/** @file Firmware Block Services to support emulating non-volatile variables by pretending that a memory buffer is storage for the NV variables. Copyright (c) 2006 - 2013, Intel Corporation. All rights reserved.<BR> SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "PiDxe.h" #include <Guid/EventGroup.h> #include <Guid/SystemNvDataGuid.h> #include <Guid/VariableFormat.h> #include <Protocol/FirmwareVolumeBlock.h> #include <Protocol/DevicePath.h> #include <Library/UefiLib.h> #include <Library/UefiDriverEntryPoint.h> #include <Library/BaseLib.h> #include <Library/UefiRuntimeLib.h> #include <Library/DebugLib.h> #include <Library/BaseMemoryLib.h> #include <Library/MemoryAllocationLib.h> #include <Library/UefiBootServicesTableLib.h> #include <Library/DevicePathLib.h> #include <Library/PcdLib.h> #include <Library/PlatformFvbLib.h> #include "Fvb.h" #define EFI_AUTHENTICATED_VARIABLE_GUID \ { 0xaaf32c78, 0x947b, 0x439a, { 0xa1, 0x80, 0x2e, 0x14, 0x4e, 0xc3, 0x77, 0x92 } } // // Virtual Address Change Event // // This is needed for runtime variable access. // EFI_EVENT mEmuVarsFvbAddrChangeEvent = NULL; // // This is the single instance supported by this driver. It // supports the FVB and Device Path protocols. // EFI_FW_VOL_BLOCK_DEVICE mEmuVarsFvb = { FVB_DEVICE_SIGNATURE, { // DevicePath { { HARDWARE_DEVICE_PATH, HW_MEMMAP_DP, { sizeof (MEMMAP_DEVICE_PATH), 0 } }, EfiMemoryMappedIO, 0, 0, }, { END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE, { sizeof (EFI_DEVICE_PATH_PROTOCOL), 0 } } }, NULL, // BufferPtr EMU_FVB_BLOCK_SIZE, // BlockSize EMU_FVB_SIZE, // Size { // FwVolBlockInstance FvbProtocolGetAttributes, FvbProtocolSetAttributes, FvbProtocolGetPhysicalAddress, FvbProtocolGetBlockSize, FvbProtocolRead, FvbProtocolWrite, FvbProtocolEraseBlocks, NULL }, }; /** Notification function of EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE. This is a notification function registered on EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE event. It converts pointer to new virtual address. @param Event Event whose notification function is being invoked. @param Context Pointer to the notification function's context. **/ VOID EFIAPI FvbVirtualAddressChangeEvent ( IN EFI_EVENT Event, IN VOID *Context ) { EfiConvertPointer (0x0, &mEmuVarsFvb.BufferPtr); } // // FVB protocol APIs // /** The GetPhysicalAddress() function retrieves the base address of a memory-mapped firmware volume. This function should be called only for memory-mapped firmware volumes. @param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance. @param Address Pointer to a caller-allocated EFI_PHYSICAL_ADDRESS that, on successful return from GetPhysicalAddress(), contains the base address of the firmware volume. @retval EFI_SUCCESS The firmware volume base address is returned. @retval EFI_NOT_SUPPORTED The firmware volume is not memory mapped. **/ EFI_STATUS EFIAPI FvbProtocolGetPhysicalAddress ( IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This, OUT EFI_PHYSICAL_ADDRESS *Address ) { EFI_FW_VOL_BLOCK_DEVICE *FvbDevice; FvbDevice = FVB_DEVICE_FROM_THIS (This); *Address = (EFI_PHYSICAL_ADDRESS)(UINTN)FvbDevice->BufferPtr; return EFI_SUCCESS; } /** The GetBlockSize() function retrieves the size of the requested block. It also returns the number of additional blocks with the identical size. The GetBlockSize() function is used to retrieve the block map (see