/** @file Implement all four UEFI Runtime Variable services for the nonvolatile and volatile storage space and install variable architecture protocol. Copyright (c) 2006 - 2009, Intel Corporation All rights reserved. This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "Variable.h" VARIABLE_MODULE_GLOBAL *mVariableModuleGlobal; EFI_EVENT mVirtualAddressChangeEvent = NULL; EFI_HANDLE mHandle = NULL; /// /// The current Hii implementation accesses this variable many times on every boot. /// Other common variables are only accessed once. This is why this cache algorithm /// only targets a single variable. Probably to get an performance improvement out of /// a Cache you would need a cache that improves the search performance for a variable. /// VARIABLE_CACHE_ENTRY mVariableCache[] = { { &gEfiGlobalVariableGuid, L"Lang", 0x00000000, 0x00, NULL } }; VARIABLE_INFO_ENTRY *gVariableInfo = NULL; EFI_EVENT mFvbRegistration = NULL; /** Acquires lock only at boot time. Simply returns at runtime. This is a temperary function which will be removed when EfiAcquireLock() in UefiLib can handle the call in UEFI Runtimer driver in RT phase. It calls EfiAcquireLock() at boot time, and simply returns at runtime. @param Lock A pointer to the lock to acquire **/ VOID AcquireLockOnlyAtBootTime ( IN EFI_LOCK *Lock ) { if (!EfiAtRuntime ()) { EfiAcquireLock (Lock); } } /** Releases lock only at boot time. Simply returns at runtime. This is a temperary function which will be removed when EfiReleaseLock() in UefiLib can handle the call in UEFI Runtimer driver in RT phase. It calls EfiReleaseLock() at boot time, and simply returns at runtime. @param Lock A pointer to the lock to release **/ VOID ReleaseLockOnlyAtBootTime ( IN EFI_LOCK *Lock ) { if (!EfiAtRuntime ()) { EfiReleaseLock (Lock); } } /** Routine used to track statistical information about variable usage. The data is stored in the EFI system table so it can be accessed later. VariableInfo.efi can dump out the table. Only Boot Services variable accesses are tracked by this code. The PcdVariableCollectStatistics build flag controls if this feature is enabled. A read that hits in the cache will have Read and Cache true for the transaction. Data is allocated by this routine, but never freed. @param[in] VariableName Name of the Variable to track @param[in] VendorGuid Guid of the Variable to track @param[in] Volatile TRUE if volatile FALSE if non-volatile @param[in] Read TRUE if GetVariable() was called @param[in] Write TRUE if SetVariable() was called @param[in] Delete TRUE if deleted via SetVariable() @param[in] Cache TRUE for a cache hit. **/ VOID UpdateVariableInfo ( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid, IN BOOLEAN Volatile, IN BOOLEAN Read, IN BOOLEAN Write, IN BOOLEAN Delete, IN BOOLEAN Cache ) { VARIABLE_INFO_ENTRY *Entry; if (FeaturePcdGet (PcdVariableCollectStatistics)) { if (EfiAtRuntime ()) { // Don't collect statistics at runtime return; } if (gVariableInfo == NULL) { // // on the first call allocate a entry and place a pointer to it in // the EFI System Table // gVariableInfo = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY)); ASSERT (gVariableInfo != NULL); CopyGuid (&gVariableInfo->VendorGuid, VendorGuid); gVariableInfo->Name = AllocatePool (StrLen (VariableName)); ASSERT (gVariableInfo->Name != NULL); StrCpy (gVariableInfo->Name, VariableName); gVariableInfo->Volatile = Volatile; gBS->InstallConfigurationTable (&gEfiVariableGuid, gVariableInfo); } for (Entry = gVariableInfo; Entry != NULL; Entry = Entry->Next) { if (CompareGuid (VendorGuid, &Entry->VendorGuid)) { if (StrCmp (VariableName, Entry->Name) == 0) { if (Read) { Entry->ReadCount++; } if (Write) { Entry->WriteCount++; } if (Delete) { Entry->DeleteCount++; } if (Cache) { Entry->CacheCount++; } return; } } if (Entry->Next == NULL) { // // If the entry is not in the table add it. // Next iteration of the loop will fill in the data // Entry->Next = AllocateZeroPool (sizeof (VARIABLE_INFO_ENTRY)); ASSERT (Entry->Next != NULL); CopyGuid (&Entry->Next->VendorGuid, VendorGuid); Entry->Next->Name = AllocatePool (StrLen (VariableName)); ASSERT (Entry->Next->Name != NULL); StrCpy (Entry->Next->Name, VariableName); Entry->Next->Volatile = Volatile; } } } } /** This code checks if variable header is valid or not. @param Variable Pointer to the Variable Header. @retval TRUE Variable header is valid. @retval FALSE Variable header is not valid. **/ BOOLEAN IsValidVariableHeader ( IN VARIABLE_HEADER *Variable ) { if (Variable == NULL || Variable->StartId != VARIABLE_DATA) { return FALSE; } return TRUE; } /** This function writes data to the FWH at the correct LBA even if the LBAs are fragmented. @param Global Pointer to VARAIBLE_GLOBAL structure @param Volatile Point out the Variable is Volatile or Non-Volatile @param SetByIndex TRUE if target pointer is given as index FALSE if target pointer is absolute @param Fvb Pointer to the writable FVB protocol @param DataPtrIndex Pointer to the Data from the end of VARIABLE_STORE_HEADER structure @param DataSize Size of data to be written @param Buffer Pointer to the buffer from which data is written @retval EFI_INVALID_PARAMETER Parameters not valid @retval EFI_SUCCESS Variable store successfully updated **/ EFI_STATUS UpdateVariableStore ( IN VARIABLE_GLOBAL *Global, IN BOOLEAN Volatile, IN BOOLEAN SetByIndex, IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb, IN UINTN DataPtrIndex, IN UINT32 DataSize, IN UINT8 *Buffer ) { EFI_FV_BLOCK_MAP_ENTRY *PtrBlockMapEntry; UINTN BlockIndex2; UINTN LinearOffset; UINTN CurrWriteSize; UINTN CurrWritePtr; UINT8 *CurrBuffer; EFI_LBA LbaNumber; UINTN Size; EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader; VARIABLE_STORE_HEADER *VolatileBase; EFI_PHYSICAL_ADDRESS FvVolHdr; EFI_PHYSICAL_ADDRESS DataPtr; EFI_STATUS Status; FwVolHeader = NULL; DataPtr = DataPtrIndex; // // Check if the Data is Volatile // if (!Volatile) { Status = Fvb->GetPhysicalAddress(Fvb, &FvVolHdr); ASSERT_EFI_ERROR (Status); FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvVolHdr); // // Data Pointer should point to the actual Address where data is to be // written // if (SetByIndex) { DataPtr += mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase; } if ((DataPtr + DataSize) >= ((EFI_PHYSICAL_ADDRESS) (UINTN) ((UINT8 *) FwVolHeader + FwVolHeader->FvLength))) { return EFI_INVALID_PARAMETER; } } else { // // Data Pointer should point to the actual Address where data is to be // written // VolatileBase = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase); if (SetByIndex) { DataPtr += mVariableModuleGlobal->VariableGlobal.VolatileVariableBase; } if ((DataPtr + DataSize) >= ((UINTN) ((UINT8 *) VolatileBase + VolatileBase->Size))) { return EFI_INVALID_PARAMETER; } // // If Volatile Variable just do a simple mem copy. // CopyMem ((UINT8 *)(UINTN)DataPtr, Buffer, DataSize); return EFI_SUCCESS; } // // If we are here we are dealing with Non-Volatile Variables // LinearOffset = (UINTN) FwVolHeader; CurrWritePtr = (UINTN) DataPtr; CurrWriteSize = DataSize; CurrBuffer = Buffer; LbaNumber = 0; if (CurrWritePtr < LinearOffset) { return EFI_INVALID_PARAMETER; } for (PtrBlockMapEntry = FwVolHeader->BlockMap; PtrBlockMapEntry->NumBlocks != 0; PtrBlockMapEntry++) { for (BlockIndex2 = 0; BlockIndex2 < PtrBlockMapEntry->NumBlocks; BlockIndex2++) { // // Check to see if the Variable Writes are spanning through multiple // blocks. // if ((CurrWritePtr >= LinearOffset) && (CurrWritePtr < LinearOffset + PtrBlockMapEntry->Length)) { if ((CurrWritePtr + CurrWriteSize) <= (LinearOffset + PtrBlockMapEntry->Length)) { Status = Fvb->Write ( Fvb, LbaNumber, (UINTN) (CurrWritePtr - LinearOffset), &CurrWriteSize, CurrBuffer ); return Status; } else { Size = (UINT32) (LinearOffset + PtrBlockMapEntry->Length - CurrWritePtr); Status = Fvb->Write ( Fvb, LbaNumber, (UINTN) (CurrWritePtr - LinearOffset), &Size, CurrBuffer ); if (EFI_ERROR (Status)) { return Status; } CurrWritePtr = LinearOffset + PtrBlockMapEntry->Length; CurrBuffer = CurrBuffer + Size; CurrWriteSize = CurrWriteSize - Size; } } LinearOffset += PtrBlockMapEntry->Length; LbaNumber++; } } return EFI_SUCCESS; } /** This code gets the current status of Variable Store. @param VarStoreHeader Pointer to the Variable Store Header. @retval EfiRaw Variable store status is raw @retval EfiValid Variable store status is valid @retval EfiInvalid Variable store status is invalid **/ VARIABLE_STORE_STATUS GetVariableStoreStatus ( IN VARIABLE_STORE_HEADER *VarStoreHeader ) { if (CompareGuid (&VarStoreHeader->Signature, &gEfiVariableGuid) && VarStoreHeader->Format == VARIABLE_STORE_FORMATTED && VarStoreHeader->State == VARIABLE_STORE_HEALTHY ) { return EfiValid; } else if (((UINT32 *)(&VarStoreHeader->Signature))[0] == 0xffffffff && ((UINT32 *)(&VarStoreHeader->Signature))[1] == 0xffffffff && ((UINT32 *)(&VarStoreHeader->Signature))[2] == 0xffffffff && ((UINT32 *)(&VarStoreHeader->Signature))[3] == 0xffffffff && VarStoreHeader->Size == 0xffffffff && VarStoreHeader->Format == 0xff && VarStoreHeader->State == 0xff ) { return EfiRaw; } else { return EfiInvalid; } } /** This code gets the size of name of variable. @param Variable Pointer to the Variable Header @return UINTN Size of variable in bytes **/ UINTN NameSizeOfVariable ( IN VARIABLE_HEADER *Variable ) { if (Variable->State == (UINT8) (-1) || Variable->DataSize == (UINT32) (-1) || Variable->NameSize == (UINT32) (-1) || Variable->Attributes == (UINT32) (-1)) { return 0; } return (UINTN) Variable->NameSize; } /** This code gets the size of variable data. @param Variable Pointer to the Variable Header @return Size of variable in bytes **/ UINTN DataSizeOfVariable ( IN VARIABLE_HEADER *Variable ) { if (Variable->State == (UINT8) (-1) || Variable->DataSize == (UINT32) (-1) || Variable->NameSize == (UINT32) (-1) || Variable->Attributes == (UINT32) (-1)) { return 0; } return (UINTN) Variable->DataSize; } /** This code gets the pointer to the variable name. @param Variable Pointer to the Variable Header @return Pointer to Variable Name which is Unicode encoding **/ CHAR16 * GetVariableNamePtr ( IN VARIABLE_HEADER *Variable ) { return (CHAR16 *) (Variable + 1); } /** This code gets the pointer to the variable data. @param Variable Pointer to the Variable Header @return Pointer to Variable Data **/ UINT8 * GetVariableDataPtr ( IN VARIABLE_HEADER *Variable ) { UINTN Value; // // Be careful about pad size for alignment // Value = (UINTN) GetVariableNamePtr (Variable); Value += NameSizeOfVariable (Variable); Value += GET_PAD_SIZE (NameSizeOfVariable (Variable)); return (UINT8 *) Value; } /** This code gets the pointer to the next variable header. @param Variable Pointer to the Variable Header @return Pointer to next variable header **/ VARIABLE_HEADER * GetNextVariablePtr ( IN VARIABLE_HEADER *Variable ) { UINTN Value; if (!IsValidVariableHeader (Variable)) { return NULL; } Value = (UINTN) GetVariableDataPtr (Variable); Value += DataSizeOfVariable (Variable); Value += GET_PAD_SIZE (DataSizeOfVariable (Variable)); // // Be careful about pad size for alignment // return (VARIABLE_HEADER *) HEADER_ALIGN (Value); } /** Gets the pointer to the first variable header in given variable store area. @param VarStoreHeader Pointer to the Variable Store Header. @return Pointer to the first variable header **/ VARIABLE_HEADER * GetStartPointer ( IN VARIABLE_STORE_HEADER *VarStoreHeader ) { // // The end of variable store // return (VARIABLE_HEADER *) HEADER_ALIGN (VarStoreHeader + 1); } /** Gets the pointer to the end of the variable storage area. This function gets pointer to the end of the variable storage area, according to the input variable store header. @param VarStoreHeader Pointer to the Variable Store Header @return Pointer to the end of the variable storage area **/ VARIABLE_HEADER * GetEndPointer ( IN VARIABLE_STORE_HEADER *VarStoreHeader ) { // // The end of variable store // return (VARIABLE_HEADER *) HEADER_ALIGN ((UINTN) VarStoreHeader + VarStoreHeader->Size); } /** Variable store garbage collection and reclaim operation. @param VariableBase Base address of variable store @param LastVariableOffset Offset of last variable @param IsVolatile The variable store is volatile or not, if it is non-volatile, need FTW @param UpdatingVariable Pointer to updateing variable. @return EFI_OUT_OF_RESOURCES @return EFI_SUCCESS @return Others **/ EFI_STATUS Reclaim ( IN EFI_PHYSICAL_ADDRESS VariableBase, OUT UINTN *LastVariableOffset, IN BOOLEAN IsVolatile, IN VARIABLE_HEADER *UpdatingVariable ) { VARIABLE_HEADER *Variable; VARIABLE_HEADER *AddedVariable; VARIABLE_HEADER *NextVariable; VARIABLE_HEADER *NextAddedVariable; VARIABLE_STORE_HEADER *VariableStoreHeader; UINT8 *ValidBuffer; UINTN MaximumBufferSize; UINTN VariableSize; UINTN VariableNameSize; UINTN UpdatingVariableNameSize; UINTN NameSize; UINT8 *CurrPtr; VOID *Point0; VOID *Point1; BOOLEAN FoundAdded; EFI_STATUS Status; CHAR16 *VariableNamePtr; CHAR16 *UpdatingVariableNamePtr; VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) VariableBase); // // recaluate the total size of Common/HwErr type variables in non-volatile area. // if (!IsVolatile) { mVariableModuleGlobal->CommonVariableTotalSize = 0; mVariableModuleGlobal->HwErrVariableTotalSize = 0; } // // Start Pointers for the variable. // Variable = GetStartPointer (VariableStoreHeader); MaximumBufferSize = sizeof (VARIABLE_STORE_HEADER); while (IsValidVariableHeader (Variable)) { NextVariable = GetNextVariablePtr (Variable); if (Variable->State == VAR_ADDED || Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED) ) { VariableSize = (UINTN) NextVariable - (UINTN) Variable; MaximumBufferSize += VariableSize; } Variable = NextVariable; } // // Reserve the 1 Bytes with Oxff to identify the // end of the variable buffer. // MaximumBufferSize += 1; ValidBuffer = AllocatePool (MaximumBufferSize); if (ValidBuffer == NULL) { return EFI_OUT_OF_RESOURCES; } SetMem (ValidBuffer, MaximumBufferSize, 0xff); // // Copy variable store header // CopyMem (ValidBuffer, VariableStoreHeader, sizeof (VARIABLE_STORE_HEADER)); CurrPtr = (UINT8 *) GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer); // // Reinstall all ADDED variables as long as they are not identical to Updating Variable // Variable = GetStartPointer (VariableStoreHeader); while (IsValidVariableHeader (Variable)) { NextVariable = GetNextVariablePtr (Variable); if (Variable->State == VAR_ADDED) { if (UpdatingVariable != NULL) { if (UpdatingVariable == Variable) { Variable = NextVariable; continue; } VariableNameSize = NameSizeOfVariable(Variable); UpdatingVariableNameSize = NameSizeOfVariable(UpdatingVariable); VariableNamePtr = GetVariableNamePtr (Variable); UpdatingVariableNamePtr = GetVariableNamePtr (UpdatingVariable); if (CompareGuid (&Variable->VendorGuid, &UpdatingVariable->VendorGuid) && VariableNameSize == UpdatingVariableNameSize && CompareMem (VariableNamePtr, UpdatingVariableNamePtr, VariableNameSize) == 0 ) { Variable = NextVariable; continue; } } VariableSize = (UINTN) NextVariable - (UINTN) Variable; CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize); CurrPtr += VariableSize; if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { mVariableModuleGlobal->HwErrVariableTotalSize += VariableSize; } else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { mVariableModuleGlobal->CommonVariableTotalSize += VariableSize; } } Variable = NextVariable; } // // Reinstall the variable being updated if it is not NULL // if (UpdatingVariable != NULL) { VariableSize = (UINTN)(GetNextVariablePtr (UpdatingVariable)) - (UINTN)UpdatingVariable; CopyMem (CurrPtr, (UINT8 *) UpdatingVariable, VariableSize); CurrPtr += VariableSize; if ((!IsVolatile) && ((UpdatingVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { mVariableModuleGlobal->HwErrVariableTotalSize += VariableSize; } else if ((!IsVolatile) && ((UpdatingVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { mVariableModuleGlobal->CommonVariableTotalSize += VariableSize; } } // // Reinstall all in delete transition variables // Variable = GetStartPointer (VariableStoreHeader); while (IsValidVariableHeader (Variable)) { NextVariable = GetNextVariablePtr (Variable); if (Variable != UpdatingVariable && Variable->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) { // // Buffer has cached all ADDED variable. // Per IN_DELETED variable, we have to guarantee that // no ADDED one in previous buffer. // FoundAdded = FALSE; AddedVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) ValidBuffer); while (IsValidVariableHeader (AddedVariable)) { NextAddedVariable = GetNextVariablePtr (AddedVariable); NameSize = NameSizeOfVariable (AddedVariable); if (CompareGuid (&AddedVariable->VendorGuid, &Variable->VendorGuid) && NameSize == NameSizeOfVariable (Variable) ) { Point0 = (VOID *) GetVariableNamePtr (AddedVariable); Point1 = (VOID *) GetVariableNamePtr (Variable); if (CompareMem (Point0, Point1, NameSizeOfVariable (AddedVariable)) == 0) { FoundAdded = TRUE; break; } } AddedVariable = NextAddedVariable; } if (!FoundAdded) { // // Promote VAR_IN_DELETED_TRANSITION to VAR_ADDED // VariableSize = (UINTN) NextVariable - (UINTN) Variable; CopyMem (CurrPtr, (UINT8 *) Variable, VariableSize); ((VARIABLE_HEADER *) CurrPtr)->State = VAR_ADDED; CurrPtr += VariableSize; if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { mVariableModuleGlobal->HwErrVariableTotalSize += VariableSize; } else if ((!IsVolatile) && ((Variable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { mVariableModuleGlobal->CommonVariableTotalSize += VariableSize; } } } Variable = NextVariable; } if (IsVolatile) { // // If volatile variable store, just copy valid buffer // SetMem ((UINT8 *) (UINTN) VariableBase, VariableStoreHeader->Size, 0xff); CopyMem ((UINT8 *) (UINTN) VariableBase, ValidBuffer, (UINTN) (CurrPtr - (UINT8 *) ValidBuffer)); Status = EFI_SUCCESS; } else { // // If non-volatile variable store, perform FTW here. // Status = FtwVariableSpace ( VariableBase, ValidBuffer, (UINTN) (CurrPtr - (UINT8 *) ValidBuffer) ); } if (!EFI_ERROR (Status)) { *LastVariableOffset = (UINTN) (CurrPtr - (UINT8 *) ValidBuffer); } else { *LastVariableOffset = 0; } FreePool (ValidBuffer); return Status; } /** Update the Cache with Variable information. These are the same arguments as the EFI Variable services. @param[in] VariableName Name of variable @param[in] VendorGuid Guid of variable @param[in] Attributes Attribues of the variable @param[in] DataSize Size of data. 0 means delete @param[in] Data Variable data **/ VOID UpdateVariableCache ( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid, IN UINT32 Attributes, IN UINTN DataSize, IN VOID *Data ) { VARIABLE_CACHE_ENTRY *Entry; UINTN Index; if (EfiAtRuntime ()) { // // Don't use the cache at runtime // return; } for (Index = 0, Entry = mVariableCache; Index < sizeof (mVariableCache)/sizeof (VARIABLE_CACHE_ENTRY); Index++, Entry++) { if (CompareGuid (VendorGuid, Entry->Guid)) { if (StrCmp (VariableName, Entry->Name) == 0) { Entry->Attributes = Attributes; if (DataSize == 0) { // // Delete Case // if (Entry->DataSize != 0) { FreePool (Entry->Data); } Entry->DataSize = DataSize; } else if (DataSize == Entry->DataSize) { CopyMem (Entry->Data, Data, DataSize); } else { Entry->Data = AllocatePool (DataSize); ASSERT (Entry->Data != NULL); Entry->DataSize = DataSize; CopyMem (Entry->Data, Data, DataSize); } } } } } /** Search the cache to check if the variable is in it. This function searches the variable cache. If the variable to find exists, return its data and attributes. @param VariableName A Null-terminated Unicode string that is the name of the vendor's variable. Each VariableName is unique for each VendorGuid. @param VendorGuid A unique identifier for the vendor @param Attributes Pointer to the attributes bitmask of the variable for output. @param DataSize On input, size of the buffer of Data. On output, size of the variable's data. @param Data Pointer to the data buffer for output. @retval EFI_SUCCESS VariableGuid & VariableName data was returned. @retval EFI_NOT_FOUND No matching variable found in cache. @retval EFI_BUFFER_TOO_SMALL *DataSize is smaller than size of the variable's data to return. **/ EFI_STATUS FindVariableInCache ( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid, OUT UINT32 *Attributes OPTIONAL, IN OUT UINTN *DataSize, OUT VOID *Data ) { VARIABLE_CACHE_ENTRY *Entry; UINTN Index; if (EfiAtRuntime ()) { // Don't use the cache at runtime return EFI_NOT_FOUND; } for (Index = 0, Entry = mVariableCache; Index < sizeof (mVariableCache)/sizeof (VARIABLE_CACHE_ENTRY); Index++, Entry++) { if (CompareGuid (VendorGuid, Entry->Guid)) { if (StrCmp (VariableName, Entry->Name) == 0) { if (Entry->DataSize == 0) { // Variable was deleted so return not found return EFI_NOT_FOUND; } else if (Entry->DataSize > *DataSize) { // If the buffer is too small return correct size *DataSize = Entry->DataSize; return EFI_BUFFER_TOO_SMALL; } else { *DataSize = Entry->DataSize; // Return the data CopyMem (Data, Entry->Data, Entry->DataSize); if (Attributes != NULL) { *Attributes = Entry->Attributes; } return EFI_SUCCESS; } } } } return EFI_NOT_FOUND; } /** Finds variable in storage blocks of volatile and non-volatile storage areas. This code finds variable in storage blocks of volatile and non-volatile storage areas. If VariableName is an empty string, then we just return the first qualified variable without comparing VariableName and VendorGuid. Otherwise, VariableName and VendorGuid are compared. @param VariableName Name of the variable to be found @param VendorGuid Vendor GUID to be found. @param PtrTrack VARIABLE_POINTER_TRACK structure for output, including the range searched and the target position. @param Global Pointer to VARIABLE_GLOBAL structure, including base of volatile variable storage area, base of NV variable storage area, and a lock. @retval EFI_INVALID_PARAMETER If VariableName is not an empty string, while VendorGuid is NULL @retval EFI_SUCCESS Variable successfully found @retval EFI_INVALID_PARAMETER Variable not found **/ EFI_STATUS FindVariable ( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid, OUT VARIABLE_POINTER_TRACK *PtrTrack, IN VARIABLE_GLOBAL *Global ) { VARIABLE_HEADER *Variable[2]; VARIABLE_HEADER *InDeletedVariable; VARIABLE_STORE_HEADER *VariableStoreHeader[2]; UINTN InDeletedStorageIndex; UINTN Index; VOID *Point; // // 0: Volatile, 1: Non-Volatile // The index and attributes mapping must be kept in this order as RuntimeServiceGetNextVariableName // make use of this mapping to implement search algorithme. // VariableStoreHeader[0] = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase); VariableStoreHeader[1] = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase); // // Start Pointers for the variable. // Actual Data Pointer where data can be written. // Variable[0] = GetStartPointer (VariableStoreHeader[0]); Variable[1] = GetStartPointer (VariableStoreHeader[1]); if (VariableName[0] != 0 && VendorGuid == NULL) { return EFI_INVALID_PARAMETER; } // // Find the variable by walk through volatile and then non-volatile variable store // InDeletedVariable = NULL; InDeletedStorageIndex = 0; for (Index = 0; Index < 2; Index++) { while ((Variable[Index] < GetEndPointer (VariableStoreHeader[Index])) && IsValidVariableHeader (Variable[Index])) { if (Variable[Index]->State == VAR_ADDED || Variable[Index]->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED) ) { if (!EfiAtRuntime () || ((Variable[Index]->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) != 0)) { if (VariableName[0] == 0) { if (Variable[Index]->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) { InDeletedVariable = Variable[Index]; InDeletedStorageIndex = Index; } else { PtrTrack->StartPtr = GetStartPointer (VariableStoreHeader[Index]); PtrTrack->EndPtr = GetEndPointer (VariableStoreHeader[Index]); PtrTrack->CurrPtr = Variable[Index]; PtrTrack->Volatile = (BOOLEAN)(Index == 0); return EFI_SUCCESS; } } else { if (CompareGuid (VendorGuid, &Variable[Index]->VendorGuid)) { Point = (VOID *) GetVariableNamePtr (Variable[Index]); ASSERT (NameSizeOfVariable (Variable[Index]) != 0); if (CompareMem (VariableName, Point, NameSizeOfVariable (Variable[Index])) == 0) { if (Variable[Index]->State == (VAR_IN_DELETED_TRANSITION & VAR_ADDED)) { InDeletedVariable = Variable[Index]; InDeletedStorageIndex = Index; } else { PtrTrack->StartPtr = GetStartPointer (VariableStoreHeader[Index]); PtrTrack->EndPtr = GetEndPointer (VariableStoreHeader[Index]); PtrTrack->CurrPtr = Variable[Index]; PtrTrack->Volatile = (BOOLEAN)(Index == 0); return EFI_SUCCESS; } } } } } } Variable[Index] = GetNextVariablePtr (Variable[Index]); } if (InDeletedVariable != NULL) { PtrTrack->StartPtr = GetStartPointer (VariableStoreHeader[InDeletedStorageIndex]); PtrTrack->EndPtr = GetEndPointer (VariableStoreHeader[InDeletedStorageIndex]); PtrTrack->CurrPtr = InDeletedVariable; PtrTrack->Volatile = (BOOLEAN)(InDeletedStorageIndex == 0); return EFI_SUCCESS; } } PtrTrack->CurrPtr = NULL; return EFI_NOT_FOUND; } /** This code finds variable in storage blocks (Volatile or Non-Volatile). @param VariableName Name of Variable to be found. @param VendorGuid Variable vendor GUID. @param Attributes Attribute value of the variable found. @param DataSize Size of Data found. If size is less than the data, this value contains the required size. @param Data Data pointer. @return EFI_INVALID_PARAMETER Invalid parameter @return EFI_SUCCESS Find the specified variable @return EFI_NOT_FOUND Not found @return EFI_BUFFER_TO_SMALL DataSize is too small for the result **/ EFI_STATUS EFIAPI RuntimeServiceGetVariable ( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid, OUT UINT32 *Attributes OPTIONAL, IN OUT UINTN *DataSize, OUT VOID *Data ) { EFI_STATUS Status; VARIABLE_POINTER_TRACK Variable; UINTN VarDataSize; if (VariableName == NULL || VendorGuid == NULL || DataSize == NULL) { return EFI_INVALID_PARAMETER; } AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); // // Find existing variable // Status = FindVariableInCache (VariableName, VendorGuid, Attributes, DataSize, Data); if ((Status == EFI_BUFFER_TOO_SMALL) || (Status == EFI_SUCCESS)){ // Hit in the Cache UpdateVariableInfo (VariableName, VendorGuid, FALSE, TRUE, FALSE, FALSE, TRUE); goto Done; } Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal); if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) { goto Done; } // // Get data size // VarDataSize = DataSizeOfVariable (Variable.CurrPtr); ASSERT (VarDataSize != 0); if (*DataSize >= VarDataSize) { if (Data == NULL) { Status = EFI_INVALID_PARAMETER; goto Done; } CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize); if (Attributes != NULL) { *Attributes = Variable.CurrPtr->Attributes; } *DataSize = VarDataSize; UpdateVariableInfo (VariableName, VendorGuid, Variable.Volatile, TRUE, FALSE, FALSE, FALSE); UpdateVariableCache (VariableName, VendorGuid, Variable.CurrPtr->Attributes, VarDataSize, Data); Status = EFI_SUCCESS; goto Done; } else { *DataSize = VarDataSize; Status = EFI_BUFFER_TOO_SMALL; goto Done; } Done: ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); return Status; } /** This code Finds the Next available variable. @param VariableNameSize Size of the variable name @param VariableName Pointer to variable name @param VendorGuid Variable Vendor Guid @return EFI_INVALID_PARAMETER Invalid parameter @return EFI_SUCCESS Find the specified variable @return EFI_NOT_FOUND Not found @return EFI_BUFFER_TO_SMALL DataSize is too small for the result **/ EFI_STATUS EFIAPI RuntimeServiceGetNextVariableName ( IN OUT UINTN *VariableNameSize, IN OUT CHAR16 *VariableName, IN OUT EFI_GUID *VendorGuid ) { VARIABLE_POINTER_TRACK Variable; UINTN VarNameSize; EFI_STATUS Status; if (VariableNameSize == NULL || VariableName == NULL || VendorGuid == NULL) { return EFI_INVALID_PARAMETER; } AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal); if (Variable.CurrPtr == NULL || EFI_ERROR (Status)) { goto Done; } if (VariableName[0] != 0) { // // If variable name is not NULL, get next variable // Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr); } while (TRUE) { // // If both volatile and non-volatile variable store are parsed, // return not found // if (Variable.CurrPtr >= Variable.EndPtr || Variable.CurrPtr == NULL) { Variable.Volatile = (BOOLEAN) (Variable.Volatile ^ ((BOOLEAN) 0x1)); if (!Variable.Volatile) { Variable.StartPtr = GetStartPointer ((VARIABLE_STORE_HEADER *) (UINTN) mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase); Variable.EndPtr = GetEndPointer ((VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase)); } else { Status = EFI_NOT_FOUND; goto Done; } Variable.CurrPtr = Variable.StartPtr; if (!IsValidVariableHeader (Variable.CurrPtr)) { continue; } } // // Variable is found // if (IsValidVariableHeader (Variable.CurrPtr) && Variable.CurrPtr->State == VAR_ADDED) { if ((EfiAtRuntime () && ((Variable.CurrPtr->Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0)) == 0) { VarNameSize = NameSizeOfVariable (Variable.CurrPtr); ASSERT (VarNameSize != 0); if (VarNameSize <= *VariableNameSize) { CopyMem ( VariableName, GetVariableNamePtr (Variable.CurrPtr), VarNameSize ); CopyMem ( VendorGuid, &Variable.CurrPtr->VendorGuid, sizeof (EFI_GUID) ); Status = EFI_SUCCESS; } else { Status = EFI_BUFFER_TOO_SMALL; } *VariableNameSize = VarNameSize; goto Done; } } Variable.CurrPtr = GetNextVariablePtr (Variable.CurrPtr); } Done: ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); return Status; } /** This code sets variable in storage blocks (Volatile or Non-Volatile). @param VariableName Name of Variable to be found @param VendorGuid Variable vendor GUID @param Attributes Attribute value of the