
2 : b2a83b0ebf2f8374299a5b2bdfc31ea955ad7236
3 : b2a83b0ebf2f8374299a5b2bdfc31ea955ad7236
4 : 45a323382bd933f08e7f0e256bc8249e4095b1ec
5 : d16d7e629fd8d08ca256f9ad3a3a1587c9e6cc1b
6 : b2a83b0ebf2f8374299a5b2bdfc31ea955ad7236
7 : 518bd167271fbb64589c61e43d8c0165861431d8
8 : 0000000000000000000000000000000000000000
9 : 0000000000000000000000000000000000000000
10 : 0000000000000000000000000000000000000000
11 : 0000000000000000000000000000000000000000
12 : 0000000000000000000000000000000000000000
13 : 0000000000000000000000000000000000000000
14 : 0000000000000000000000000000000000000000
15 : 0000000000000000000000000000000000000000
16 : 0000000000000000000000000000000000000000
17 : ffffffffffffffffffffffffffffffffffffffff
18 : ffffffffffffffffffffffffffffffffffffffff
19 : ffffffffffffffffffffffffffffffffffffffff
20 : ffffffffffffffffffffffffffffffffffffffff
21 : ffffffffffffffffffffffffffffffffffffffff
22 : ffffffffffffffffffffffffffffffffffffffff
23 : 0000000000000000000000000000000000000000
sha256 :
0 : 9ae903dbae3357ac00d223660bac19ea5c021499a56201104332ab966631ce2c
1 : acc611d90245cf04e77b0ca94901f90e7fa54770f0426f53c3049b532243d1b8
2 : 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969
3 : 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969
4 : 7a94ffe8a7729a566d3d3c577fcb4b6b1e671f31540375f80eae6382ab785e35
5 : a5ceb755d043f32431d63e39f5161464620a3437280494b5850dc1b47cc074e0
6 : 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969
7 : 65caf8dd1e0ea7a6347b635d2b379c93b9a1351edc2afc3ecda700e534eb3068
8 : 0000000000000000000000000000000000000000000000000000000000000000
9 : 0000000000000000000000000000000000000000000000000000000000000000
10 : 0000000000000000000000000000000000000000000000000000000000000000
11 : 0000000000000000000000000000000000000000000000000000000000000000
12 : 0000000000000000000000000000000000000000000000000000000000000000
13 : 0000000000000000000000000000000000000000000000000000000000000000
14 : 0000000000000000000000000000000000000000000000000000000000000000
15 : 0000000000000000000000000000000000000000000000000000000000000000
16 : 0000000000000000000000000000000000000000000000000000000000000000
17 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
18 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
19 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
20 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
21 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
22 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
23 : 0000000000000000000000000000000000000000000000000000000000000000
sha384 :
The PhysicalPresenceLib is required, it sets some variables, but the
firmware doesn't act on it yet.
Laszlo Ersek explained on the list why Tpm2DeviceLib has to be
resolved differently for DXE_DRIVER modules in general and for
"Tcg2Dxe.inf" specifically:
* We have a library class called Tpm2DeviceLib -- this is basically the
set of APIs declared in "SecurityPkg/Include/Library/Tpm2DeviceLib.h".
Its leading comment says "This library abstract how to access TPM2
hardware device".
There are two *sets* of APIs in "Tpm2DeviceLib.h":
(a) functions that deal with the TPM2 device:
- Tpm2RequestUseTpm(),
- Tpm2SubmitCommand()
This set of APIs is supposed to be used by clients that *consume*
the TPM2 device abstraction.
(b) the function Tpm2RegisterTpm2DeviceLib(), which is supposed to be
used by *providers* of various TPM2 device abstractions.
* Then, we have two implementations (instances) of the Tpm2DeviceLib class:
(1) SecurityPkg/Library/Tpm2DeviceLibTcg2/Tpm2DeviceLibTcg2.inf
(2) SecurityPkg/Library/Tpm2DeviceLibRouter/Tpm2DeviceLibRouterDxe.inf
(1) The first library instance ("Tpm2DeviceLibTcg2.inf") implements the
APIs listed under (a), and it does not implement (b) -- see
EFI_UNSUPPORTED. In other words, this lib instance is strictly meant for
drivers that *consume* the TPM2 device abstraction. And, the (a) group
of APIs is implemented by forwarding the requests to the TCG2 protocol.
