If Stack Guard is enabled and there's really a stack overflow happened during
boot, a Page Fault exception will be triggered. Because the stack is out of
usage, the exception handler, which shares the stack with normal UEFI driver,
cannot be executed and cannot dump the processor information.
Without those information, it's very difficult for the BIOS developers locate
the root cause of stack overflow. And without a workable stack, the developer
cannot event use single step to debug the UEFI driver with JTAG debugger.
In order to make sure the exception handler to execute normally after stack
overflow. We need separate stacks for exception handlers in case of unusable
stack.
IA processor allows to switch to a new stack during handling interrupt and
exception. But X64 and IA32 provides different ways to make it. X64 provides
interrupt stack table (IST) to allow maximum 7 different exceptions to have
new stack for its handler. IA32 doesn't have IST mechanism and can only use
task gate to do it since task switch allows to load a new stack through its
task-state segment (TSS).
The new API, InitializeCpuExceptionHandlersEx, is implemented to complete
extra initialization for stack switch of exception handler. Since setting
up stack switch needs allocating new memory for new stack, new GDT table
and task-state segment but the initialization method will be called in
different phases which have no consistent way to reserve those memory, this
new API is allowed to pass the reserved resources to complete the extra
works. This is cannot be done by original InitializeCpuExceptionHandlers.
Considering exception handler initialization for MP situation, this new API
is also necessary, because AP is not supposed to allocate memory. So the
memory needed for stack switch have to be reserved in BSP before waking up
AP and then pass them to InitializeCpuExceptionHandlersEx afterwards.
Since Stack Guard feature is available only for DXE phase at this time, the
new API is fully implemented for DXE only. Other phases implement a dummy
one which just calls InitializeCpuExceptionHandlers().
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Eric Dong <eric.dong@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Michael Kinney <michael.d.kinney@intel.com>
Suggested-by: Ayellet Wolman <ayellet.wolman@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Jian J Wang <jian.j.wang@intel.com>
Reviewed-by: Jeff Fan <vanjeff_919@hotmail.com>
Reviewed-by: Jiewen.yao@intel.com
Export DumpCpuCotext() to display CPU Context. We will invoke
PeCoffGetEntrypointLib's PeCoffSerachImageBase() to get PE/COFF image base.
Display exception data bit value for page fault exception.
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Michael Kinney <michael.d.kinney@intel.com>
Cc: Feng Tian <feng.tian@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jeff Fan <jeff.fan@intel.com>
Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
Move some global variables location from PeiDxeSmmCpuException.c to
DxeCpuException.c and SmmCpuException.c. And remove some un-used global
vairables.
Cc: Michael Kinney <michael.d.kinney@intel.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Feng Tian <feng.tian@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jeff Fan <jeff.fan@intel.com>
Reviewed-by: Feng Tian <feng.tian@intel.com>
2. Updated CPU Exception Handler Library instance according to the new CPU Exception Handler Library class definitions.
3. Updated CPU Exception Handler Library instance to handle the vector attributes defined in PI 1.2.1.
Signed-off-by: Jeff Fan <jeff.fan@intel.com>
Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
Reviewed-by: Feng Tian <feng.tian@intel.com>
Reviewed-by: Hot Tian <hot.tian@intel.com>
git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14885 6f19259b-4bc3-4df7-8a09-765794883524