/** @file PEIM to produce gPeiUsb2HostControllerPpiGuid based on gPeiUsbControllerPpiGuid which is used to enable recovery function from USB Drivers. Copyright (c) 2014 - 2016, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "XhcPeim.h" /** Create a command transfer TRB to support XHCI command interfaces. @param Xhc The XHCI device. @param CmdTrb The cmd TRB to be executed. @return Created URB or NULL. **/ URB* XhcPeiCreateCmdTrb ( IN PEI_XHC_DEV *Xhc, IN TRB_TEMPLATE *CmdTrb ) { URB *Urb; Urb = AllocateZeroPool (sizeof (URB)); if (Urb == NULL) { return NULL; } Urb->Signature = XHC_URB_SIG; Urb->Ring = &Xhc->CmdRing; XhcPeiSyncTrsRing (Xhc, Urb->Ring); Urb->TrbNum = 1; Urb->TrbStart = Urb->Ring->RingEnqueue; CopyMem (Urb->TrbStart, CmdTrb, sizeof (TRB_TEMPLATE)); Urb->TrbStart->CycleBit = Urb->Ring->RingPCS & BIT0; Urb->TrbEnd = Urb->TrbStart; return Urb; } /** Execute a XHCI cmd TRB pointed by CmdTrb. @param Xhc The XHCI device. @param CmdTrb The cmd TRB to be executed. @param Timeout Indicates the maximum time, in millisecond, which the transfer is allowed to complete. @param EvtTrb The event TRB corresponding to the cmd TRB. @retval EFI_SUCCESS The transfer was completed successfully. @retval EFI_INVALID_PARAMETER Some parameters are invalid. @retval EFI_TIMEOUT The transfer failed due to timeout. @retval EFI_DEVICE_ERROR The transfer failed due to host controller error. **/ EFI_STATUS XhcPeiCmdTransfer ( IN PEI_XHC_DEV *Xhc, IN TRB_TEMPLATE *CmdTrb, IN UINTN Timeout, OUT TRB_TEMPLATE **EvtTrb ) { EFI_STATUS Status; URB *Urb; // // Validate the parameters // if ((Xhc == NULL) || (CmdTrb == NULL)) { return EFI_INVALID_PARAMETER; } Status = EFI_DEVICE_ERROR; if (XhcPeiIsHalt (Xhc) || XhcPeiIsSysError (Xhc)) { DEBUG ((EFI_D_ERROR, "XhcPeiCmdTransfer: HC is halted or has system error\n")); goto ON_EXIT; } // // Create a new URB, then poll the execution status. // Urb = XhcPeiCreateCmdTrb (Xhc, CmdTrb); if (Urb == NULL) { DEBUG ((EFI_D_ERROR, "XhcPeiCmdTransfer: failed to create URB\n")); Status = EFI_OUT_OF_RESOURCES; goto ON_EXIT; } Status = XhcPeiExecTransfer (Xhc, TRUE, Urb, Timeout); *EvtTrb = Urb->EvtTrb; if (Urb->Result == EFI_USB_NOERROR) { Status = EFI_SUCCESS; } XhcPeiFreeUrb (Xhc, Urb); ON_EXIT: return Status; } /** Create a new URB for a new transaction. @param Xhc The XHCI device @param BusAddr The logical device address assigned by UsbBus driver @param EpAddr Endpoint addrress @param DevSpeed The device speed @param MaxPacket The max packet length of the endpoint @param Type The transaction type @param Request The standard USB request for control transfer @param Data The user data to transfer @param DataLen The length of data buffer @param Callback The function to call when data is transferred @param Context The context to the callback @return Created URB or NULL **/ URB* XhcPeiCreateUrb ( IN PEI_XHC_DEV *Xhc, IN UINT8 BusAddr, IN UINT8 EpAddr, IN UINT8 DevSpeed, IN UINTN MaxPacket, IN UINTN Type, IN EFI_USB_DEVICE_REQUEST *Request, IN VOID *Data, IN UINTN DataLen, IN EFI_ASYNC_USB_TRANSFER_CALLBACK Callback, IN VOID *Context ) { USB_ENDPOINT *Ep; EFI_STATUS Status; URB *Urb; Urb = AllocateZeroPool (sizeof (URB)); if (Urb == NULL) { return NULL; } Urb->Signature = XHC_URB_SIG; Ep = &Urb->Ep; Ep->BusAddr = BusAddr; Ep->EpAddr = (UINT8) (EpAddr & 0x0F); Ep->Direction = ((EpAddr & 0x80) != 0) ? EfiUsbDataIn : EfiUsbDataOut; Ep->DevSpeed = DevSpeed; Ep->MaxPacket = MaxPacket; Ep->Type = Type; Urb->Request = Request; Urb->Data = Data; Urb->DataLen = DataLen; Urb->Callback = Callback; Urb->Context = Context; Status = XhcPeiCreateTransferTrb (Xhc, Urb); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "XhcPeiCreateUrb: XhcPeiCreateTransferTrb Failed, Status = %r\n", Status)); FreePool (Urb); Urb = NULL; } return Urb; } /** Free an allocated URB. @param Xhc The XHCI device. @param Urb The URB to free. **/ VOID XhcPeiFreeUrb ( IN PEI_XHC_DEV *Xhc, IN URB *Urb ) { if ((Xhc == NULL) || (Urb == NULL)) { return; } FreePool (Urb); } /** Create a transfer TRB. @param Xhc The XHCI device @param Urb The urb used to construct the transfer TRB. @return Created TRB or NULL **/ EFI_STATUS XhcPeiCreateTransferTrb ( IN PEI_XHC_DEV *Xhc, IN URB *Urb ) { VOID *OutputContext; TRANSFER_RING *EPRing; UINT8 EPType; UINT8 SlotId; UINT8 Dci; TRB *TrbStart; UINTN TotalLen; UINTN Len; UINTN TrbNum; SlotId = XhcPeiBusDevAddrToSlotId (Xhc, Urb->Ep.BusAddr); if (SlotId == 0) { return EFI_DEVICE_ERROR; } Urb->Finished = FALSE; Urb->StartDone = FALSE; Urb->EndDone = FALSE; Urb->Completed = 0; Urb->Result = EFI_USB_NOERROR; Dci = XhcPeiEndpointToDci (Urb->Ep.EpAddr, (UINT8)(Urb->Ep.Direction)); EPRing = (TRANSFER_RING *) (UINTN) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1]; Urb->Ring = EPRing; OutputContext = Xhc->UsbDevContext[SlotId].OutputContext; if (Xhc->HcCParams.Data.Csz == 0) { EPType = (UINT8) ((DEVICE_CONTEXT *)OutputContext)->EP[Dci-1].EPType; } else { EPType = (UINT8) ((DEVICE_CONTEXT_64 *)OutputContext)->EP[Dci-1].EPType; } Urb->DataPhy = Urb->Data; // // Construct the TRB // XhcPeiSyncTrsRing (Xhc, EPRing); Urb->TrbStart = EPRing->RingEnqueue; switch (EPType) { case ED_CONTROL_BIDIR: // // For control transfer, create SETUP_STAGE_TRB first. // TrbStart = (TRB *) (UINTN) EPRing->RingEnqueue; TrbStart->TrbCtrSetup.bmRequestType = Urb->Request->RequestType; TrbStart->TrbCtrSetup.bRequest = Urb->Request->Request; TrbStart->TrbCtrSetup.wValue = Urb->Request->Value; TrbStart->TrbCtrSetup.wIndex = Urb->Request->Index; TrbStart->TrbCtrSetup.wLength = Urb->Request->Length; TrbStart->TrbCtrSetup.Length = 8; TrbStart->TrbCtrSetup.IntTarget = 0; TrbStart->TrbCtrSetup.IOC = 1; TrbStart->TrbCtrSetup.IDT = 1; TrbStart->TrbCtrSetup.Type = TRB_TYPE_SETUP_STAGE; if (Urb->Ep.Direction == EfiUsbDataIn) { TrbStart->TrbCtrSetup.TRT = 3; } else if (Urb->Ep.Direction == EfiUsbDataOut) { TrbStart->TrbCtrSetup.TRT = 2; } else { TrbStart->TrbCtrSetup.TRT = 0; } // // Update the cycle bit // TrbStart->TrbCtrSetup.CycleBit = EPRing->RingPCS & BIT0; Urb->TrbNum++; // // For control transfer, create DATA_STAGE_TRB. // if (Urb->DataLen > 0) { XhcPeiSyncTrsRing (Xhc, EPRing); TrbStart = (TRB *) (UINTN) EPRing->RingEnqueue; TrbStart->TrbCtrData.TRBPtrLo = XHC_LOW_32BIT (Urb->DataPhy); TrbStart->TrbCtrData.TRBPtrHi = XHC_HIGH_32BIT (Urb->DataPhy); TrbStart->TrbCtrData.Length = (UINT32) Urb->DataLen; TrbStart->TrbCtrData.TDSize = 0; TrbStart->TrbCtrData.IntTarget = 0; TrbStart->TrbCtrData.ISP = 1; TrbStart->TrbCtrData.IOC = 1; TrbStart->TrbCtrData.IDT = 0; TrbStart->TrbCtrData.CH = 0; TrbStart->TrbCtrData.Type = TRB_TYPE_DATA_STAGE; if (Urb->Ep.Direction == EfiUsbDataIn) { TrbStart->TrbCtrData.DIR = 1; } else if (Urb->Ep.Direction == EfiUsbDataOut) { TrbStart->TrbCtrData.DIR = 0; } else { TrbStart->TrbCtrData.DIR = 0; } // // Update the cycle bit // TrbStart->TrbCtrData.CycleBit = EPRing->RingPCS & BIT0; Urb->TrbNum++; } // // For control transfer, create STATUS_STAGE_TRB. // Get the pointer to next TRB for status stage use // XhcPeiSyncTrsRing (Xhc, EPRing); TrbStart = (TRB *) (UINTN) EPRing->RingEnqueue; TrbStart->TrbCtrStatus.IntTarget = 0; TrbStart->TrbCtrStatus.IOC = 1; TrbStart->TrbCtrStatus.CH = 0; TrbStart->TrbCtrStatus.Type = TRB_TYPE_STATUS_STAGE; if (Urb->Ep.Direction == EfiUsbDataIn) { TrbStart->TrbCtrStatus.DIR = 0; } else if (Urb->Ep.Direction == EfiUsbDataOut) { TrbStart->TrbCtrStatus.DIR = 1; } else { TrbStart->TrbCtrStatus.DIR = 0; } // // Update the cycle bit // TrbStart->TrbCtrStatus.CycleBit = EPRing->RingPCS & BIT0; // // Update the enqueue pointer // XhcPeiSyncTrsRing (Xhc, EPRing); Urb->TrbNum++; Urb->TrbEnd = (TRB_TEMPLATE *) (UINTN) TrbStart; break; case ED_BULK_OUT: case ED_BULK_IN: TotalLen = 0; Len = 0; TrbNum = 0; TrbStart = (TRB *) (UINTN) EPRing->RingEnqueue; while (TotalLen < Urb->DataLen) { if ((TotalLen + 0x10000) >= Urb->DataLen) { Len = Urb->DataLen - TotalLen; } else { Len = 0x10000; } TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue; TrbStart->TrbNormal.TRBPtrLo = XHC_LOW_32BIT((UINT8 *) Urb->DataPhy + TotalLen); TrbStart->TrbNormal.TRBPtrHi = XHC_HIGH_32BIT((UINT8 *) Urb->DataPhy + TotalLen); TrbStart->TrbNormal.Length = (UINT32) Len; TrbStart->TrbNormal.TDSize = 0; TrbStart->TrbNormal.IntTarget = 0; TrbStart->TrbNormal.ISP = 1; TrbStart->TrbNormal.IOC = 1; TrbStart->TrbNormal.Type = TRB_TYPE_NORMAL; // // Update the cycle bit // TrbStart->TrbNormal.CycleBit = EPRing->RingPCS & BIT0; XhcPeiSyncTrsRing (Xhc, EPRing); TrbNum++; TotalLen += Len; } Urb->TrbNum = TrbNum; Urb->TrbEnd = (TRB_TEMPLATE *)(UINTN)TrbStart; break; case ED_INTERRUPT_OUT: case ED_INTERRUPT_IN: TotalLen = 0; Len = 0; TrbNum = 0; TrbStart = (TRB *) (UINTN) EPRing->RingEnqueue; while (TotalLen < Urb->DataLen) { if ((TotalLen + 0x10000) >= Urb->DataLen) { Len = Urb->DataLen - TotalLen; } else { Len = 0x10000; } TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue; TrbStart->TrbNormal.TRBPtrLo = XHC_LOW_32BIT((UINT8 *) Urb->DataPhy + TotalLen); TrbStart->TrbNormal.TRBPtrHi = XHC_HIGH_32BIT((UINT8 *) Urb->DataPhy + TotalLen); TrbStart->TrbNormal.Length = (UINT32) Len; TrbStart->TrbNormal.TDSize = 0; TrbStart->TrbNormal.IntTarget = 0; TrbStart->TrbNormal.ISP = 1; TrbStart->TrbNormal.IOC = 1; TrbStart->TrbNormal.Type = TRB_TYPE_NORMAL; // // Update the cycle bit // TrbStart->TrbNormal.CycleBit = EPRing->RingPCS & BIT0; XhcPeiSyncTrsRing (Xhc, EPRing); TrbNum++; TotalLen += Len; } Urb->TrbNum = TrbNum; Urb->TrbEnd = (TRB_TEMPLATE *)(UINTN)TrbStart; break; default: DEBUG ((EFI_D_INFO, "Not supported EPType 0x%x!\n",EPType)); ASSERT (FALSE); break; } return EFI_SUCCESS; } /** System software shall use a Reset Endpoint Command (section 4.11.4.7) to remove the Halted condition in the xHC. After the successful completion of the Reset Endpoint Command, the Endpoint Context is transitioned from the Halted to the Stopped state and the Transfer Ring of the endpoint is reenabled. The next write to the Doorbell of the Endpoint will transition the Endpoint Context from the Stopped to the Running state. @param Xhc The XHCI device. @param Urb The urb which makes the endpoint halted. @retval EFI_SUCCESS The recovery is successful. @retval Others Failed to recovery halted endpoint. **/ EFI_STATUS XhcPeiRecoverHaltedEndpoint ( IN PEI_XHC_DEV *Xhc, IN URB *Urb ) { EFI_STATUS Status; UINT8 Dci; UINT8 SlotId; Status = EFI_SUCCESS; SlotId = XhcPeiBusDevAddrToSlotId (Xhc, Urb->Ep.BusAddr); if (SlotId == 0) { return EFI_DEVICE_ERROR; } Dci = XhcPeiEndpointToDci (Urb->Ep.EpAddr, (UINT8) (Urb->Ep.Direction)); DEBUG ((EFI_D_INFO, "XhcPeiRecoverHaltedEndpoint: Recovery Halted Slot = %x, Dci = %x\n", SlotId, Dci)); // // 1) Send Reset endpoint command to transit from halt to stop state // Status = XhcPeiResetEndpoint (Xhc, SlotId, Dci); if (EFI_ERROR(Status)) { DEBUG ((EFI_D_ERROR, "XhcPeiRecoverHaltedEndpoint: Reset Endpoint Failed, Status = %r\n", Status)); goto Done; } // // 2) Set dequeue pointer // Status = XhcPeiSetTrDequeuePointer (Xhc, SlotId, Dci, Urb); if (EFI_ERROR(Status)) { DEBUG ((EFI_D_ERROR, "XhcPeiRecoverHaltedEndpoint: Set Dequeue Pointer Failed, Status = %r\n", Status)); goto Done; } // // 3) Ring the doorbell to transit from stop to active // XhcPeiRingDoorBell (Xhc, SlotId, Dci); Done: return Status; } /** System software shall use a Stop Endpoint Command (section 4.6.9) and the Set TR Dequeue Pointer Command (section 4.6.10) to remove the timed-out TDs from the xHC transfer ring. The next write to the Doorbell of the Endpoint will transition the Endpoint Context from the Stopped to the Running state. @param Xhc The XHCI device. @param Urb The urb which doesn't get completed in a specified timeout range. @retval EFI_SUCCESS The dequeuing of the TDs is successful. @retval Others Failed to stop the endpoint and dequeue the TDs. **/ EFI_STATUS XhcPeiDequeueTrbFromEndpoint ( IN PEI_XHC_DEV *Xhc, IN URB *Urb ) { EFI_STATUS Status; UINT8 Dci; UINT8 SlotId; Status = EFI_SUCCESS; SlotId = XhcPeiBusDevAddrToSlotId (Xhc, Urb->Ep.BusAddr); if (SlotId == 0) { return EFI_DEVICE_ERROR; } Dci = XhcPeiEndpointToDci (Urb->Ep.EpAddr, (UINT8) (Urb->Ep.Direction)); DEBUG ((EFI_D_INFO, "XhcPeiDequeueTrbFromEndpoint: Stop Slot = %x, Dci = %x\n", SlotId, Dci)); // // 1) Send Stop endpoint command to stop endpoint. // Status = XhcPeiStopEndpoint (Xhc, SlotId, Dci); if (EFI_ERROR(Status)) { DEBUG ((EFI_D_ERROR, "XhcPeiDequeueTrbFromEndpoint: Stop Endpoint Failed, Status = %r\n", Status)); goto Done; } // // 2) Set dequeue pointer // Status = XhcPeiSetTrDequeuePointer (Xhc, SlotId, Dci, Urb); if (EFI_ERROR(Status)) { DEBUG ((EFI_D_ERROR, "XhcPeiDequeueTrbFromEndpoint: Set Dequeue Pointer Failed, Status = %r\n", Status)); goto Done; } // // 3) Ring the doorbell to transit from stop to active // XhcPeiRingDoorBell (Xhc, SlotId, Dci); Done: return Status; } /** Check if the Trb is a transaction of the URB. @param Trb The TRB to be checked @param Urb The transfer ring to be checked. @retval TRUE It is a transaction of the URB. @retval FALSE It is not any transaction of the URB. **/ BOOLEAN