The idea here is that all the drivers that consume the TPM2 abstraction
do not have to be statically linked with a large TPM2 device library
instance; instead they are only linked (statically) with this "thin"
library instance, and all the actual work is delegated to whichever
driver that provides the singleton TCG2 protocol.
(2) The second library instance ("Tpm2DeviceLibRouterDxe.inf") is meant
for the driver that offers (produces) the TCG2 protocol. This lib
instance implements both (a) and (b) API groups.
* Here's how things fit together:
(i) The "SecurityPkg/Library/Tpm2DeviceLibDTpm/Tpm2InstanceLibDTpm.inf"
library instance (which has no lib class) is linked into "Tcg2Dxe.inf"
via NULL class resolution. This simply means that before the
"Tcg2Dxe.inf" entry point function is entered, the constructor function
of "Tpm2InstanceLibDTpm.inf" will be called.
(ii) This Tpm2InstanceLibDTpmConstructor() function calls API (b), and
registers its own actual TPM2 command implementation with the
"Tpm2DeviceLibRouter" library instance (also linked into the Tcg2Dxe
driver). This provides the back-end for the API set (a).
TCG2 protocol provider (Tcg2Dxe.inf driver) launches
|
v
NULL class: Tpm2InstanceLibDTpm instance construction
|
v
Tpm2DeviceLib class: Tpm2DeviceLibRouter instance
backend registration for API set (a)
(iii) The Tcg2Dxe driver exposes the TCG2 protocol.
(iv) A TPM2 consumer calls API set (a) via lib instance (1). Such calls
land in Tcg2Dxe, via the protocol.
(v) Tcg2Dxe serves the protocol request by forwarding it to API set (a)
from lib instance (2).
(vi) Those functions call the "backend" functions registered by
Tpm2DeviceLibDTpm in step (ii).
TPM 2 consumer driver
|
v
Tpm2DeviceLib class: Tpm2DeviceLibTcg2 instance
|
v
TCG2 protocol interface
|
v
TCG2 protocol provider: Tcg2Dxe.inf driver
|
v
Tpm2DeviceLib class: Tpm2DeviceLibRouter instance
|
v
NULL class: Tpm2InstanceLibDTpm instance
(via earlier registration)
|
v
TPM2 chip (actual hardware)
* So that is the "router" pattern in edk2. Namely,
- Consumers of an abstraction use a thin library instance.
- The thin library instance calls a firmware-global (singleton) service,
i.e. a PPI (in the PEI phase) or protocol (in the DXE phase).
- The PEIM providing the PPI, or the DXE driver providing the protocol,
don't themselves implement the actual service either. Instead they
offer a "registration" service too, and they only connect the incoming
"consumer" calls to the earlier registered back-end(s).
- The "registration service", for back-ends to use, may take various
forms.
It can be exposed globally to the rest of the firmware, as
another member function of the PPI / protocol structure. Then backends
can be provided by separate PEIMs / DXE drivers.
Or else, the registration service can be exposed as just another
library API. In this case, the backends are provided as NULL class
library instances, and a platform DSC file links them into the PEIM /
DXE driver via NULL class resolutions. The backend lib instances call
the registration service in their own respective constructor
functions.
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Stefan Berger <stefanb@linux.vnet.ibm.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
This module will initialize TPM device, measure reported FVs and BIOS
version. We keep both SHA-1 and SHA-256 for the TCG 1.2 log format
compatibility, but the SHA-256 measurements and TCG 2 log format are
now recommended.
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Stefan Berger <stefanb@linux.vnet.ibm.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
The Tcg2ConfigPei module informs the firmware globally about the TPM
device type, by setting the PcdTpmInstanceGuid PCD to the appropriate
GUID value. The original module under SecurityPkg can perform device
detection, or read a cached value from a non-volatile UEFI variable.
OvmfPkg's clone of the module only performs the TPM2 hardware detection.
This is what the module does:
- Check the QEMU hardware for TPM2 availability only
- If found, set the dynamic PCD "PcdTpmInstanceGuid" to
&gEfiTpmDeviceInstanceTpm20DtpmGuid. This is what informs the rest of
the firmware about the TPM type.
- Install the gEfiTpmDeviceSelectedGuid PPI. This action permits the
PEI_CORE to dispatch the Tcg2Pei module, which consumes the above PCD.