EFI_FIRMWARE_VOLUME_HEADER). @param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance. @param Lba Indicates the block for which to return the size. @param BlockSize Pointer to a caller-allocated UINTN in which the size of the block is returned. @param NumberOfBlocks Pointer to a caller-allocated UINTN in which the number of consecutive blocks, starting with Lba, is returned. All blocks in this range have a size of BlockSize. @retval EFI_SUCCESS The firmware volume base address is returned. @retval EFI_INVALID_PARAMETER The requested LBA is out of range. **/ EFI_STATUS EFIAPI FvbProtocolGetBlockSize ( IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This, IN EFI_LBA Lba, OUT UINTN *BlockSize, OUT UINTN *NumberOfBlocks ) { EFI_FW_VOL_BLOCK_DEVICE *FvbDevice; if (Lba >= EMU_FVB_NUM_TOTAL_BLOCKS) { return EFI_INVALID_PARAMETER; } FvbDevice = FVB_DEVICE_FROM_THIS (This); *BlockSize = FvbDevice->BlockSize; *NumberOfBlocks = (UINTN)(EMU_FVB_NUM_TOTAL_BLOCKS - Lba); return EFI_SUCCESS; } /** The GetAttributes() function retrieves the attributes and current settings of the block. Status Codes Returned @param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance. @param Attributes Pointer to EFI_FVB_ATTRIBUTES_2 in which the attributes and current settings are returned. Type EFI_FVB_ATTRIBUTES_2 is defined in EFI_FIRMWARE_VOLUME_HEADER. @retval EFI_SUCCESS The firmware volume attributes were returned. **/ EFI_STATUS EFIAPI FvbProtocolGetAttributes ( IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This, OUT EFI_FVB_ATTRIBUTES_2 *Attributes ) { *Attributes = (EFI_FVB_ATTRIBUTES_2)( EFI_FVB2_READ_ENABLED_CAP | EFI_FVB2_READ_STATUS | EFI_FVB2_WRITE_ENABLED_CAP | EFI_FVB2_WRITE_STATUS | EFI_FVB2_ERASE_POLARITY ); return EFI_SUCCESS; } /** The SetAttributes() function sets configurable firmware volume attributes and returns the new settings of the firmware volume. @param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance. @param Attributes On input, Attributes is a pointer to EFI_FVB_ATTRIBUTES_2 that contains the desired firmware volume settings. On successful return, it contains the new settings of the firmware volume. Type EFI_FVB_ATTRIBUTES_2 is defined in EFI_FIRMWARE_VOLUME_HEADER. @retval EFI_SUCCESS The firmware volume attributes were returned. @retval EFI_INVALID_PARAMETER The attributes requested are in conflict with the capabilities as declared in the firmware volume header. **/ EFI_STATUS EFIAPI FvbProtocolSetAttributes ( IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This, IN OUT EFI_FVB_ATTRIBUTES_2 *Attributes ) { return EFI_ACCESS_DENIED; } /** Erases and initializes a firmware volume block. The EraseBlocks() function erases one or more blocks as denoted by the variable argument list. The entire parameter list of blocks must be verified before erasing any blocks. If a block is requested that does not exist within the associated firmware volume (it has a larger index than the last block of the firmware volume), the EraseBlocks() function must return the status code EFI_INVALID_PARAMETER without modifying the contents of the firmware volume. Implementations should be mindful that the firmware volume might be in the WriteDisabled state. If it is in this state, the EraseBlocks() function must return the status code EFI_ACCESS_DENIED without modifying the contents of the firmware volume. All calls to EraseBlocks() must be fully flushed to the hardware before the EraseBlocks() service