XhcPeiIsTransferRingTrb ( IN TRB_TEMPLATE *Trb, IN URB *Urb ) { TRB_TEMPLATE *CheckedTrb; UINTN Index; CheckedTrb = Urb->Ring->RingSeg0; ASSERT (Urb->Ring->TrbNumber == CMD_RING_TRB_NUMBER || Urb->Ring->TrbNumber == TR_RING_TRB_NUMBER); for (Index = 0; Index < Urb->Ring->TrbNumber; Index++) { if (Trb == CheckedTrb) { return TRUE; } CheckedTrb++; } return FALSE; } /** Check the URB's execution result and update the URB's result accordingly. @param Xhc The XHCI device. @param Urb The URB to check result. @return Whether the result of URB transfer is finialized. **/ BOOLEAN XhcPeiCheckUrbResult ( IN PEI_XHC_DEV *Xhc, IN URB *Urb ) { EVT_TRB_TRANSFER *EvtTrb; TRB_TEMPLATE *TRBPtr; UINTN Index; UINT8 TRBType; EFI_STATUS Status; URB *CheckedUrb; UINT64 XhcDequeue; UINT32 High; UINT32 Low; EFI_PHYSICAL_ADDRESS PhyAddr; ASSERT ((Xhc != NULL) && (Urb != NULL)); Status = EFI_SUCCESS; if (Urb->Finished) { goto EXIT; } EvtTrb = NULL; if (XhcPeiIsHalt (Xhc) || XhcPeiIsSysError (Xhc)) { Urb->Result |= EFI_USB_ERR_SYSTEM; goto EXIT; } // // Traverse the event ring to find out all new events from the previous check. // XhcPeiSyncEventRing (Xhc, &Xhc->EventRing); for (Index = 0; Index < Xhc->EventRing.TrbNumber; Index++) { Status = XhcPeiCheckNewEvent (Xhc, &Xhc->EventRing, ((TRB_TEMPLATE **) &EvtTrb)); if (Status == EFI_NOT_READY) { // // All new events are handled, return directly. // goto EXIT; } // // Only handle COMMAND_COMPLETETION_EVENT and TRANSFER_EVENT. // if ((EvtTrb->Type != TRB_TYPE_COMMAND_COMPLT_EVENT) && (EvtTrb->Type != TRB_TYPE_TRANS_EVENT)) { continue; } // // Need convert pci device address to host address // PhyAddr = (EFI_PHYSICAL_ADDRESS) (EvtTrb->TRBPtrLo | LShiftU64 ((UINT64) EvtTrb->TRBPtrHi, 32)); TRBPtr = (TRB_TEMPLATE *) (UINTN) UsbHcGetHostAddrForPciAddr (Xhc->MemPool, (VOID *) (UINTN) PhyAddr, sizeof (TRB_TEMPLATE)); // // Update the status of Urb according to the finished event regardless of whether // the urb is current checked one or in the XHCI's async transfer list. // This way is used to avoid that those completed async transfer events don't get // handled in time and are flushed by newer coming events. // if (XhcPeiIsTransferRingTrb (TRBPtr, Urb)) { CheckedUrb = Urb; } else { continue; } switch (EvtTrb->Completecode) { case TRB_COMPLETION_STALL_ERROR: CheckedUrb->Result |= EFI_USB_ERR_STALL; CheckedUrb->Finished = TRUE; DEBUG ((EFI_D_ERROR, "XhcPeiCheckUrbResult: STALL_ERROR! Completecode = %x\n", EvtTrb->Completecode)); goto EXIT; case TRB_COMPLETION_BABBLE_ERROR: CheckedUrb->Result |= EFI_USB_ERR_BABBLE; CheckedUrb->Finished = TRUE; DEBUG ((EFI_D_ERROR, "XhcPeiCheckUrbResult: BABBLE_ERROR! Completecode = %x\n", EvtTrb->Completecode)); goto EXIT; case TRB_COMPLETION_DATA_BUFFER_ERROR: CheckedUrb->Result |= EFI_USB_ERR_BUFFER; CheckedUrb->Finished = TRUE; DEBUG ((EFI_D_ERROR, "XhcPeiCheckUrbResult: ERR_BUFFER! Completecode = %x\n", EvtTrb->Completecode)); goto EXIT; case TRB_COMPLETION_USB_TRANSACTION_ERROR: CheckedUrb->Result |= EFI_USB_ERR_TIMEOUT; CheckedUrb->Finished = TRUE; DEBUG ((EFI_D_ERROR, "XhcPeiCheckUrbResult: TRANSACTION_ERROR! Completecode = %x\n", EvtTrb->Completecode)); goto EXIT; case TRB_COMPLETION_SHORT_PACKET: case TRB_COMPLETION_SUCCESS: if (EvtTrb->Completecode == TRB_COMPLETION_SHORT_PACKET) { DEBUG ((EFI_D_VERBOSE, "XhcPeiCheckUrbResult: short packet happens!\n")); } TRBType = (UINT8) (TRBPtr->Type); if ((TRBType == TRB_TYPE_DATA_STAGE) || (TRBType == TRB_TYPE_NORMAL) || (TRBType == TRB_TYPE_ISOCH)) { CheckedUrb->Completed += (((TRANSFER_TRB_NORMAL*)TRBPtr)->Length - EvtTrb->Length); } break; default: DEBUG ((EFI_D_ERROR, "XhcPeiCheckUrbResult: Transfer Default Error Occur! Completecode = 0x%x!\n", EvtTrb->Completecode)); CheckedUrb->Result |= EFI_USB_ERR_TIMEOUT; CheckedUrb->Finished = TRUE; goto EXIT; } // // Only check first and end Trb event address // if (TRBPtr == CheckedUrb->TrbStart) { CheckedUrb->StartDone = TRUE; } if (TRBPtr == CheckedUrb->TrbEnd) { CheckedUrb->EndDone = TRUE; } if (CheckedUrb->StartDone && CheckedUrb->EndDone) { CheckedUrb->Finished = TRUE; CheckedUrb->EvtTrb = (TRB_TEMPLATE *) EvtTrb; } } EXIT: // // Advance event ring to last available entry // // Some 3rd party XHCI external cards don't support single 64-bytes width register access, // So divide it to two 32-bytes width register access. // Low = XhcPeiReadRuntimeReg (Xhc, XHC_ERDP_OFFSET); High = XhcPeiReadRuntimeReg (Xhc, XHC_ERDP_OFFSET + 4); XhcDequeue = (UINT64) (LShiftU64((UINT64) High, 32) | Low); PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Xhc->EventRing.EventRingDequeue, sizeof (TRB_TEMPLATE)); if ((XhcDequeue & (~0x0F)) != (PhyAddr & (~0x0F))) { // // Some 3rd party XHCI external cards don't support single 64-bytes width register access, // So divide it to two 32-bytes width register access. // XhcPeiWriteRuntimeReg (Xhc, XHC_ERDP_OFFSET, XHC_LOW_32BIT (PhyAddr) | BIT3); XhcPeiWriteRuntimeReg (Xhc, XHC_ERDP_OFFSET + 4, XHC_HIGH_32BIT (PhyAddr)); } return Urb->Finished; } /** Execute the transfer by polling the URB. This is a synchronous operation. @param Xhc The XHCI device. @param CmdTransfer The executed URB is for cmd transfer or not. @param Urb The URB to execute. @param Timeout The time to wait before abort, in millisecond. @return EFI_DEVICE_ERROR The transfer failed due to transfer error. @return EFI_TIMEOUT The transfer failed due to time out. @return EFI_SUCCESS The transfer finished OK. **/ EFI_STATUS XhcPeiExecTransfer ( IN PEI_XHC_DEV *Xhc, IN BOOLEAN CmdTransfer, IN URB *Urb, IN UINTN Timeout ) { EFI_STATUS Status; UINTN Index; UINT64 Loop; UINT8 SlotId; UINT8 Dci; BOOLEAN Finished; if (CmdTransfer) { SlotId = 0; Dci = 0; } else { SlotId = XhcPeiBusDevAddrToSlotId (Xhc, Urb->Ep.BusAddr); if (SlotId == 0) { return EFI_DEVICE_ERROR; } Dci = XhcPeiEndpointToDci (Urb->Ep.EpAddr, (UINT8)(Urb->Ep.Direction)); } Status = EFI_SUCCESS; Loop = Timeout * XHC_1_MILLISECOND; if (Timeout == 0) { Loop = 0xFFFFFFFF; } XhcPeiRingDoorBell (Xhc, SlotId, Dci); for (Index = 0; Index < Loop; Index++) { Finished = XhcPeiCheckUrbResult (Xhc, Urb); if (Finished) { break; } MicroSecondDelay (XHC_1_MICROSECOND); } if (Index == Loop) { Urb->Result = EFI_USB_ERR_TIMEOUT; Status = EFI_TIMEOUT; } else if (Urb->Result != EFI_USB_NOERROR) { Status = EFI_DEVICE_ERROR; } return Status; } /** Monitor the port status change. Enable/Disable device slot if there is a device attached/detached. @param Xhc The XHCI device. @param ParentRouteChart The route string pointed to the parent device if it