In effect, the gEfiTpmDeviceSelectedGuid PPI serializes the setting
and the consumption of the "TPM type" PCD.
- If no TPM2 was found, install gPeiTpmInitializationDonePpiGuid.
(Normally this is performed by Tcg2Pei, but Tcg2Pei doesn't do it if
no TPM2 is available. So in that case our Tcg2ConfigPei must do it.)
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Stefan Berger <stefanb@linux.vnet.ibm.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
The TFTP command was converted from a NULL class library instance
to a dynamic shell command in commit 0961002352.
This patch complements commit f9bc2f8763, which only removed the
old library, but didn't add the new dynamic command。
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Ruiyu Ni <ruiyu.ni@intel.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Anthony Perard <anthony.perard@citrix.com>
Cc: Julien Grall <julien.grall@linaro.org>
(1) In the PEI phase, the PCD database is maintained in a GUID HOB. In
OVMF, we load the PCD PEIM before any other PEIMs (using APRIORI PEI),
so that all other PEIMs can use dynamic PCDs. Consequently,
- the PCD GUID HOB is initially allocated from the temporary SEC/PEI
heap,
- whenever we introduce a dynamic PCD to a PEIM built into OVMF such
that the PCD is new to OVMF's whole PEI phase, the PCD GUID HOB (and
its temporary heap footprint) grow.
I've noticed that, if we add just one more dynamic PCD to the PEI
phase, then in the X64 build,
- we get very close to the half of the temporary heap (i.e., 8192
bytes),
- obscure PEI phase hangs or DXE core initialization failures
(ASSERTs) occur. The symptoms vary between the FD_SIZE_2MB and
FD_SIZE_4MB builds of X64 OVMF.
(2) I've found that commit
2bbd7e2fbd ("UefiCpuPkg/MtrrLib: Update algorithm to calculate
optimal settings", 2017-09-27)
introduced a large (16KB) stack allocation:
> The patch changes existing MtrrSetMemoryAttributeInMtrrSettings() and
> MtrrSetMemoryAttribute() to use the 4-page stack buffer for calculation.
> ...
> +#define SCRATCH_BUFFER_SIZE (4 * SIZE_4KB)
> ...
> @@ -2207,17 +2462,66 @@ MtrrSetMemoryAttributeInMtrrSettings (
> ...
> + UINT8 Scratch[SCRATCH_BUFFER_SIZE];
(3) OVMF's temp SEC/PEI RAM size has been 32KB ever since commit
7cb6b0e068 ("OvmfPkg: Move SEC/PEI Temporary RAM from 0x70000 to
0x810000", 2014-01-21)
Of that, the upper 16KB half is stack (growing down), and the lower
16KB half is heap.
Thus, OvmfPkg/PlatformPei's calls to "UefiCpuPkg/Library/MtrrLib", in
QemuInitializeRam(), cause the Scratch array to overflow the entire
stack (heading towards lower addresses), and corrupt the heap below
the stack. It turns out that the total stack demand is about 24KB, so
the overflow is able to corrupt the upper 8KB of the heap. If that
part of the heap is actually used (for example because we grow the PCD
GUID HOB sufficiently), mayhem ensues.
(4) Right after commit 7cb6b0e068 (see above), there would be no room
left above the 32KB temp SEC/PEI RAM. However, given more recent
commits
45d8708151 ("OvmfPkg/PlatformPei: rebase and resize the permanent
PEI memory for S3", 2016-07-13)
6b04cca4d6 ("OvmfPkg: remove PcdS3AcpiReservedMemoryBase,
PcdS3AcpiReservedMemorySize", 2016-07-12)
we can now restore the temp SEC/PEI RAM size to the original
(pre-7cb6b0e06809) 64KB. This will allow for a 32KB temp SEC/PEI
stack, which accommodates the ~24KB demand mentioned in (3).
(Prior patches in this series will let us monitor the stack usage in
the future.)
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=747
Ref: http://mid.mail-archive.com/a49cc089-12ae-a887-a4d6-4dc509233a74@redhat.com
Ref: http://mid.mail-archive.com/03e369bb-77c4-0134-258f-bdae62cbc8c5@redhat.com
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Jordan Justen <jordan.l.justen@intel.com>
This patch enables UDF file system support by default.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Paulo Alcantara <pcacjr@zytor.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Ruiyu Ni <ruiyu.ni@intel.com>
The IOMMU protocol driver provides capabilities to set a DMA access
attribute and methods to allocate, free, map and unmap the DMA memory
for the PCI Bus devices.
