When the user doesn't pass a kernel with QEMU's "-kernel" switch, the
firmware sees a zero-sized kernel blob via the QemuFwCfgItemKernelSize
key; there's no way to distinguish "no kernel" from "zero sized kernel".
In both cases TryRunningQemuKernel() proceeds as far as gBS->LoadImage(),
which then rejects the zero sized synthetic file with EFI_UNSUPPORTED.
This is known and works fully as expected; however we should rather catch
the much more frequent "no kernel" case earlier, in order to avoid the
EFI_D_ERROR message
TryRunningQemuKernel: LoadImage(): Unsupported
which is arguably meaningless noise for the "no kernel" case.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@arm.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16985 6f19259b-4bc3-4df7-8a09-765794883524
Detect the video displays dynamically, and add them to the console and
error output variables.
Add a short-form, "wild card" USB_CLASS_DEVICE_PATH to the console input
variable, which causes the USB keyboard to be handled automatically.
Add the fixed location serial console to all of the console input, console
output, and error output variables.
This patch enables QEMU users to drop "addr=..." PCI address
specifications from the -device options (or to use whatever addresses they
like). For example, the following works:
-device VGA \
\
-device ich9-usb-ehci1,multifunction=on,id=ehci \
-device ich9-usb-uhci1,multifunction=on,masterbus=ehci.0,firstport=0 \
-device ich9-usb-uhci2,multifunction=on,masterbus=ehci.0,firstport=2 \
-device ich9-usb-uhci3,multifunction=on,masterbus=ehci.0,firstport=4 \
-device usb-kbd,bus=ehci.0
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Olivier Martin <olivier.martin@arm.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16924 6f19259b-4bc3-4df7-8a09-765794883524
In this patch we remove all dependencies on ARM BDS libraries. We also
remove empty and/or unneeded functions, includes, etc.
PlatformIntelBdsLib "goes back to basics" temporarily -- there are no
consoles configured, and it's practically not possible to interact with
the user interface. Bisection remains available in the sense that
"ArmVirtualizationQemu.dsc" continues to build and should boot preexistent
boot options, but user interaction does regress temporarily.
The reason for this is that it's preferable to keep this patch and the
next one separate for readability's sake -- they amount to a rewrite from
scratch.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Olivier Martin <olivier.martin@arm.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16923 6f19259b-4bc3-4df7-8a09-765794883524
In the following call chain:
PlatformBdsPolicyBehavior()
PlatformBdsConnectConsole()
InitializeConsolePipe() x 3
BdsConnectDevicePath() [ArmPkg/Library/BdsLib/BdsFilePath.c]
the three InitializeConsolePipe() function calls pass through
- (&gST->ConsoleOutHandle, &gST->ConOut),
- (&gST->ConsoleInHandle, &gST->ConIn),
- (&gST->StandardErrorHandle, &gST->StdErr)
to BdsConnectDevicePath(), in ArmPkg's BdsLib.
At least when more than one console device paths are specified in the
ConIn / ConOut / ErrOut variables, the above resuls in:
- unchanged protocol interfaces (ConOut, ConIn, StdErr) in the system
table (because ConSplitterDxe installs its non-NULL interfaces first),
- but, changed handles in the system table.
This effectively separates the handle fields in the system table from the
protocol interfaces in the same that should always be associated with the
handles. The end result is that clients using the handles break (splitting
/ multiplexing doesn't work for them), while clients directly using the
protocol interfaces work.
Therefore, do not attempt to connect consoles separately. ConSplitterDxe
is dispatched before PlatformBdsPolicyBehavior() is called (the latter
happens in the BDS phase), and ConSplitterDxe installs virtual handles and
protocol interfaces for input / output / error.
BdsLibConnectAll() covers all devices, including consoles; as those
consoles are connected, ConPlatformDxe and ConSplitterDxe pick them up
nicely as "slaves". We just need to make sure that the variables are set
first, for the variables -> ConPlatformDxe -> ConSplitterDxe dependency
chain.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Olivier Martin <Olivier.martin@arm.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16912 6f19259b-4bc3-4df7-8a09-765794883524
If there is a PCI host, then PCI enumeration (which happens inside
BdsLibConnectAll()) blocks ACPI table installation (correctly). Make sure
we install ACPI tables before trying to direct-boot a QEMU kernel.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Olivier Martin <Olivier.martin@arm.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16911 6f19259b-4bc3-4df7-8a09-765794883524
A number of tools depend on passing the kernel image, the initial ramdisk,
and the kernel command line to the guest on the QEMU command line (options
-kernel, -initrd, -append, respectively). At the moment, these QEMU
options work, but the guest kernel loaded this way is launched by a
minimal binary firmware that is dynamically composed by QEMU. As a
consequence, such a kernel has no UEFI environment.