variable found @param DataSize Size of Data found. If size is less than the data, this value contains the required size. @param Data Data pointer @return EFI_INVALID_PARAMETER Invalid parameter @return EFI_SUCCESS Set successfully @return EFI_OUT_OF_RESOURCES Resource not enough to set variable @return EFI_NOT_FOUND Not found @return EFI_WRITE_PROTECTED Variable is read-only **/ EFI_STATUS EFIAPI RuntimeServiceSetVariable ( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid, IN UINT32 Attributes, IN UINTN DataSize, IN VOID *Data ) { VARIABLE_POINTER_TRACK Variable; EFI_STATUS Status; VARIABLE_HEADER *NextVariable; UINTN VarNameSize; UINTN VarNameOffset; UINTN VarDataOffset; UINTN VarSize; UINT8 State; BOOLEAN Reclaimed; UINTN *VolatileOffset; UINTN *NonVolatileOffset; EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb; BOOLEAN Volatile; EFI_PHYSICAL_ADDRESS Point; UINTN ScratchSize; UINTN NonVolatileVarableStoreSize; // // Check input parameters // if (VariableName == NULL || VariableName[0] == 0 || VendorGuid == NULL) { return EFI_INVALID_PARAMETER; } // // Make sure if runtime bit is set, boot service bit is set also // if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) { return EFI_INVALID_PARAMETER; } // // The size of the VariableName, including the Unicode Null in bytes plus // the DataSize is limited to maximum size of FixedPcdGet32(PcdMaxHardwareErrorVariableSize) // bytes for HwErrRec, and FixedPcdGet32(PcdMaxVariableSize) bytes for the others. // if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) { if ((DataSize > FixedPcdGet32(PcdMaxHardwareErrorVariableSize)) || (sizeof (VARIABLE_HEADER) + StrSize (VariableName) + DataSize > FixedPcdGet32(PcdMaxHardwareErrorVariableSize))) { return EFI_INVALID_PARAMETER; } } else { // // The size of the VariableName, including the Unicode Null in bytes plus // the DataSize is limited to maximum size of FixedPcdGet32(PcdMaxVariableSize) bytes. // if ((DataSize > FixedPcdGet32(PcdMaxVariableSize)) || (sizeof (VARIABLE_HEADER) + StrSize (VariableName) + DataSize > FixedPcdGet32(PcdMaxVariableSize))) { return EFI_INVALID_PARAMETER; } } AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); Reclaimed = FALSE; Fvb = mVariableModuleGlobal->FvbInstance; VolatileOffset = &mVariableModuleGlobal->VolatileLastVariableOffset; // // Consider reentrant in MCA/INIT/NMI. It needs be reupdated; // if (1 < InterlockedIncrement (&mVariableModuleGlobal->VariableGlobal.ReentrantState)) { Point = mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase;; // // Parse non-volatile variable data and get last variable offset // NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *) (UINTN) Point); while (IsValidVariableHeader (NextVariable)) { NextVariable = GetNextVariablePtr (NextVariable); } mVariableModuleGlobal->NonVolatileLastVariableOffset = (UINTN) NextVariable - (UINTN) Point; } NonVolatileOffset = &mVariableModuleGlobal->NonVolatileLastVariableOffset; // // Check whether the input variable is already existed // Status = FindVariable (VariableName, VendorGuid, &Variable, &mVariableModuleGlobal->VariableGlobal); if (Status == EFI_SUCCESS && Variable.CurrPtr != NULL) { // // Update/Delete existing variable // Volatile = Variable.Volatile; if (EfiAtRuntime ()) { // // If EfiAtRuntime and the variable is Volatile and Runtime Access, // the volatile is ReadOnly, and SetVariable should be aborted and // return EFI_WRITE_PROTECTED. // if (Variable.Volatile) { Status = EFI_WRITE_PROTECTED; goto Done; } // // Only variable have NV attribute can be updated/deleted in Runtime // if ((Variable.CurrPtr->Attributes & EFI_VARIABLE_NON_VOLATILE) == 0) { Status = EFI_INVALID_PARAMETER; goto Done; } } // // Setting a data variable with no access, or zero DataSize attributes // specified causes it to be deleted. // if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) { State = Variable.CurrPtr->State; State &= VAR_DELETED; Status = UpdateVariableStore ( &mVariableModuleGlobal->VariableGlobal, Variable.Volatile, FALSE, Fvb, (UINTN) &Variable.CurrPtr->State, sizeof (UINT8), &State ); if (!EFI_ERROR (Status)) { UpdateVariableInfo (VariableName, VendorGuid, Volatile, FALSE, FALSE, TRUE, FALSE); UpdateVariableCache (VariableName, VendorGuid, Attributes, DataSize, Data); } goto Done; } // // If the variable is marked valid and the same data has been passed in // then return to the caller immediately. // if (DataSizeOfVariable (Variable.CurrPtr) == DataSize && (CompareMem (Data, GetVariableDataPtr (Variable.CurrPtr), DataSize) == 0)) { UpdateVariableInfo (VariableName, VendorGuid, Volatile, FALSE, TRUE, FALSE, FALSE); Status = EFI_SUCCESS; goto Done; } else if ((Variable.CurrPtr->State == VAR_ADDED) || (Variable.CurrPtr->State == (VAR_ADDED & VAR_IN_DELETED_TRANSITION))) { // // Mark the old variable as in delete transition // State = Variable.CurrPtr->State; State &= VAR_IN_DELETED_TRANSITION; Status = UpdateVariableStore ( &mVariableModuleGlobal->VariableGlobal, Variable.Volatile, FALSE, Fvb, (UINTN) &Variable.CurrPtr->State, sizeof (UINT8), &State ); if (EFI_ERROR (Status)) { goto Done; } } } else if (Status == EFI_NOT_FOUND) { // // Create a new variable // // // Make sure we are trying to create a new variable. // Setting a data variable with no access, or zero DataSize attributes means to delete it. // if (DataSize == 0 || (Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == 0) { Status = EFI_NOT_FOUND; goto Done; } // // Only variable have NV|RT attribute can be created in Runtime // if (EfiAtRuntime () && (((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0) || ((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0))) { Status = EFI_INVALID_PARAMETER; goto Done; } } else { // // Status should be EFI_INVALID_PARAMETER here according to return status of FindVariable(). // ASSERT (Status == EFI_INVALID_PARAMETER); goto Done; } // // Function part - create a new variable and copy the data. // Both update a variable and create a variable will come here. // // Tricky part: Use scratch data area at the end of volatile variable store // as a temporary storage. // NextVariable = GetEndPointer ((VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase)); ScratchSize = MAX(FixedPcdGet32(PcdMaxVariableSize), FixedPcdGet32(PcdMaxHardwareErrorVariableSize)); SetMem (NextVariable, ScratchSize, 0xff); NextVariable->StartId = VARIABLE_DATA; NextVariable->Attributes = Attributes; // // NextVariable->State = VAR_ADDED; // NextVariable->Reserved = 0; VarNameOffset = sizeof (VARIABLE_HEADER); VarNameSize = StrSize (VariableName); CopyMem ( (UINT8 *) ((UINTN) NextVariable + VarNameOffset), VariableName, VarNameSize ); VarDataOffset = VarNameOffset + VarNameSize + GET_PAD_SIZE (VarNameSize); CopyMem ( (UINT8 *) ((UINTN) NextVariable + VarDataOffset), Data, DataSize ); CopyMem (&NextVariable->VendorGuid, VendorGuid, sizeof (EFI_GUID)); // // There will be pad bytes after Data, the NextVariable->NameSize and // NextVariable->DataSize should not include pad size so that variable // service can get actual size in GetVariable // NextVariable->NameSize = (UINT32)VarNameSize; NextVariable->DataSize = (UINT32)DataSize; // // The actual size of the variable that stores in storage should // include pad size. // VarSize = VarDataOffset + DataSize + GET_PAD_SIZE (DataSize); if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) { // // Create a nonvolatile variable // Volatile = FALSE; NonVolatileVarableStoreSize = ((VARIABLE_STORE_HEADER *)(UINTN)(mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase))->Size; if ((((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) && ((VarSize + mVariableModuleGlobal->HwErrVariableTotalSize) > FixedPcdGet32(PcdHwErrStorageSize))) || (((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == 0) && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > NonVolatileVarableStoreSize - sizeof (VARIABLE_STORE_HEADER) - FixedPcdGet32(PcdHwErrStorageSize)))) { if (EfiAtRuntime ()) { Status = EFI_OUT_OF_RESOURCES; goto Done; } // // Perform garbage collection & reclaim operation // Status = Reclaim (mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase, NonVolatileOffset, FALSE, Variable.CurrPtr); if (EFI_ERROR (Status)) { goto Done; } // // If still no enough space, return out of resources // if ((((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) && ((VarSize + mVariableModuleGlobal->HwErrVariableTotalSize) > FixedPcdGet32(PcdHwErrStorageSize))) || (((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == 0) && ((VarSize + mVariableModuleGlobal->CommonVariableTotalSize) > NonVolatileVarableStoreSize - sizeof (VARIABLE_STORE_HEADER) - FixedPcdGet32(PcdHwErrStorageSize)))) { Status = EFI_OUT_OF_RESOURCES; goto Done; } Reclaimed = TRUE; } // // Three steps // 1. Write variable header // 2. Set variable state to header valid // 3. Write variable data // 4. Set variable state to valid // // // Step 1: // Status = UpdateVariableStore ( &mVariableModuleGlobal->VariableGlobal, FALSE, TRUE, Fvb, *NonVolatileOffset, sizeof (VARIABLE_HEADER), (UINT8 *) NextVariable ); if (EFI_ERROR (Status)) { goto Done; } // // Step 2: // NextVariable->State = VAR_HEADER_VALID_ONLY; Status = UpdateVariableStore ( &mVariableModuleGlobal->VariableGlobal, FALSE, TRUE, Fvb, *NonVolatileOffset, sizeof (VARIABLE_HEADER), (UINT8 *) NextVariable ); if (EFI_ERROR (Status)) { goto Done; } // // Step 3: // Status = UpdateVariableStore ( &mVariableModuleGlobal->VariableGlobal, FALSE, TRUE, Fvb, *NonVolatileOffset + sizeof (VARIABLE_HEADER), (UINT32) VarSize - sizeof (VARIABLE_HEADER), (UINT8 *) NextVariable + sizeof (VARIABLE_HEADER) ); if (EFI_ERROR (Status)) { goto Done; } // // Step 4: // NextVariable->State = VAR_ADDED; Status = UpdateVariableStore ( &mVariableModuleGlobal->VariableGlobal, FALSE, TRUE, Fvb, *NonVolatileOffset, sizeof (VARIABLE_HEADER), (UINT8 *) NextVariable ); if (EFI_ERROR (Status)) { goto Done; } *NonVolatileOffset = HEADER_ALIGN (*NonVolatileOffset + VarSize); if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) != 0) { mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VarSize); } else { mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VarSize); } } else { // // Create a volatile variable // Volatile = TRUE; if ((UINT32) (VarSize +*VolatileOffset) > ((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.VolatileVariableBase)))->Size) { // // Perform garbage collection & reclaim operation // Status = Reclaim (mVariableModuleGlobal->VariableGlobal.VolatileVariableBase, VolatileOffset, TRUE, Variable.CurrPtr); if (EFI_ERROR (Status)) { goto Done; } // // If still no enough space, return out of resources // if ((UINT32) (VarSize +*VolatileOffset) > ((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.VolatileVariableBase)))->Size ) { Status = EFI_OUT_OF_RESOURCES; goto Done; } Reclaimed = TRUE; } NextVariable->State = VAR_ADDED; Status = UpdateVariableStore ( &mVariableModuleGlobal->VariableGlobal, TRUE, TRUE, Fvb, *VolatileOffset, (UINT32) VarSize, (UINT8 *) NextVariable ); if (EFI_ERROR (Status)) { goto Done; } *VolatileOffset = HEADER_ALIGN (*VolatileOffset + VarSize); } // // Mark the old variable as deleted // if (!Reclaimed && !EFI_ERROR (Status) && Variable.CurrPtr != NULL) { State = Variable.CurrPtr->State; State &= VAR_DELETED; Status = UpdateVariableStore ( &mVariableModuleGlobal->VariableGlobal, Variable.Volatile, FALSE, Fvb, (UINTN) &Variable.CurrPtr->State, sizeof (UINT8), &State ); if (!EFI_ERROR (Status)) { UpdateVariableInfo (VariableName, VendorGuid, Volatile, FALSE, TRUE, FALSE, FALSE); UpdateVariableCache (VariableName, VendorGuid, Attributes, DataSize, Data); } goto Done; } Status = EFI_SUCCESS; UpdateVariableInfo (VariableName, VendorGuid, Volatile, FALSE, TRUE, FALSE, FALSE); UpdateVariableCache (VariableName, VendorGuid, Attributes, DataSize, Data); Done: InterlockedDecrement (&mVariableModuleGlobal->VariableGlobal.ReentrantState); ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); return Status; } /** This code returns information about the EFI variables. @param Attributes Attributes bitmask to specify the type of variables on which to return information. @param MaximumVariableStorageSize Pointer to the maximum size of the storage space available for the EFI variables associated with the attributes specified. @param RemainingVariableStorageSize Pointer to the remaining size of the storage space available for EFI variables associated with the attributes specified. @param MaximumVariableSize Pointer to the maximum size of an individual EFI variables associated with the attributes specified. @return EFI_INVALID_PARAMETER An invalid combination of attribute bits was supplied. @return EFI_SUCCESS Query successfully. @return EFI_UNSUPPORTED The attribute is not supported on this platform. **/ EFI_STATUS EFIAPI RuntimeServiceQueryVariableInfo ( IN UINT32 Attributes, OUT UINT64 *MaximumVariableStorageSize, OUT UINT64 *RemainingVariableStorageSize, OUT UINT64 *MaximumVariableSize ) { VARIABLE_HEADER *Variable; VARIABLE_HEADER *NextVariable; UINT64 VariableSize; VARIABLE_STORE_HEADER *VariableStoreHeader; UINT64 CommonVariableTotalSize; UINT64 HwErrVariableTotalSize; CommonVariableTotalSize = 0; HwErrVariableTotalSize = 0; if(MaximumVariableStorageSize == NULL || RemainingVariableStorageSize == NULL || MaximumVariableSize == NULL || Attributes == 0) { return EFI_INVALID_PARAMETER; } if((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == 0) { // // Make sure the Attributes combination is supported by the platform. // return EFI_UNSUPPORTED; } else if ((Attributes & (EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS)) == EFI_VARIABLE_RUNTIME_ACCESS) { // // Make sure if runtime bit is set, boot service bit is set also. // return EFI_INVALID_PARAMETER; } else if (EfiAtRuntime () && ((Attributes & EFI_VARIABLE_RUNTIME_ACCESS) == 0)) { // // Make sure RT Attribute is set if we are in Runtime phase. // return EFI_INVALID_PARAMETER; } else if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) { // // Make sure Hw Attribute is set with NV. // return EFI_INVALID_PARAMETER; } AcquireLockOnlyAtBootTime(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); if((Attributes & EFI_VARIABLE_NON_VOLATILE) == 0) { // // Query is Volatile related. // VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.VolatileVariableBase); } else { // // Query is Non-Volatile related. // VariableStoreHeader = (VARIABLE_STORE_HEADER *) ((UINTN) mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase); } // // Now let's fill *MaximumVariableStorageSize *RemainingVariableStorageSize // with the storage size (excluding the storage header size). // *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER); // // Harware error record variable needs larger size. // if ((Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { *MaximumVariableStorageSize = FixedPcdGet32(PcdHwErrStorageSize); *MaximumVariableSize = FixedPcdGet32(PcdMaxHardwareErrorVariableSize) - sizeof (VARIABLE_HEADER); } else { if ((Attributes & EFI_VARIABLE_NON_VOLATILE) != 0) { ASSERT (FixedPcdGet32(PcdHwErrStorageSize) < VariableStoreHeader->Size); *MaximumVariableStorageSize = VariableStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER) - FixedPcdGet32(PcdHwErrStorageSize); } // // Let *MaximumVariableSize be FixedPcdGet32(PcdMaxVariableSize) with the exception of the variable header size. // *MaximumVariableSize = FixedPcdGet32(PcdMaxVariableSize) - sizeof (VARIABLE_HEADER); } // // Point to the starting address of the variables. // Variable = GetStartPointer (VariableStoreHeader); // // Now walk through the related variable store. // while ((Variable < GetEndPointer (VariableStoreHeader)) && IsValidVariableHeader (Variable)) { NextVariable = GetNextVariablePtr (Variable); VariableSize = (UINT64) (UINTN) NextVariable - (UINT64) (UINTN) Variable; if (EfiAtRuntime ()) { // // we don't take the state of the variables in mind // when calculating RemainingVariableStorageSize, // since the space occupied by variables not marked with // VAR_ADDED is not allowed to be reclaimed in Runtime. // if ((NextVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) { HwErrVariableTotalSize += VariableSize; } else { CommonVariableTotalSize += VariableSize; } } else { // // Only care about Variables with State VAR_ADDED,because // the space not marked as VAR_ADDED is reclaimable now. // if (Variable->State == VAR_ADDED) { if ((NextVariable->Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD) { HwErrVariableTotalSize += VariableSize; } else { CommonVariableTotalSize += VariableSize; } } } // // Go to the next one // Variable = NextVariable; } if ((Attributes & EFI_VARIABLE_HARDWARE_ERROR_RECORD) == EFI_VARIABLE_HARDWARE_ERROR_RECORD){ *RemainingVariableStorageSize = *MaximumVariableStorageSize - HwErrVariableTotalSize; }else { *RemainingVariableStorageSize = *MaximumVariableStorageSize - CommonVariableTotalSize; } if (*RemainingVariableStorageSize < sizeof (VARIABLE_HEADER)) { *MaximumVariableSize = 0; } else if ((*RemainingVariableStorageSize - sizeof (VARIABLE_HEADER)) < *MaximumVariableSize) { *MaximumVariableSize = *RemainingVariableStorageSize - sizeof (VARIABLE_HEADER); } ReleaseLockOnlyAtBootTime (&mVariableModuleGlobal->VariableGlobal.VariableServicesLock); return EFI_SUCCESS; } /** Notification function of EVT_GROUP_READY_TO_BOOT event group. This is a notification function registered on EVT_GROUP_READY_TO_BOOT event group. When the Boot Manager is about to load and execute a boot option, it reclaims variable storage if free size is below the threshold. @param Event Event whose notification function is being invoked @param Context Pointer to the notification function's context **/ VOID EFIAPI ReclaimForOS( EFI_EVENT Event, VOID *Context ) { EFI_STATUS Status; UINTN CommonVariableSpace; UINTN RemainingCommonVariableSpace; UINTN RemainingHwErrVariableSpace; Status = EFI_SUCCESS; CommonVariableSpace = ((VARIABLE_STORE_HEADER *) ((UINTN) (mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase)))->Size - sizeof (VARIABLE_STORE_HEADER) - PcdGet32(PcdHwErrStorageSize); //Allowable max size of common variable storage space RemainingCommonVariableSpace = CommonVariableSpace - mVariableModuleGlobal->CommonVariableTotalSize; RemainingHwErrVariableSpace = PcdGet32 (PcdHwErrStorageSize) - mVariableModuleGlobal->HwErrVariableTotalSize; // // Check if the free area is blow a threshold // if ((RemainingCommonVariableSpace < PcdGet32 (PcdMaxVariableSize)) || (RemainingHwErrVariableSpace < PcdGet32 (PcdMaxHardwareErrorVariableSize))){ Status = Reclaim ( mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase, &mVariableModuleGlobal->NonVolatileLastVariableOffset, FALSE, NULL ); ASSERT_EFI_ERROR (Status); } } /** Initializes variable store area for non-volatile and volatile variable. @param SystemTable The pointer of EFI_SYSTEM_TABLE. @retval EFI_SUCCESS Function successfully executed. @retval EFI_OUT_OF_RESOURCES Fail to allocate enough memory resource. **/ EFI_STATUS VariableCommonInitialize ( IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvbProtocol ) { EFI_STATUS Status; VARIABLE_STORE_HEADER *VolatileVariableStore; VARIABLE_STORE_HEADER *VariableStoreHeader; VARIABLE_HEADER *NextVariable; EFI_PHYSICAL_ADDRESS TempVariableStoreHeader; EFI_GCD_MEMORY_SPACE_DESCRIPTOR GcdDescriptor; EFI_PHYSICAL_ADDRESS BaseAddress; UINT64 Length; UINTN Index; UINT8 Data; EFI_PHYSICAL_ADDRESS VariableStoreBase; UINT64 VariableStoreLength; EFI_EVENT ReadyToBootEvent; UINTN ScratchSize; Status = EFI_SUCCESS; // // Allocate runtime memory for variable driver global structure. // mVariableModuleGlobal = AllocateRuntimePool (sizeof (VARIABLE_MODULE_GLOBAL)); if (mVariableModuleGlobal == NULL) { return EFI_OUT_OF_RESOURCES; } EfiInitializeLock(&mVariableModuleGlobal->VariableGlobal.VariableServicesLock, TPL_NOTIFY); mVariableModuleGlobal->VariableGlobal.ReentrantState = 0; mVariableModuleGlobal->CommonVariableTotalSize = 0; mVariableModuleGlobal->HwErrVariableTotalSize = 0; // // Allocate memory for volatile variable store, note that there is a scratch space to store scratch data. // ScratchSize = MAX(FixedPcdGet32(PcdMaxVariableSize), FixedPcdGet32(PcdMaxHardwareErrorVariableSize)); VolatileVariableStore = AllocateRuntimePool (FixedPcdGet32(PcdVariableStoreSize) + ScratchSize); if (VolatileVariableStore == NULL) { FreePool (mVariableModuleGlobal); return EFI_OUT_OF_RESOURCES; } SetMem (VolatileVariableStore, FixedPcdGet32(PcdVariableStoreSize) + ScratchSize, 0xff); // // Variable Specific Data // mVariableModuleGlobal->VariableGlobal.VolatileVariableBase = (EFI_PHYSICAL_ADDRESS) (UINTN) VolatileVariableStore; mVariableModuleGlobal->VolatileLastVariableOffset = (UINTN) GetStartPointer (VolatileVariableStore) - (UINTN) VolatileVariableStore; mVariableModuleGlobal->FvbInstance = FvbProtocol; CopyGuid (&VolatileVariableStore->Signature, &gEfiVariableGuid); VolatileVariableStore->Size = FixedPcdGet32(PcdVariableStoreSize); VolatileVariableStore->Format = VARIABLE_STORE_FORMATTED; VolatileVariableStore->State = VARIABLE_STORE_HEALTHY; VolatileVariableStore->Reserved = 0; VolatileVariableStore->Reserved1 = 0; // // Get non volatile varaible store // TempVariableStoreHeader = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase); VariableStoreBase = TempVariableStoreHeader + \ (((EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)(TempVariableStoreHeader)) -> HeaderLength); VariableStoreLength = (UINT64) PcdGet32 (PcdFlashNvStorageVariableSize) - \ (((EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)(TempVariableStoreHeader)) -> HeaderLength); // // Mark the variable storage region of the FLASH as RUNTIME // BaseAddress = VariableStoreBase & (~EFI_PAGE_MASK); Length = VariableStoreLength + (VariableStoreBase - BaseAddress); Length = (Length + EFI_PAGE_SIZE - 1) & (~EFI_PAGE_MASK); Status = gDS->GetMemorySpaceDescriptor (BaseAddress, &GcdDescriptor); if (EFI_ERROR (Status)) { goto Done; } Status = gDS->SetMemorySpaceAttributes ( BaseAddress, Length, GcdDescriptor.Attributes | EFI_MEMORY_RUNTIME ); if (EFI_ERROR (Status)) { goto Done; } // // Get address of non volatile variable store base // mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase = VariableStoreBase; VariableStoreHeader = (VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase; if (GetVariableStoreStatus (VariableStoreHeader) == EfiValid) { if (~VariableStoreHeader->Size == 0) { Status = UpdateVariableStore ( &mVariableModuleGlobal->VariableGlobal, FALSE, FALSE, mVariableModuleGlobal->FvbInstance, (UINTN) &VariableStoreHeader->Size, sizeof (UINT32), (UINT8 *) &VariableStoreLength ); // // As Variables are stored in NV storage, which are slow devices,such as flash. // Variable operation may skip checking variable program result to improve performance, // We can assume Variable program is OK through some check point. // Variable Store Size Setting should be the first Variable write operation, // We can assume all Read/Write is OK if we can set Variable store size successfully. // If write fail, we will assert here // ASSERT(VariableStoreHeader->Size == VariableStoreLength); if (EFI_ERROR (Status)) { goto Done; } } // // Parse non-volatile variable data and get last variable offset // NextVariable = GetStartPointer ((VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase); Status = EFI_SUCCESS; while (IsValidVariableHeader (NextVariable)) { UINTN VariableSize = 0; VariableSize = NextVariable->NameSize + NextVariable->DataSize + sizeof (VARIABLE_HEADER); if ((NextVariable->Attributes & (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) == (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_HARDWARE_ERROR_RECORD)) { mVariableModuleGlobal->HwErrVariableTotalSize += HEADER_ALIGN (VariableSize); } else { mVariableModuleGlobal->CommonVariableTotalSize += HEADER_ALIGN (VariableSize); } NextVariable = GetNextVariablePtr (NextVariable); } mVariableModuleGlobal->NonVolatileLastVariableOffset = (UINTN) NextVariable - (UINTN) VariableStoreBase; // // Check if the free area is really free. // for (Index = mVariableModuleGlobal->NonVolatileLastVariableOffset; Index < VariableStoreHeader->Size; Index++) { Data = ((UINT8 *) (UINTN) mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase)[Index]; if (Data != 0xff) { // // There must be something wrong in variable store, do reclaim operation. // Status = Reclaim ( mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase, &mVariableModuleGlobal->NonVolatileLastVariableOffset, FALSE, NULL ); if (EFI_ERROR (Status)) { goto Done; } break; } } // // Register the event handling function to reclaim variable for OS usage. // Status = EfiCreateEventReadyToBootEx ( TPL_NOTIFY, ReclaimForOS, NULL, &ReadyToBootEvent ); } else { Status = EFI_VOLUME_CORRUPTED; DEBUG((EFI_D_INFO, "Variable Store header is corrupted\n")); } Done: if (EFI_ERROR (Status)) { FreePool (mVariableModuleGlobal); FreePool (VolatileVariableStore); } return Status; } /** Notification function of EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE This is a notification function registered on EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE event. It convers pointer to new virtual address. @param Event Event whose notification function is being invoked @param Context Pointer to the notification function's context **/ VOID EFIAPI VariableClassAddressChangeEvent ( IN EFI_EVENT Event, IN VOID *Context ) { EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->GetBlockSize); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->GetPhysicalAddress); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->GetAttributes); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->SetAttributes); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->Read); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->Write); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->EraseBlocks); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance); EfiConvertPointer ( 0x0, (VOID **) &mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase ); EfiConvertPointer ( 0x0, (VOID **) &mVariableModuleGlobal->VariableGlobal.VolatileVariableBase ); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal); } VOID EFIAPI FvbNotificationEvent ( IN EFI_EVENT Event, IN VOID *Context ) { EFI_STATUS Status; EFI_HANDLE *HandleBuffer; UINTN HandleCount; UINTN Index; EFI_PHYSICAL_ADDRESS FvbBaseAddress; EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb; EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader; EFI_FVB_ATTRIBUTES_2 Attributes; EFI_SYSTEM_TABLE *SystemTable; EFI_PHYSICAL_ADDRESS NvStorageVariableBase; SystemTable = (EFI_SYSTEM_TABLE *)Context; Fvb = NULL; // // Locate all handles of Fvb protocol // Status = gBS->LocateHandleBuffer ( ByProtocol, &gEfiFirmwareVolumeBlockProtocolGuid, NULL, &HandleCount, &HandleBuffer ); if (EFI_ERROR (Status)) { return ; } // // Get the FVB to access variable store // for (Index = 0; Index < HandleCount; Index += 1, Status = EFI_NOT_FOUND, Fvb = NULL) { Status = gBS->HandleProtocol ( HandleBuffer[Index], &gEfiFirmwareVolumeBlockProtocolGuid, (VOID **) &Fvb ); if (EFI_ERROR (Status)) { Status = EFI_NOT_FOUND; break; } // // Ensure this FVB protocol supported Write operation. // Status = Fvb->GetAttributes (Fvb, &Attributes); if (EFI_ERROR (Status) || ((Attributes & EFI_FVB2_WRITE_STATUS) == 0)) { continue; } // // Compare the address and select the right one // Status = Fvb->GetPhysicalAddress (Fvb, &FvbBaseAddress); if (EFI_ERROR (Status)) { continue; } FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvbBaseAddress); NvStorageVariableBase = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase); if ((NvStorageVariableBase >= FvbBaseAddress) && (NvStorageVariableBase < (FvbBaseAddress + FwVolHeader->FvLength))) { Status = EFI_SUCCESS; break; } } FreePool (HandleBuffer); if (!EFI_ERROR (Status) && Fvb != NULL) { // // Close the notify event to avoid install gEfiVariableArchProtocolGuid & gEfiVariableWriteArchProtocolGuid again. // Status = gBS->CloseEvent (Event); ASSERT_EFI_ERROR (Status); Status = VariableCommonInitialize (Fvb); ASSERT_EFI_ERROR (Status); SystemTable->RuntimeServices->GetVariable = RuntimeServiceGetVariable; SystemTable->RuntimeServices->GetNextVariableName = RuntimeServiceGetNextVariableName; SystemTable->RuntimeServices->SetVariable = RuntimeServiceSetVariable; SystemTable->RuntimeServices->QueryVariableInfo = RuntimeServiceQueryVariableInfo; // // Now install the Variable Runtime Architectural Protocol on a new handle // Status = gBS->InstallMultipleProtocolInterfaces ( &mHandle, &gEfiVariableArchProtocolGuid, NULL, &gEfiVariableWriteArchProtocolGuid, NULL, NULL ); ASSERT_EFI_ERROR (Status); Status = gBS->CreateEventEx ( EVT_NOTIFY_SIGNAL, TPL_NOTIFY, VariableClassAddressChangeEvent, NULL, &gEfiEventVirtualAddressChangeGuid, &mVirtualAddressChangeEvent ); ASSERT_EFI_ERROR (Status); } } /** Variable Driver main entry point. The Variable driver places the 4 EFI runtime services in the EFI System Table and installs arch protocols for variable read and write services being availible. It also registers notification function for EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE event. @param[in] ImageHandle The firmware allocated handle for the EFI image. @param[in] SystemTable A pointer to the EFI System Table. @retval EFI_SUCCESS Variable service successfully initialized. **/ EFI_STATUS EFIAPI VariableServiceInitialize ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { // // Register FvbNotificationEvent () notify function. // EfiCreateProtocolNotifyEvent ( &gEfiFirmwareVolumeBlockProtocolGuid, TPL_CALLBACK, FvbNotificationEvent, (VOID *)SystemTable, &mFvbRegistration ); return EFI_SUCCESS; }