Due to security reasons all DMA operations inside the SEV guest must
be performed on shared (i.e unencrypted) pages. The IOMMU protocol
driver for the SEV guest uses a bounce buffer to map guest DMA buffer
to shared pages inorder to provide the support for DMA operations inside
SEV guest.
IoMmuDxe driver looks for SEV capabilities, if present then it installs
the real IOMMU protocol otherwise it installs placeholder protocol.
Currently, PciHostBridgeDxe and QemuFWCfgLib need to know the existance
of IOMMU protocol. The modules needing to know the existance of IOMMU
support should add
gEdkiiIoMmuProtocolGuid OR gIoMmuAbsentProtocolGuid
in their depex to ensure that platform IOMMU detection has been performed.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Leo Duran <leo.duran@amd.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Suggested-by: Jiewen Yao <jiewen.yao@intel.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
Acked-by: Laszlo Ersek <lersek@redhat.com>
Acked-by: Jordan Justen <jordan.l.justen@intel.com>
When SEV is enabled, the MMIO memory range must be mapped as unencrypted
(i.e C-bit cleared).
We need to clear the C-bit for MMIO GCD entries in order to cover the
ranges that were added during the PEI phase (through memory resource
descriptor HOBs). Additionally, the NonExistent ranges are processed
in order to cover, in advance, MMIO ranges added later in the DXE phase
by various device drivers, via the appropriate DXE memory space services.
The approach is not transparent for later addition of system memory ranges
to the GCD memory space map. (Such ranges should be encrypted.) OVMF does
not do such a thing at the moment, so this approach should be OK.
The driver is being added to the APRIORI DXE file so that, we clear the
C-bit from MMIO regions before any driver accesses it.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Leo Duran <leo.duran@amd.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Suggested-by: Jiewen Yao <jiewen.yao@intel.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Acked-by: Jordan Justen <jordan.l.justen@intel.com>
Jiaxin reports that the OvmfPkg/README instructions for downloading the
Intel PROEFI drivers, and the filenames in OvmfPkg/OvmfPkg*.fdf for
incorporating the same in the OVMF binaries, are no longer up to date; the
download link has stopped working.
Additionally, the IA32 driver binary is no more distributed by Intel.
Update OvmfPkg/README with new download instructions, and adapt the OVMF
FDF files.
With this driver in use for QEMU's e1000 NIC, the DH shell command prints,
as Controller Name, "Intel(R) PRO/1000 MT Network Connection". I
successfully tested DHCP and ping from the UEFI shell.
Cc: Jiaxin Wu <jiaxin.wu@intel.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Reported-by: Jiaxin Wu <jiaxin.wu@intel.com>
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=613
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Wu Jiaxin <jiaxin.wu@intel.com>
Reviewed-by: Wu Jiaxin <jiaxin.wu@intel.com>
Acked-by: Jordan Justen <jordan.l.justen@intel.com>
When the GenFv utility from BaseTools composes a firmware volume, it
checks whether modules in the firmware volume are subject to build-time
relocation. The primary indication for relocation is whether the firmware
volume has a nonzero base address, according to the [FD] section(s) in the
FDF file that refer to the firmware volume.
The idea behind build-time relocation is that XIP (execute in place)
modules will not be relocated at boot-time:
- Pre-DXE phase modules generally execute in place.
(OVMF is no exception, despite the fact that we have writeable memory
even in SEC: PEI_CORE and PEIMs run in-place from PEIFV, after SEC
decompresses PEIFV and DXEFV from FVMAIN_COMPACT (flash) to RAM.
PEI_CORE and the PEIMs are relocated at boot-time only after PlatformPei
installs the permanent PEI RAM, and the RAM migration occurs.)
- Modules dispatched by the DXE Core are generally relocated at boot-time.
However, this is not necessarily so. Quoting Liming from
<https://lists.01.org/pipermail/edk2-devel/2017-July/012053.html>:
> PI spec has no limitation that XIP is for PEIM only. DXE driver may be
> built as XIP for other purpose. For example, if DXE driver image address
> is not zero, DxeCore will try allocating the preferred address and load
> it. In another case, once DXE driver is relocated at build time, DxeCore
> will dispatch it and start it directly without loading, it may save boot
> performance.