returns. @param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance. @param ... The variable argument list is a list of tuples. Each tuple describes a range of LBAs to erase and consists of the following: - An EFI_LBA that indicates the starting LBA - A UINTN that indicates the number of blocks to erase The list is terminated with an EFI_LBA_LIST_TERMINATOR. For example, the following indicates that two ranges of blocks (5-7 and 10-11) are to be erased: EraseBlocks (This, 5, 3, 10, 2, EFI_LBA_LIST_TERMINATOR); @retval EFI_SUCCESS The erase request was successfully completed. @retval EFI_ACCESS_DENIED The firmware volume is in the WriteDisabled state. @retval EFI_DEVICE_ERROR The block device is not functioning correctly and could not be written. The firmware device may have been partially erased. @retval EFI_INVALID_PARAMETER One or more of the LBAs listed in the variable argument list do not exist in the firmware volume. **/ EFI_STATUS EFIAPI FvbProtocolEraseBlocks ( IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This, ... ) { EFI_FW_VOL_BLOCK_DEVICE *FvbDevice; VA_LIST Args; EFI_LBA StartingLba; UINTN NumOfLba; UINT8 *ErasePtr; UINTN EraseSize; FvbDevice = FVB_DEVICE_FROM_THIS (This); // // Check input parameters // VA_START (Args, This); do { StartingLba = VA_ARG (Args, EFI_LBA); if (StartingLba == EFI_LBA_LIST_TERMINATOR) { break; } NumOfLba = VA_ARG (Args, UINTN); if ((StartingLba > EMU_FVB_NUM_TOTAL_BLOCKS) || (NumOfLba > EMU_FVB_NUM_TOTAL_BLOCKS - StartingLba)) { VA_END (Args); return EFI_INVALID_PARAMETER; } } while (1); VA_END (Args); // // Erase blocks // VA_START (Args, This); do { StartingLba = VA_ARG (Args, EFI_LBA); if (StartingLba == EFI_LBA_LIST_TERMINATOR) { break; } NumOfLba = VA_ARG (Args, UINTN); ErasePtr = FvbDevice->BufferPtr; ErasePtr += (UINTN)StartingLba * FvbDevice->BlockSize; EraseSize = NumOfLba * FvbDevice->BlockSize; SetMem (ErasePtr, EraseSize, ERASED_UINT8); } while (1); VA_END (Args); // // Call platform hook // VA_START (Args, This); PlatformFvbBlocksErased (This, Args); VA_END (Args); return EFI_SUCCESS; } /** Writes the specified number of bytes from the input buffer to the block. The Write() function writes the specified number of bytes from the provided buffer to the specified block and offset. If the firmware volume is sticky write, the caller must ensure that all the bits of the specified range to write are in the EFI_FVB_ERASE_POLARITY state before calling the Write() function, or else the result will be unpredictable. This unpredictability arises because, for a sticky-write firmware volume, a write may negate a bit in the EFI_FVB_ERASE_POLARITY state but cannot flip it back again. In general, before calling the Write() function, the caller should call the EraseBlocks() function first to erase the specified block to write. A block erase cycle will transition bits from the (NOT)EFI_FVB_ERASE_POLARITY state back to the EFI_FVB_ERASE_POLARITY state. Implementations should be mindful that the firmware volume might be in the WriteDisabled state. If it is in this state, the Write() function must return the status code EFI_ACCESS_DENIED without modifying the contents of the firmware volume. The Write() function must also prevent spanning block boundaries. If a write is requested that spans a block boundary, the write must store up to the boundary but not beyond. The output parameter NumBytes must be set to correctly