exists. @param Port The port to be polled. @param PortState The port state. @retval EFI_SUCCESS Successfully enable/disable device slot according to port state. @retval Others Should not appear. **/ EFI_STATUS XhcPeiPollPortStatusChange ( IN PEI_XHC_DEV *Xhc, IN USB_DEV_ROUTE ParentRouteChart, IN UINT8 Port, IN EFI_USB_PORT_STATUS *PortState ) { EFI_STATUS Status; UINT8 Speed; UINT8 SlotId; USB_DEV_ROUTE RouteChart; DEBUG ((EFI_D_INFO, "XhcPeiPollPortStatusChange: PortChangeStatus: %x PortStatus: %x\n", PortState->PortChangeStatus, PortState->PortStatus)); Status = EFI_SUCCESS; if ((PortState->PortChangeStatus & (USB_PORT_STAT_C_CONNECTION | USB_PORT_STAT_C_ENABLE | USB_PORT_STAT_C_OVERCURRENT | USB_PORT_STAT_C_RESET)) == 0) { return EFI_SUCCESS; } if (ParentRouteChart.Dword == 0) { RouteChart.Route.RouteString = 0; RouteChart.Route.RootPortNum = Port + 1; RouteChart.Route.TierNum = 1; } else { if(Port < 14) { RouteChart.Route.RouteString = ParentRouteChart.Route.RouteString | (Port << (4 * (ParentRouteChart.Route.TierNum - 1))); } else { RouteChart.Route.RouteString = ParentRouteChart.Route.RouteString | (15 << (4 * (ParentRouteChart.Route.TierNum - 1))); } RouteChart.Route.RootPortNum = ParentRouteChart.Route.RootPortNum; RouteChart.Route.TierNum = ParentRouteChart.Route.TierNum + 1; } SlotId = XhcPeiRouteStringToSlotId (Xhc, RouteChart); if (SlotId != 0) { if (Xhc->HcCParams.Data.Csz == 0) { Status = XhcPeiDisableSlotCmd (Xhc, SlotId); } else { Status = XhcPeiDisableSlotCmd64 (Xhc, SlotId); } } if (((PortState->PortStatus & USB_PORT_STAT_ENABLE) != 0) && ((PortState->PortStatus & USB_PORT_STAT_CONNECTION) != 0)) { // // Has a device attached, Identify device speed after port is enabled. // Speed = EFI_USB_SPEED_FULL; if ((PortState->PortStatus & USB_PORT_STAT_LOW_SPEED) != 0) { Speed = EFI_USB_SPEED_LOW; } else if ((PortState->PortStatus & USB_PORT_STAT_HIGH_SPEED) != 0) { Speed = EFI_USB_SPEED_HIGH; } else if ((PortState->PortStatus & USB_PORT_STAT_SUPER_SPEED) != 0) { Speed = EFI_USB_SPEED_SUPER; } // // Execute Enable_Slot cmd for attached device, initialize device context and assign device address. // SlotId = XhcPeiRouteStringToSlotId (Xhc, RouteChart); if ((SlotId == 0) && ((PortState->PortChangeStatus & USB_PORT_STAT_C_RESET) != 0)) { if (Xhc->HcCParams.Data.Csz == 0) { Status = XhcPeiInitializeDeviceSlot (Xhc, ParentRouteChart, Port, RouteChart, Speed); } else { Status = XhcPeiInitializeDeviceSlot64 (Xhc, ParentRouteChart, Port, RouteChart, Speed); } } } return Status; } /** Calculate the device context index by endpoint address and direction. @param EpAddr The target endpoint number. @param Direction The direction of the target endpoint. @return The device context index of endpoint. **/ UINT8 XhcPeiEndpointToDci ( IN UINT8 EpAddr, IN EFI_USB_DATA_DIRECTION Direction ) { UINT8 Index; ASSERT (EpAddr <= 15); if (EpAddr == 0) { return 1; } else { Index = (UINT8) (2 * EpAddr); if (Direction == EfiUsbDataIn) { Index += 1; } return Index; } } /** Find out the actual device address according to the requested device address from UsbBus. @param Xhc The XHCI device. @param BusDevAddr The requested device address by UsbBus upper driver. @return The actual device address assigned to the device. **/ UINT8 XhcPeiBusDevAddrToSlotId ( IN PEI_XHC_DEV *Xhc, IN UINT8 BusDevAddr ) { UINT8 Index; for (Index = 0; Index < 255; Index++) { if (Xhc->UsbDevContext[Index + 1].Enabled && (Xhc->UsbDevContext[Index + 1].SlotId != 0) && (Xhc->UsbDevContext[Index + 1].BusDevAddr == BusDevAddr)) { break; } } if (Index == 255) { return 0; } return Xhc->UsbDevContext[Index + 1].SlotId; } /** Find out the slot id according to the device's route string. @param Xhc The XHCI device. @param RouteString The route string described the device location. @return The slot id used by the device. **/ UINT8 XhcPeiRouteStringToSlotId ( IN PEI_XHC_DEV *Xhc, IN USB_DEV_ROUTE RouteString ) { UINT8 Index; for (Index = 0; Index < 255; Index++) { if (Xhc->UsbDevContext[Index + 1].Enabled && (Xhc->UsbDevContext[Index + 1].SlotId != 0) && (Xhc->UsbDevContext[Index + 1].RouteString.Dword == RouteString.Dword)) { break; } } if (Index == 255) { return 0; } return Xhc->UsbDevContext[Index + 1].SlotId; } /** Ring the door bell to notify XHCI there is a transaction to be executed. @param Xhc The XHCI device. @param SlotId The slot id of the target device. @param Dci The device context index of the target slot or endpoint. **/ VOID XhcPeiRingDoorBell ( IN PEI_XHC_DEV *Xhc, IN UINT8 SlotId, IN UINT8 Dci ) { if (SlotId == 0) { XhcPeiWriteDoorBellReg (Xhc, 0, 0); } else { XhcPeiWriteDoorBellReg (Xhc, SlotId * sizeof (UINT32), Dci); } } /** Assign and initialize the device slot for a new device. @param Xhc The XHCI device. @param ParentRouteChart The route string pointed to the parent device. @param ParentPort The port at which the device is located. @param RouteChart The route string pointed to the device. @param DeviceSpeed The device speed. @retval EFI_SUCCESS Successfully assign a slot to the device and assign an address to it. @retval Others Fail to initialize device slot. **/ EFI_STATUS XhcPeiInitializeDeviceSlot ( IN PEI_XHC_DEV *Xhc, IN USB_DEV_ROUTE ParentRouteChart, IN UINT16 ParentPort, IN USB_DEV_ROUTE RouteChart, IN UINT8 DeviceSpeed ) { EFI_STATUS Status; EVT_TRB_COMMAND_COMPLETION *EvtTrb; INPUT_CONTEXT *InputContext; DEVICE_CONTEXT *OutputContext; TRANSFER_RING *EndpointTransferRing; CMD_TRB_ADDRESS_DEVICE CmdTrbAddr; UINT8 DeviceAddress; CMD_TRB_ENABLE_SLOT CmdTrb; UINT8 SlotId; UINT8 ParentSlotId; DEVICE_CONTEXT *ParentDeviceContext; EFI_PHYSICAL_ADDRESS PhyAddr; ZeroMem (&CmdTrb, sizeof (CMD_TRB_ENABLE_SLOT)); CmdTrb.CycleBit = 1; CmdTrb.Type = TRB_TYPE_EN_SLOT; Status = XhcPeiCmdTransfer ( Xhc, (TRB_TEMPLATE *) (UINTN) &CmdTrb, XHC_GENERIC_TIMEOUT, (TRB_TEMPLATE **) (UINTN) &EvtTrb ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "XhcPeiInitializeDeviceSlot: Enable Slot Failed, Status = %r\n", Status)); return Status; } ASSERT (EvtTrb->SlotId <= Xhc->MaxSlotsEn); DEBUG ((EFI_D_INFO, "XhcPeiInitializeDeviceSlot: Enable Slot Successfully, The Slot ID = 0x%x\n", EvtTrb->SlotId)); SlotId = (UINT8) EvtTrb->SlotId; ASSERT (SlotId != 0); ZeroMem (&Xhc->UsbDevContext[SlotId], sizeof (USB_DEV_CONTEXT)); Xhc->UsbDevContext[SlotId].Enabled = TRUE; Xhc->UsbDevContext[SlotId].SlotId = SlotId; Xhc->UsbDevContext[SlotId].RouteString.Dword = RouteChart.Dword; Xhc->UsbDevContext[SlotId].ParentRouteString.Dword = ParentRouteChart.Dword; // // 4.3.3 Device Slot Initialization // 1) Allocate an Input Context data structure (6.2.5) and initialize all fields to '0'. // InputContext = UsbHcAllocateMem (Xhc->MemPool, sizeof (INPUT_CONTEXT)); ASSERT (InputContext != NULL); ASSERT (((UINTN) InputContext & 0x3F) == 0); ZeroMem (InputContext, sizeof (INPUT_CONTEXT)); Xhc->UsbDevContext[SlotId].InputContext = (VOID *) InputContext; // // 2) Initialize the Input Control Context (6.2.5.1) of the Input Context by setting the A0 and A1 // flags to '1'. These flags indicate that the Slot Context and the Endpoint 0 Context of the Input // Context are affected by the command. // InputContext->InputControlContext.Dword2 |= (BIT0 | BIT1); // // 3) Initialize the Input Slot Context data structure // InputContext->Slot.RouteString = RouteChart.Route.RouteString; InputContext->Slot.Speed = DeviceSpeed + 1; InputContext->Slot.ContextEntries = 1; InputContext->Slot.RootHubPortNum = RouteChart.Route.RootPortNum; if (RouteChart.Route.RouteString != 0) { // // The device is behind of hub device. // ParentSlotId = XhcPeiRouteStringToSlotId (Xhc, ParentRouteChart); ASSERT (ParentSlotId != 0); // // If the Full/Low device attached to a High Speed Hub, init the TTPortNum and TTHubSlotId field of slot context // ParentDeviceContext = (DEVICE_CONTEXT *) Xhc->UsbDevContext[ParentSlotId].OutputContext; if ((ParentDeviceContext->Slot.TTPortNum == 0) && (ParentDeviceContext->Slot.TTHubSlotId == 0)) { if ((ParentDeviceContext->Slot.Speed == (EFI_USB_SPEED_HIGH + 1)) && (DeviceSpeed < EFI_USB_SPEED_HIGH)) { // // Full/Low device attached to High speed hub port that isolates the high speed signaling // environment from Full/Low speed signaling environment for a device // InputContext->Slot.TTPortNum = ParentPort; InputContext->Slot.TTHubSlotId = ParentSlotId; } } else { // // Inherit the TT parameters from parent device. // InputContext->Slot.TTPortNum = ParentDeviceContext->Slot.TTPortNum; InputContext->Slot.TTHubSlotId = ParentDeviceContext->Slot.TTHubSlotId; // // If the device is a High speed device then down the speed to be the same as its parent Hub // if (DeviceSpeed == EFI_USB_SPEED_HIGH) { InputContext->Slot.Speed = ParentDeviceContext->Slot.Speed; } } } // // 4) Allocate and initialize the Transfer Ring for the Default Control Endpoint. // EndpointTransferRing = AllocateZeroPool (sizeof (TRANSFER_RING)); Xhc->UsbDevContext[SlotId].EndpointTransferRing[0] = EndpointTransferRing; XhcPeiCreateTransferRing (Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *) Xhc->UsbDevContext[SlotId].EndpointTransferRing[0]); // // 5) Initialize the Input default control Endpoint 0 Context (6.2.3). // InputContext->EP[0].EPType = ED_CONTROL_BIDIR; if (DeviceSpeed == EFI_USB_SPEED_SUPER) { InputContext->EP[0].MaxPacketSize = 512; } else if (DeviceSpeed == EFI_USB_SPEED_HIGH) { InputContext->EP[0].MaxPacketSize = 64; } else { InputContext->EP[0].MaxPacketSize = 8; } // // Initial value of Average TRB Length for Control endpoints would be 8B, Interrupt endpoints // 1KB, and Bulk and Isoch endpoints 3KB. // InputContext->EP[0].AverageTRBLength = 8; InputContext->EP[0].MaxBurstSize = 0; InputContext->EP[0].Interval = 0; InputContext->EP[0].MaxPStreams = 0; InputContext->EP[0].Mult = 0; InputContext->EP[0].CErr = 3; // // Init the DCS(dequeue cycle state) as the transfer ring's CCS // PhyAddr = UsbHcGetPciAddrForHostAddr ( Xhc->MemPool, ((TRANSFER_RING *) (UINTN) Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0, sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER ); InputContext->EP[0].PtrLo = XHC_LOW_32BIT (PhyAddr) | BIT0; InputContext->EP[0].PtrHi = XHC_HIGH_32BIT (PhyAddr); // // 6) Allocate the Output Device Context data structure (6.2.1) and initialize it to '0'. // OutputContext = UsbHcAllocateMem (Xhc->MemPool, sizeof (DEVICE_CONTEXT)); ASSERT (OutputContext != NULL); ASSERT (((UINTN) OutputContext & 0x3F) == 0); ZeroMem (OutputContext, sizeof (DEVICE_CONTEXT)); Xhc->UsbDevContext[SlotId].OutputContext = OutputContext; // // 7) Load the appropriate (Device Slot ID) entry in the Device Context Base Address Array (5.4.6) with // a pointer to the Output Device Context data structure (6.2.1). // PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, OutputContext, sizeof (DEVICE_CONTEXT)); // // Fill DCBAA with PCI device address // Xhc->DCBAA[SlotId] = (UINT64) (UINTN) PhyAddr; // // 8) Issue an Address Device Command for the Device Slot, where the command points to the Input // Context data structure described above. // // Delay 10ms to meet TRSTRCY delay requirement in usb 2.0 spec chapter 7.1.7.5 before sending SetAddress() request // to device. // MicroSecondDelay (XHC_RESET_RECOVERY_DELAY); ZeroMem (&CmdTrbAddr, sizeof (CmdTrbAddr)); PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Xhc->UsbDevContext[SlotId].InputContext, sizeof (INPUT_CONTEXT)); CmdTrbAddr.PtrLo = XHC_LOW_32BIT (PhyAddr); CmdTrbAddr.PtrHi = XHC_HIGH_32BIT (PhyAddr); CmdTrbAddr.CycleBit = 1; CmdTrbAddr.Type = TRB_TYPE_ADDRESS_DEV; CmdTrbAddr.SlotId = Xhc->UsbDevContext[SlotId].SlotId; Status = XhcPeiCmdTransfer ( Xhc, (TRB_TEMPLATE *) (UINTN) &CmdTrbAddr, XHC_GENERIC_TIMEOUT, (TRB_TEMPLATE **) (UINTN) &EvtTrb ); if (!EFI_ERROR (Status)) { DeviceAddress = (UINT8) OutputContext->Slot.DeviceAddress; DEBUG ((EFI_D_INFO, "XhcPeiInitializeDeviceSlot: Address %d assigned successfully\n", DeviceAddress)); Xhc->UsbDevContext[SlotId].XhciDevAddr = DeviceAddress; } DEBUG ((EFI_D_INFO, "XhcPeiInitializeDeviceSlot: Enable Slot, Status = %r\n", Status)); return Status; } /** Assign and initialize the device slot for a new device. @param Xhc The XHCI device. @param ParentRouteChart The route string pointed to the parent device. @param ParentPort The port at which the device is located. @param RouteChart The route string pointed to the device. @param DeviceSpeed The device speed. @retval EFI_SUCCESS Successfully assign a slot to the device and assign an address to it. @retval Others Fail to initialize device slot. **/ EFI_STATUS XhcPeiInitializeDeviceSlot64 ( IN PEI_XHC_DEV *Xhc, IN USB_DEV_ROUTE ParentRouteChart, IN UINT16 ParentPort, IN USB_DEV_ROUTE RouteChart, IN UINT8 DeviceSpeed ) { EFI_STATUS Status; EVT_TRB_COMMAND_COMPLETION *EvtTrb; INPUT_CONTEXT_64 *InputContext; DEVICE_CONTEXT_64 *OutputContext; TRANSFER_RING *EndpointTransferRing; CMD_TRB_ADDRESS_DEVICE CmdTrbAddr; UINT8 DeviceAddress; CMD_TRB_ENABLE_SLOT CmdTrb; UINT8 SlotId; UINT8 ParentSlotId; DEVICE_CONTEXT_64 *ParentDeviceContext; EFI_PHYSICAL_ADDRESS PhyAddr; ZeroMem (&CmdTrb, sizeof (CMD_TRB_ENABLE_SLOT)); CmdTrb.CycleBit = 1; CmdTrb.Type = TRB_TYPE_EN_SLOT; Status = XhcPeiCmdTransfer ( Xhc, (TRB_TEMPLATE *) (UINTN) &CmdTrb, XHC_GENERIC_TIMEOUT, (TRB_TEMPLATE **) (UINTN) &EvtTrb ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "XhcPeiInitializeDeviceSlot64: Enable Slot Failed, Status = %r\n", Status)); return Status; } ASSERT (EvtTrb->SlotId <= Xhc->MaxSlotsEn); DEBUG ((EFI_D_INFO, "XhcPeiInitializeDeviceSlot64: Enable Slot Successfully, The Slot ID = 0x%x\n", EvtTrb->SlotId)); SlotId = (UINT8)EvtTrb->SlotId; ASSERT (SlotId != 0); ZeroMem (&Xhc->UsbDevContext[SlotId], sizeof (USB_DEV_CONTEXT)); Xhc->UsbDevContext[SlotId].Enabled = TRUE; Xhc->UsbDevContext[SlotId].SlotId = SlotId; Xhc->UsbDevContext[SlotId].RouteString.Dword = RouteChart.Dword; Xhc->UsbDevContext[SlotId].ParentRouteString.Dword = ParentRouteChart.Dword; // // 4.3.3 Device Slot Initialization // 1) Allocate an Input Context data structure (6.2.5) and initialize all fields to '0'. // InputContext = UsbHcAllocateMem (Xhc->MemPool, sizeof (INPUT_CONTEXT_64)); ASSERT (InputContext != NULL); ASSERT (((UINTN) InputContext & 0x3F) == 0); ZeroMem (InputContext, sizeof (INPUT_CONTEXT_64)); Xhc->UsbDevContext[SlotId].InputContext = (VOID *) InputContext; // // 2) Initialize the Input Control Context (6.2.5.1) of the Input Context by setting the A0 and A1 // flags to '1'. These flags indicate that the Slot Context and the Endpoint 0 Context of the Input // Context are affected by the command. // InputContext->InputControlContext.Dword2 |= (BIT0 | BIT1); // // 3) Initialize the Input Slot Context data structure // InputContext->Slot.RouteString = RouteChart.Route.RouteString; InputContext->Slot.Speed = DeviceSpeed + 1; InputContext->Slot.ContextEntries = 1; InputContext->Slot.RootHubPortNum = RouteChart.Route.RootPortNum; if (RouteChart.Route.RouteString != 0) { // // The device is behind of hub device. // ParentSlotId = XhcPeiRouteStringToSlotId (Xhc, ParentRouteChart); ASSERT (ParentSlotId != 0); // //if the Full/Low device attached to a High Speed Hub, Init the TTPortNum and TTHubSlotId field of slot context // ParentDeviceContext = (DEVICE_CONTEXT_64 *) Xhc->UsbDevContext[ParentSlotId].OutputContext; if ((ParentDeviceContext->Slot.TTPortNum == 0) && (ParentDeviceContext->Slot.TTHubSlotId == 0)) { if ((ParentDeviceContext->Slot.Speed == (EFI_USB_SPEED_HIGH + 1)) && (DeviceSpeed < EFI_USB_SPEED_HIGH)) { // // Full/Low device attached to High speed hub port that isolates the high speed signaling // environment from Full/Low speed signaling environment for a device // InputContext->Slot.TTPortNum = ParentPort; InputContext->Slot.TTHubSlotId = ParentSlotId; } } else { // // Inherit the TT parameters from parent device. // InputContext->Slot.TTPortNum = ParentDeviceContext->Slot.TTPortNum; InputContext->Slot.TTHubSlotId = ParentDeviceContext->Slot.TTHubSlotId; // // If the device is a High speed device then down the speed to be the same as its parent Hub // if (DeviceSpeed == EFI_USB_SPEED_HIGH) { InputContext->Slot.Speed = ParentDeviceContext->Slot.Speed; } } } // // 4) Allocate and initialize the Transfer Ring for the Default Control Endpoint. // EndpointTransferRing = AllocateZeroPool (sizeof (TRANSFER_RING)); Xhc->UsbDevContext[SlotId].EndpointTransferRing[0] = EndpointTransferRing; XhcPeiCreateTransferRing(Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *) Xhc->UsbDevContext[SlotId].EndpointTransferRing[0]); // // 5) Initialize the Input default control Endpoint 0 Context (6.2.3). // InputContext->EP[0].EPType = ED_CONTROL_BIDIR; if (DeviceSpeed == EFI_USB_SPEED_SUPER) { InputContext->EP[0].MaxPacketSize = 512; } else if (DeviceSpeed == EFI_USB_SPEED_HIGH) { InputContext->EP[0].MaxPacketSize = 64; } else { InputContext->EP[0].MaxPacketSize = 8; } // // Initial value of Average TRB Length for Control endpoints would be 8B, Interrupt endpoints // 1KB, and Bulk and Isoch endpoints 3KB. // InputContext->EP[0].AverageTRBLength = 8; InputContext->EP[0].MaxBurstSize = 0; InputContext->EP[0].Interval = 0; InputContext->EP[0].MaxPStreams = 0; InputContext->EP[0].Mult = 0; InputContext->EP[0].CErr = 3; // // Init the DCS(dequeue cycle state) as the transfer ring's CCS // PhyAddr = UsbHcGetPciAddrForHostAddr ( Xhc->MemPool, ((TRANSFER_RING *) (UINTN) Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0, sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER ); InputContext->EP[0].PtrLo = XHC_LOW_32BIT (PhyAddr) | BIT0; InputContext->EP[0].PtrHi = XHC_HIGH_32BIT (PhyAddr); // // 6) Allocate the Output Device Context data structure (6.2.1) and initialize it to '0'. // OutputContext = UsbHcAllocateMem (Xhc->MemPool, sizeof (DEVICE_CONTEXT_64)); ASSERT (OutputContext != NULL); ASSERT (((UINTN) OutputContext & 0x3F) == 0); ZeroMem (OutputContext, sizeof (DEVICE_CONTEXT_64)); Xhc->UsbDevContext[SlotId].OutputContext = OutputContext; // // 7) Load the appropriate (Device Slot ID) entry in the Device Context Base Address Array (5.4.6) with // a pointer to the Output Device Context data structure (6.2.1). // PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, OutputContext, sizeof (DEVICE_CONTEXT_64)); // // Fill DCBAA with PCI device address // Xhc->DCBAA[SlotId] = (UINT64) (UINTN) PhyAddr; // // 8) Issue an Address Device Command for the Device Slot, where the command points to the Input // Context data structure described above. // // Delay 10ms to meet TRSTRCY delay requirement in usb 2.0 spec chapter 7.1.7.5 before sending SetAddress() request // to device. // MicroSecondDelay (XHC_RESET_RECOVERY_DELAY); ZeroMem (&CmdTrbAddr, sizeof (CmdTrbAddr)); PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Xhc->UsbDevContext[SlotId].InputContext, sizeof (INPUT_CONTEXT_64)); CmdTrbAddr.PtrLo = XHC_LOW_32BIT (PhyAddr); CmdTrbAddr.PtrHi = XHC_HIGH_32BIT (PhyAddr); CmdTrbAddr.CycleBit = 1; CmdTrbAddr.Type = TRB_TYPE_ADDRESS_DEV; CmdTrbAddr.SlotId = Xhc->UsbDevContext[SlotId].SlotId; Status = XhcPeiCmdTransfer ( Xhc, (TRB_TEMPLATE *) (UINTN) &CmdTrbAddr, XHC_GENERIC_TIMEOUT, (TRB_TEMPLATE **) (UINTN) &EvtTrb ); if (!EFI_ERROR (Status)) { DeviceAddress = (UINT8) OutputContext->Slot.DeviceAddress; DEBUG ((EFI_D_INFO, "XhcPeiInitializeDeviceSlot64: Address %d assigned successfully\n", DeviceAddress)); Xhc->UsbDevContext[SlotId].XhciDevAddr = DeviceAddress; } DEBUG ((EFI_D_INFO, "XhcPeiInitializeDeviceSlot64: Enable Slot, Status = %r\n", Status)); return Status; } /** Disable the specified device slot. @param Xhc The XHCI device. @param SlotId The slot id to be disabled. @retval EFI_SUCCESS Successfully disable the device slot. **/ EFI_STATUS XhcPeiDisableSlotCmd ( IN PEI_XHC_DEV *Xhc, IN UINT8 SlotId ) { EFI_STATUS Status; TRB_TEMPLATE *EvtTrb; CMD_TRB_DISABLE_SLOT CmdTrbDisSlot; UINT8 Index; VOID *RingSeg; // // Disable the device slots occupied by these devices on its downstream ports. // Entry 0 is reserved. // for (Index = 0; Index < 255; Index++) { if (!Xhc->UsbDevContext[Index + 1].Enabled || (Xhc->UsbDevContext[Index + 1].SlotId == 0) || (Xhc->UsbDevContext[Index + 1].ParentRouteString.Dword != Xhc->UsbDevContext[SlotId].RouteString.Dword)) { continue; } Status = XhcPeiDisableSlotCmd (Xhc, Xhc->UsbDevContext[Index + 1].SlotId); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "XhcPeiDisableSlotCmd: failed to disable child, ignore error\n")); Xhc->UsbDevContext[Index + 1].SlotId = 0; } } // // Construct the disable slot command // DEBUG ((EFI_D_INFO, "XhcPeiDisableSlotCmd: Disable device slot %d!