This patch enables -kernel, -initrd, -append to work on top of the
ArmVirtualizationQemu firmware build. The approach it takes is different
from how the same functionality is implemented in OvmfPkg.
OvmfPkg contains a full-fledged Linux boot loader (see
"OvmfPkg/Library/PlatformBdsLib/QemuKernel.c" and
"OvmfPkg/Library/LoadLinuxLib/"). OVMF's LoadLinuxLib sets up the required
kernel environment in a sophisticated way (including x86-specific
artifacts like the GDT), calls ExitBootServices() itself (for legacy
kernels without EFI handover protocol), and jumps to the kernel (using x86
assembly).
In ArmVirtualizationPkg's PlatformIntelBdsLib, we require the kernel being
loaded to have an EFI stub -- that is, to be a genuine UEFI application.
(The EFI stub is not an additional burden for guest kernels -- the EFI
stub is a hard requirement anyway because it needs to process the DTB
heavily:
- it removes memory nodes,
- it removes memreserve entries,
- it adds UEFI properties to the "chosen" node,
- it calculates and installs virt-to-phys mappings with
SetVirtualAddressMap() in a way that enables kexec [planned].
Kudos to Ard Biesheuvel for summarizing the above.)
An EFI-stubbed Linux guest kernel can be loaded with plain
gBS->LoadImage(). The EFI stub will look up its own
EFI_LOADED_IMAGE_DEVICE_PATH_PROTOCOL instance (ie. the device path where
it has been loaded from), and it will locate the initial ramdisk named by
the "initrd" command line parameter as a *sibling file* on the same
device.
The initrd file is then loaded using the EFI_SIMPLE_FILE_SYSTEM_PROTOCOL.
This approach enables the EFI stub to load the initial ramdisk from normal
EFI System Partitions, from remote PXE/TFTP directories -- and it enables
us to provide the initrd from memory as well.
In this patch:
- We download the kernel image, the initrd image, and the kernel command
line, using QEMU's fw_cfg interface.
- We create a read-only EFI_SIMPLE_FILE_SYSTEM_PROTOCOL instance that has
just a root directory, with the three downloaded files in it.
- The handle that carries the simple file system has a single-node
VenHw(...) device path (not counting the terminator node).
- We load the EFI-stubbed kernel (which is a UEFI application) with
gBS->LoadImage(), passing "VenHw(...)/kernel" as device path. This
causes gBS->LoadImage() to call back into our filesystem.
- Appended to the downloaded command line, we pass "initrd=initrd" to the
EFI stub.
- Once the EFI stub is running, it loads the initial ramdisk from the
"sibling" device path "VenHw(...)/initrd", also calling back into our
filesystem.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16578 6f19259b-4bc3-4df7-8a09-765794883524
We have all the required pieces in place. Let's call
SetBootOrderFromQemu() in PlatformBdsPolicyBehavior().
We disable OFW-to-UEFI device path fragment translation for virtio-pci,
and enable it only virtio-mmio at this time.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Olivier Martin <Olivier.martin@arm.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16576 6f19259b-4bc3-4df7-8a09-765794883524
In PlatformBdsPolicyBehavior() we should follow the same pattern as in
OvmfPkg's: after the consoles are connected,
- connect all drivers and devices,
- enumerate all boot options,
- enter the Intel BDS FrontPage if the user presses a key different from
Enter.
We set the countdown to 3 seconds, similarly to the timeout that we
specify for ARM BDS.
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Reviewed-by: Olivier Martin <Olivier.martin@arm.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16569 6f19259b-4bc3-4df7-8a09-765794883524
In the next patch(es) we'll customize the PlatformBdsLib instance used by
ArmVirtualizationQemu.dsc. Let's clone it first verbatim from
ArmPlatformPkg/Library/PlatformIntelBdsLib, changing only its FILE_GUID.
(Also, coding style errors like "missing space before open parenthesis"
and "missing space after comma or semicolon" have been cleaned up.)
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16568 6f19259b-4bc3-4df7-8a09-765794883524