indicate the number of bytes actually written. The caller must be aware that a write may be partially completed. All writes, partial or otherwise, must be fully flushed to the hardware before the Write() service returns. @param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance. @param Lba The starting logical block index to write to. @param Offset Offset into the block at which to begin writing. @param NumBytes Pointer to a UINTN. At entry, *NumBytes contains the total size of the buffer. At exit, *NumBytes contains the total number of bytes actually written. @param Buffer Pointer to a caller-allocated buffer that contains the source for the write. @retval EFI_SUCCESS The firmware volume was written successfully. @retval EFI_BAD_BUFFER_SIZE The write was attempted across an LBA boundary. On output, NumBytes contains the total number of bytes actually written. @retval EFI_ACCESS_DENIED The firmware volume is in the WriteDisabled state. @retval EFI_DEVICE_ERROR The block device is malfunctioning and could not be written. **/ EFI_STATUS EFIAPI FvbProtocolWrite ( IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This, IN EFI_LBA Lba, IN UINTN Offset, IN OUT UINTN *NumBytes, IN UINT8 *Buffer ) { EFI_FW_VOL_BLOCK_DEVICE *FvbDevice; UINT8 *FvbDataPtr; EFI_STATUS Status; FvbDevice = FVB_DEVICE_FROM_THIS (This); if ((Lba >= EMU_FVB_NUM_TOTAL_BLOCKS) || (Offset > FvbDevice->BlockSize)) { return EFI_INVALID_PARAMETER; } Status = EFI_SUCCESS; if (*NumBytes > FvbDevice->BlockSize - Offset) { *NumBytes = FvbDevice->BlockSize - Offset; Status = EFI_BAD_BUFFER_SIZE; } FvbDataPtr = FvbDevice->BufferPtr; FvbDataPtr += (UINTN)Lba * FvbDevice->BlockSize; FvbDataPtr += Offset; CopyMem (FvbDataPtr, Buffer, *NumBytes); PlatformFvbDataWritten (This, Lba, Offset, *NumBytes, Buffer); return Status; } /** Reads the specified number of bytes into a buffer from the specified block. The Read() function reads the requested number of bytes from the requested block and stores them in the provided buffer. Implementations should be mindful that the firmware volume might be in the ReadDisabled state. If it is in this state, the Read() function must return the status code EFI_ACCESS_DENIED without modifying the contents of the buffer. The Read() function must also prevent spanning block boundaries. If a read is requested that would span a block boundary, the read must read up to the boundary but not beyond. The output parameter NumBytes must be set to correctly indicate the number of bytes actually read. The caller must be aware that a read may be partially completed. @param This Indicates the EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL instance. @param Lba The starting logical block index from which to read. @param Offset Offset into the block at which to begin reading. @param NumBytes Pointer to a UINTN. At entry, *NumBytes contains the total size of the buffer. At exit, *NumBytes contains the total number of bytes read. @param Buffer Pointer to a caller-allocated buffer that will be used to hold the data that is read. @retval EFI_SUCCESS The firmware volume was read successfully and contents are in Buffer. @retval EFI_BAD_BUFFER_SIZE Read attempted across an LBA boundary. On output, NumBytes contains the total number of bytes returned in Buffer. @retval EFI_ACCESS_DENIED The firmware volume is in the ReadDisabled state. @retval EFI_DEVICE_ERROR The block device is not functioning correctly