Therefore GenFv relocates even DXE and UEFI driver modules if the
containing firmware volume has a nonzero base address.
In OVMF, this is the case for both PEIV and DXEFV:
> [FD.MEMFD]
> BaseAddress = $(MEMFD_BASE_ADDRESS)
> Size = 0xB00000
> ErasePolarity = 1
> BlockSize = 0x10000
> NumBlocks = 0xB0
> ...
> 0x020000|0x0E0000
> gUefiOvmfPkgTokenSpaceGuid.PcdOvmfPeiMemFvBase|gUefiOvmfPkgTokenSpaceGuid.PcdOvmfPeiMemFvSize
> FV = PEIFV
>
> 0x100000|0xA00000
> gUefiOvmfPkgTokenSpaceGuid.PcdOvmfDxeMemFvBase|gUefiOvmfPkgTokenSpaceGuid.PcdOvmfDxeMemFvSize
> FV = DXEFV
While the build-time relocation certainly makes sense for PEIFV (see
above), the reasons for which we specify DXEFV under [FD.MEMFD] are
weaker:
- we set the PcdOvmfDxeMemFvBase and PcdOvmfDxeMemFvSize PCDs here,
- and we ascertain that DXEFV, when decompressed by SEC from
FVMAIN_COMPACT, will fit into the area allotted here, at build time.
In other words, the build-time relocation of the modules in DXEFV is a
waste of resources. But, it gets worse:
Build-time relocation of an executable is only possible if the on-disk and
in-memory layouts are identical, i.e., if the sections of the PE/COFF
image adhere to the same alignment on disk and in memory. Put differently,
the FileAlignment and SectionAlignment headers must be equal.
For boot-time modules that we build as part of edk2, both alignment values
are 0x20 bytes. For runtime modules that we build as part of edk2, both
alignment values are 0x1000 bytes. This is why the DXEFV relocation,
albeit wasteful, is also successful every time.
Unfortunately, if we try to include a PE/COFF binary in DXEFV that
originates from outside of edk2, the DXEFV relocation can fail due to the
binary having unmatched FileAlignment and SectionAlignment headers. This
is precisely the case with the E3522X2.EFI network driver for the e1000
NIC, from Intel's BootUtil / PREBOOT.EXE distribution.
The solution is to use the FvForceRebase=FALSE override under [FV.DXEFV].
This tells GenFv not to perform build-time relocation on the firmware
volume, despite the FV having a nonzero base address.
In DXEFV we also have SMM drivers. Those are relocated at boot-time (into
SMRAM) unconditionally; SMRAM is always discovered at boot-time.
Kudos to Ard and Liming for the PE/COFF sections & relocations
explanation, and for the FvForceRebase=FALSE tip.
I regression-tested this change in the following configurations (all with
normal boot and S3 suspend/resume):
IA32, q35, SMM, Linux
IA32X64, q35, SMM, Linux
IA32X64, q35, SMM, Windows-8.1
X64, i440fx, no-SMM, Linux
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Liming Gao <liming.gao@intel.com>
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=613
Ref: https://bugzilla.tianocore.org/show_bug.cgi?id=615
Suggested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Suggested-by: Liming Gao <liming.gao@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Liming Gao <liming.gao@intel.com>
Acked-by: Jordan Justen <jordan.l.justen@intel.com>
This commit introduces a new build option, TLS_ENABLE, to pull in the
TLS-related modules. If HTTP_BOOT_ENABLE and TLS_ENABLE are enabled at
the same time, the HTTP driver locates the TLS protocols automatically
and thus HTTPS is enabled.
To build OVMF with HTTP Boot:
$ ./build.sh -D HTTP_BOOT_ENABLE
To build OVMF with HTTPS Boot:
$ ./build.sh -D HTTP_BOOT_ENABLE -D TLS_ENABLE
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Justen Jordan L <jordan.l.justen@intel.com>
Cc: Wu Jiaxin <jiaxin.wu@intel.com>
Cc: Long Qin <qin.long@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Gary Lin <glin@suse.com>
Reviewed-by: Wu Jiaxin <jiaxin.wu@intel.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>