\n", SlotId)); ZeroMem (&CmdTrbDisSlot, sizeof (CmdTrbDisSlot)); CmdTrbDisSlot.CycleBit = 1; CmdTrbDisSlot.Type = TRB_TYPE_DIS_SLOT; CmdTrbDisSlot.SlotId = SlotId; Status = XhcPeiCmdTransfer ( Xhc, (TRB_TEMPLATE *) (UINTN) &CmdTrbDisSlot, XHC_GENERIC_TIMEOUT, (TRB_TEMPLATE **) (UINTN) &EvtTrb ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "XhcPeiDisableSlotCmd: Disable Slot Command Failed, Status = %r\n", Status)); return Status; } // // Free the slot's device context entry // Xhc->DCBAA[SlotId] = 0; // // Free the slot related data structure // for (Index = 0; Index < 31; Index++) { if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] != NULL) { RingSeg = ((TRANSFER_RING *) (UINTN) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index])->RingSeg0; if (RingSeg != NULL) { UsbHcFreeMem (Xhc->MemPool, RingSeg, sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER); } FreePool (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index]); Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] = NULL; } } for (Index = 0; Index < Xhc->UsbDevContext[SlotId].DevDesc.NumConfigurations; Index++) { if (Xhc->UsbDevContext[SlotId].ConfDesc[Index] != NULL) { FreePool (Xhc->UsbDevContext[SlotId].ConfDesc[Index]); } } if (Xhc->UsbDevContext[SlotId].InputContext != NULL) { UsbHcFreeMem (Xhc->MemPool, Xhc->UsbDevContext[SlotId].InputContext, sizeof (INPUT_CONTEXT)); } if (Xhc->UsbDevContext[SlotId].OutputContext != NULL) { UsbHcFreeMem (Xhc->MemPool, Xhc->UsbDevContext[SlotId].OutputContext, sizeof (DEVICE_CONTEXT)); } // // Doesn't zero the entry because XhcAsyncInterruptTransfer() may be invoked to remove the established // asynchronous interrupt pipe after the device is disabled. It needs the device address mapping info to // remove urb from XHCI's asynchronous transfer list. // Xhc->UsbDevContext[SlotId].Enabled = FALSE; Xhc->UsbDevContext[SlotId].SlotId = 0; DEBUG ((EFI_D_INFO, "XhcPeiDisableSlotCmd: Disable Slot Command, Status = %r\n", Status)); return Status; } /** Disable the specified device slot. @param Xhc The XHCI device. @param SlotId The slot id to be disabled. @retval EFI_SUCCESS Successfully disable the device slot. **/ EFI_STATUS XhcPeiDisableSlotCmd64 ( IN PEI_XHC_DEV *Xhc, IN UINT8 SlotId ) { EFI_STATUS Status; TRB_TEMPLATE *EvtTrb; CMD_TRB_DISABLE_SLOT CmdTrbDisSlot; UINT8 Index; VOID *RingSeg; // // Disable the device slots occupied by these devices on its downstream ports. // Entry 0 is reserved. // for (Index = 0; Index < 255; Index++) { if (!Xhc->UsbDevContext[Index + 1].Enabled || (Xhc->UsbDevContext[Index + 1].SlotId == 0) || (Xhc->UsbDevContext[Index + 1].ParentRouteString.Dword != Xhc->UsbDevContext[SlotId].RouteString.Dword)) { continue; } Status = XhcPeiDisableSlotCmd64 (Xhc, Xhc->UsbDevContext[Index + 1].SlotId); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "XhcPeiDisableSlotCmd64: failed to disable child, ignore error\n")); Xhc->UsbDevContext[Index + 1].SlotId = 0; } } // // Construct the disable slot command // DEBUG ((EFI_D_INFO, "XhcPeiDisableSlotCmd64: Disable device slot %d!\n", SlotId)); ZeroMem (&CmdTrbDisSlot, sizeof (CmdTrbDisSlot)); CmdTrbDisSlot.CycleBit = 1; CmdTrbDisSlot.Type = TRB_TYPE_DIS_SLOT; CmdTrbDisSlot.SlotId = SlotId; Status = XhcPeiCmdTransfer ( Xhc, (TRB_TEMPLATE *) (UINTN) &CmdTrbDisSlot, XHC_GENERIC_TIMEOUT, (TRB_TEMPLATE **) (UINTN) &EvtTrb ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "XhcPeiDisableSlotCmd64: Disable Slot Command Failed, Status = %r\n", Status)); return Status; } // // Free the slot's device context entry // Xhc->DCBAA[SlotId] = 0; // // Free the slot related data structure // for (Index = 0; Index < 31; Index++) { if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] != NULL) { RingSeg = ((TRANSFER_RING *) (UINTN) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index])->RingSeg0; if (RingSeg != NULL) { UsbHcFreeMem (Xhc->MemPool, RingSeg, sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER); } FreePool (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index]); Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] = NULL; } } for (Index = 0; Index < Xhc->UsbDevContext[SlotId].DevDesc.NumConfigurations; Index++) { if (Xhc->UsbDevContext[SlotId].ConfDesc[Index] != NULL) { FreePool (Xhc->UsbDevContext[SlotId].ConfDesc[Index]); } } if (Xhc->UsbDevContext[SlotId].InputContext != NULL) { UsbHcFreeMem (Xhc->MemPool, Xhc->UsbDevContext[SlotId].InputContext, sizeof (INPUT_CONTEXT_64)); } if (Xhc->UsbDevContext[SlotId].OutputContext != NULL) { UsbHcFreeMem (Xhc->MemPool, Xhc->UsbDevContext[SlotId].OutputContext, sizeof (DEVICE_CONTEXT_64)); } // // Doesn't zero the entry because XhcAsyncInterruptTransfer() may be invoked to remove the established // asynchronous interrupt pipe after the device is disabled. It needs the device address mapping info to // remove urb from XHCI's asynchronous transfer list. // Xhc->UsbDevContext[SlotId].Enabled = FALSE; Xhc->UsbDevContext[SlotId].SlotId = 0; DEBUG ((EFI_D_INFO, "XhcPeiDisableSlotCmd64: Disable Slot Command, Status = %r\n", Status)); return Status; } /** Configure all the device endpoints through XHCI's Configure_Endpoint cmd. @param Xhc The XHCI device. @param SlotId The slot id to be configured. @param DeviceSpeed The device's speed. @param ConfigDesc The pointer to the usb device configuration descriptor. @retval EFI_SUCCESS Successfully configure all the device endpoints. **/ EFI_STATUS XhcPeiSetConfigCmd ( IN PEI_XHC_DEV *Xhc, IN UINT8 SlotId, IN UINT8 DeviceSpeed, IN USB_CONFIG_DESCRIPTOR *ConfigDesc ) { EFI_STATUS