and could not be read. **/ EFI_STATUS EFIAPI FvbProtocolRead ( IN CONST EFI_FIRMWARE_VOLUME_BLOCK2_PROTOCOL *This, IN EFI_LBA Lba, IN UINTN Offset, IN OUT UINTN *NumBytes, IN OUT UINT8 *Buffer ) { EFI_FW_VOL_BLOCK_DEVICE *FvbDevice; UINT8 *FvbDataPtr; EFI_STATUS Status; FvbDevice = FVB_DEVICE_FROM_THIS (This); if ((Lba >= EMU_FVB_NUM_TOTAL_BLOCKS) || (Offset > FvbDevice->BlockSize)) { return EFI_INVALID_PARAMETER; } Status = EFI_SUCCESS; if (*NumBytes > FvbDevice->BlockSize - Offset) { *NumBytes = FvbDevice->BlockSize - Offset; Status = EFI_BAD_BUFFER_SIZE; } FvbDataPtr = FvbDevice->BufferPtr; FvbDataPtr += (UINTN)Lba * FvbDevice->BlockSize; FvbDataPtr += Offset; CopyMem (Buffer, FvbDataPtr, *NumBytes); PlatformFvbDataRead (This, Lba, Offset, *NumBytes, Buffer); return Status; } /** Check the integrity of firmware volume header. @param[in] FwVolHeader - A pointer to a firmware volume header @retval EFI_SUCCESS - The firmware volume is consistent @retval EFI_NOT_FOUND - The firmware volume has been corrupted. **/ EFI_STATUS ValidateFvHeader ( IN EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader ) { UINT16 Checksum; // // Verify the header revision, header signature, length // Length of FvBlock cannot be 2**64-1 // HeaderLength cannot be an odd number // if ((FwVolHeader->Revision != EFI_FVH_REVISION) || (FwVolHeader->Signature != EFI_FVH_SIGNATURE) || (FwVolHeader->FvLength != EMU_FVB_SIZE) || (FwVolHeader->HeaderLength != EMU_FV_HEADER_LENGTH) ) { DEBUG ((DEBUG_INFO, "EMU Variable FVB: Basic FV headers were invalid\n")); return EFI_NOT_FOUND; } // // Verify the header checksum // Checksum = CalculateSum16 ((VOID *)FwVolHeader, FwVolHeader->HeaderLength); if (Checksum != 0) { DEBUG ((DEBUG_INFO, "EMU Variable FVB: FV checksum was invalid\n")); return EFI_NOT_FOUND; } return EFI_SUCCESS; } /** Initializes the FV Header and Variable Store Header to support variable operations. @param[in] Ptr - Location to initialize the headers **/ VOID InitializeFvAndVariableStoreHeaders ( IN VOID *Ptr ) { // // Templates for authenticated variable FV header // STATIC FVB_FV_HDR_AND_VARS_TEMPLATE FvAndAuthenticatedVarTemplate = { { // EFI_FIRMWARE_VOLUME_HEADER FvHdr; // UINT8 ZeroVector[16]; { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, // EFI_GUID FileSystemGuid; EFI_SYSTEM_NV_DATA_FV_GUID, // UINT64 FvLength; EMU_FVB_SIZE, // UINT32 Signature; EFI_FVH_SIGNATURE, // EFI_FVB_ATTRIBUTES_2 Attributes; 0x4feff, // UINT16 HeaderLength; EMU_FV_HEADER_LENGTH, // UINT16 Checksum; 0, // UINT16 ExtHeaderOffset; 0, // UINT8 Reserved[1]; { 0 }, // UINT8 Revision; EFI_FVH_REVISION, // EFI_FV_BLOCK_MAP_ENTRY BlockMap[1]; { { EMU_FVB_NUM_TOTAL_BLOCKS, // UINT32 NumBlocks; EMU_FVB_BLOCK_SIZE // UINT32 Length; } } }, // EFI_FV_BLOCK_MAP_ENTRY EndBlockMap; { 0, 0 }, // End of block map { // VARIABLE_STORE_HEADER VarHdr; // EFI_GUID Signature; // need authenticated variables for secure boot EFI_AUTHENTICATED_VARIABLE_GUID, // UINT32 Size; ( FixedPcdGet32 (PcdFlashNvStorageVariableSize) - OFFSET_OF (FVB_FV_HDR_AND_VARS_TEMPLATE, VarHdr) ), // UINT8 Format; VARIABLE_STORE_FORMATTED, // UINT8 State; VARIABLE_STORE_HEALTHY, // UINT16 Reserved; 0, // UINT32 Reserved1; 0 } }; EFI_FIRMWARE_VOLUME_HEADER *Fv; // // Copy the template structure into the location // CopyMem ( Ptr, &FvAndAuthenticatedVarTemplate, sizeof FvAndAuthenticatedVarTemplate ); // // Update the checksum for the FV header // Fv = (EFI_FIRMWARE_VOLUME_HEADER *)Ptr; Fv->Checksum = CalculateCheckSum16 (Ptr, Fv->HeaderLength); } /** Main entry point. @param[in] ImageHandle The firmware allocated handle for the EFI image. @param[in] SystemTable A pointer to the EFI System Table. @retval EFI_SUCCESS Successfully initialized. **/ EFI_STATUS EFIAPI FvbInitialize ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { EFI_STATUS Status; VOID *Ptr; VOID *SubPtr; BOOLEAN Initialize; EFI_HANDLE Handle; EFI_PHYSICAL_ADDRESS Address; RETURN_STATUS PcdStatus; DEBUG ((DEBUG_INFO, "EMU Variable FVB Started\n")); // // Verify that the PCD's are set correctly. // ASSERT ( FixedPcdGet32 (PcdFlashNvStorageFtwSpareSize) % EMU_FVB_BLOCK_SIZE == 0 ); if ( (PcdGet32 (PcdFlashNvStorageVariableSize) + PcdGet32 (PcdFlashNvStorageFtwWorkingSize) ) > EMU_FVB_NUM_SPARE_BLOCKS * EMU_FVB_BLOCK_SIZE ) { DEBUG ((DEBUG_ERROR, "EMU Variable invalid PCD sizes\n")); return EFI_INVALID_PARAMETER; } if (PcdGet64 (PcdFlashNvStorageVariableBase64) != 0) { DEBUG (( DEBUG_INFO, "Disabling EMU Variable FVB since " "flash variables appear to be supported.\n" )); return EFI_ABORTED; } // // By default we will initialize the FV contents. But, if // PcdEmuVariableNvStoreReserved is non-zero, then we will // use this location for our buffer. // // If this location does not have a proper FV header, then // we will initialize it. // Initialize = TRUE; if (PcdGet64 (PcdEmuVariableNvStoreReserved) != 0) { Ptr = (VOID *)(UINTN)PcdGet64 (PcdEmuVariableNvStoreReserved); DEBUG (( DEBUG_INFO, "EMU Variable FVB: Using pre-reserved block at %p\n", Ptr )); Status = ValidateFvHeader (Ptr); if (!EFI_ERROR (Status)) { DEBUG ((DEBUG_INFO, "EMU Variable FVB: Found valid pre-existing FV\n")); Initialize = FALSE; } } else { Ptr = AllocateRuntimePages (EFI_SIZE_TO_PAGES (EMU_FVB_SIZE)); } mEmuVarsFvb.BufferPtr = Ptr; // // Initialize the main FV header and variable store header // if (Initialize) { SetMem (Ptr, EMU_FVB_SIZE, ERASED_UINT8); InitializeFvAndVariableStoreHeaders (Ptr); } PcdStatus = PcdSet64S (PcdFlashNvStorageVariableBase64, (UINTN)Ptr); ASSERT_RETURN_ERROR (PcdStatus); // // Initialize the Fault Tolerant Write data area // SubPtr = (VOID *)((UINT8 *)Ptr + PcdGet32 (PcdFlashNvStorageVariableSize)); PcdStatus = PcdSet64S ( PcdFlashNvStorageFtwWorkingBase64, (UINTN)SubPtr ); ASSERT_RETURN_ERROR (PcdStatus); // // Initialize the Fault Tolerant Write spare block // SubPtr = (VOID *)((UINT8 *)Ptr + EMU_FVB_NUM_SPARE_BLOCKS * EMU_FVB_BLOCK_SIZE); PcdStatus = PcdSet64S ( PcdFlashNvStorageFtwSpareBase64, (UINTN)SubPtr ); ASSERT_RETURN_ERROR (PcdStatus); // // Setup FVB device path // Address = (EFI_PHYSICAL_ADDRESS)(UINTN)Ptr; mEmuVarsFvb.DevicePath.MemMapDevPath.StartingAddress = Address; mEmuVarsFvb.DevicePath.MemMapDevPath.EndingAddress = Address + EMU_FVB_SIZE - 1; // // Install the protocols // DEBUG ((DEBUG_INFO, "Installing FVB for EMU Variable support\n")); Handle = 0; Status = gBS->InstallMultipleProtocolInterfaces ( &Handle, &gEfiFirmwareVolumeBlock2ProtocolGuid, &mEmuVarsFvb.FwVolBlockInstance, &gEfiDevicePathProtocolGuid, &mEmuVarsFvb.DevicePath, NULL ); ASSERT_EFI_ERROR (Status); // // Register for the virtual address change event // Status = gBS->CreateEventEx ( EVT_NOTIFY_SIGNAL, TPL_NOTIFY, FvbVirtualAddressChangeEvent, NULL, &gEfiEventVirtualAddressChangeGuid, &mEmuVarsFvbAddrChangeEvent ); ASSERT_EFI_ERROR (Status); return EFI_SUCCESS; }