Status; USB_INTERFACE_DESCRIPTOR *IfDesc; USB_ENDPOINT_DESCRIPTOR *EpDesc; UINT8 Index; UINTN NumEp; UINTN EpIndex; UINT8 EpAddr; EFI_USB_DATA_DIRECTION Direction; UINT8 Dci; UINT8 MaxDci; EFI_PHYSICAL_ADDRESS PhyAddr; UINT8 Interval; TRANSFER_RING *EndpointTransferRing; CMD_TRB_CONFIG_ENDPOINT CmdTrbCfgEP; INPUT_CONTEXT *InputContext; DEVICE_CONTEXT *OutputContext; EVT_TRB_COMMAND_COMPLETION *EvtTrb; // // 4.6.6 Configure Endpoint // InputContext = Xhc->UsbDevContext[SlotId].InputContext; OutputContext = Xhc->UsbDevContext[SlotId].OutputContext; ZeroMem (InputContext, sizeof (INPUT_CONTEXT)); CopyMem (&InputContext->Slot, &OutputContext->Slot, sizeof (SLOT_CONTEXT)); ASSERT (ConfigDesc != NULL); MaxDci = 0; IfDesc = (USB_INTERFACE_DESCRIPTOR *) (ConfigDesc + 1); for (Index = 0; Index < ConfigDesc->NumInterfaces; Index++) { while ((IfDesc->DescriptorType != USB_DESC_TYPE_INTERFACE) || (IfDesc->AlternateSetting != 0)) { IfDesc = (USB_INTERFACE_DESCRIPTOR *) ((UINTN) IfDesc + IfDesc->Length); } NumEp = IfDesc->NumEndpoints; EpDesc = (USB_ENDPOINT_DESCRIPTOR *) (IfDesc + 1); for (EpIndex = 0; EpIndex < NumEp; EpIndex++) { while (EpDesc->DescriptorType != USB_DESC_TYPE_ENDPOINT) { EpDesc = (USB_ENDPOINT_DESCRIPTOR *) ((UINTN) EpDesc + EpDesc->Length); } EpAddr = (UINT8) (EpDesc->EndpointAddress & 0x0F); Direction = (UINT8) ((EpDesc->EndpointAddress & 0x80) ? EfiUsbDataIn : EfiUsbDataOut); Dci = XhcPeiEndpointToDci (EpAddr, Direction); if (Dci > MaxDci) { MaxDci = Dci; } InputContext->InputControlContext.Dword2 |= (BIT0 << Dci); InputContext->EP[Dci-1].MaxPacketSize = EpDesc->MaxPacketSize; if (DeviceSpeed == EFI_USB_SPEED_SUPER) { // // 6.2.3.4, shall be set to the value defined in the bMaxBurst field of the SuperSpeed Endpoint Companion Descriptor. // InputContext->EP[Dci-1].MaxBurstSize = 0x0; } else { InputContext->EP[Dci-1].MaxBurstSize = 0x0; } switch (EpDesc->Attributes & USB_ENDPOINT_TYPE_MASK) { case USB_ENDPOINT_BULK: if (Direction == EfiUsbDataIn) { InputContext->EP[Dci-1].CErr = 3; InputContext->EP[Dci-1].EPType = ED_BULK_IN; } else { InputContext->EP[Dci-1].CErr = 3; InputContext->EP[Dci-1].EPType = ED_BULK_OUT; } InputContext->EP[Dci-1].AverageTRBLength = 0x1000; if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] == NULL) { EndpointTransferRing = AllocateZeroPool (sizeof (TRANSFER_RING)); Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] = (VOID *) EndpointTransferRing; XhcPeiCreateTransferRing (Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1]); } break; case USB_ENDPOINT_ISO: if (Direction == EfiUsbDataIn) { InputContext->EP[Dci-1].CErr = 0; InputContext->EP[Dci-1].EPType = ED_ISOCH_IN; } else { InputContext->EP[Dci-1].CErr = 0; InputContext->EP[Dci-1].EPType = ED_ISOCH_OUT; } // // Do not support isochronous transfer now. // DEBUG ((EFI_D_INFO, "XhcPeiSetConfigCmd: Unsupport ISO EP found, Transfer ring is not allocated.\n")); EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length); continue; case USB_ENDPOINT_INTERRUPT: if (Direction == EfiUsbDataIn) { InputContext->EP[Dci-1].CErr = 3; InputContext->EP[Dci-1].EPType = ED_INTERRUPT_IN; } else { InputContext->EP[Dci-1].CErr = 3; InputContext->EP[Dci-1].EPType = ED_INTERRUPT_OUT; } InputContext->EP[Dci-1].AverageTRBLength = 0x1000; InputContext->EP[Dci-1].MaxESITPayload = EpDesc->MaxPacketSize; // // Get the bInterval from descriptor and init the interval field of endpoint context // if ((DeviceSpeed == EFI_USB_SPEED_FULL) || (DeviceSpeed == EFI_USB_SPEED_LOW)) { Interval = EpDesc->Interval; // // Calculate through the bInterval field of Endpoint descriptor. // ASSERT (Interval != 0); InputContext->EP[Dci-1].Interval = (UINT32) HighBitSet32 ((UINT32) Interval) + 3; } else if ((DeviceSpeed == EFI_USB_SPEED_HIGH) || (DeviceSpeed == EFI_USB_SPEED_SUPER)) { Interval = EpDesc->Interval; ASSERT (Interval >= 1 && Interval <= 16); // // Refer to XHCI 1.0 spec section 6.2.3.6, table 61 // InputContext->EP[Dci-1].Interval = Interval - 1; } if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] == NULL) { EndpointTransferRing = AllocateZeroPool (sizeof (TRANSFER_RING)); Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] = (VOID *) EndpointTransferRing; XhcPeiCreateTransferRing (Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1]); } break; case USB_ENDPOINT_CONTROL: // // Do not support control transfer now. // DEBUG ((EFI_D_INFO, "XhcPeiSetConfigCmd: Unsupport Control EP found, Transfer ring is not allocated.\n")); default: DEBUG ((EFI_D_INFO, "XhcPeiSetConfigCmd: Unknown EP found, Transfer ring is not allocated.\n")); EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length); continue; } PhyAddr = UsbHcGetPciAddrForHostAddr ( Xhc->MemPool, ((TRANSFER_RING *) (UINTN) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0, sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER ); PhyAddr &= ~((EFI_PHYSICAL_ADDRESS)0x0F); PhyAddr |= (EFI_PHYSICAL_ADDRESS)((TRANSFER_RING *) (UINTN) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingPCS; InputContext->EP[Dci-1].PtrLo = XHC_LOW_32BIT (PhyAddr); InputContext->EP[Dci-1].PtrHi = XHC_HIGH_32BIT (PhyAddr); EpDesc = (USB_ENDPOINT_DESCRIPTOR *) ((UINTN) EpDesc + EpDesc->Length); } IfDesc = (USB_INTERFACE_DESCRIPTOR *) ((UINTN) IfDesc + IfDesc->Length); } InputContext->InputControlContext.Dword2 |= BIT0; InputContext->Slot.ContextEntries = MaxDci; // // configure endpoint // ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP)); PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT)); CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr); CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr); CmdTrbCfgEP.CycleBit = 1; CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT; CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId; DEBUG ((EFI_D_INFO, "XhcSetConfigCmd: Configure Endpoint\n")); Status = XhcPeiCmdTransfer ( Xhc, (TRB_TEMPLATE *) (UINTN) &CmdTrbCfgEP, XHC_GENERIC_TIMEOUT, (TRB_TEMPLATE **) (UINTN) &EvtTrb ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "XhcSetConfigCmd: Config Endpoint Failed, Status = %r\n", Status)); } return Status; } /** Configure all the device endpoints through XHCI's Configure_Endpoint cmd. @param Xhc The XHCI device. @param SlotId The slot id to be configured. @param DeviceSpeed The device's speed. @param ConfigDesc The pointer to the usb device configuration descriptor. @retval EFI_SUCCESS Successfully configure all the device endpoints. **/ EFI_STATUS XhcPeiSetConfigCmd64 ( IN PEI_XHC_DEV *Xhc, IN UINT8 SlotId, IN UINT8 DeviceSpeed, IN USB_CONFIG_DESCRIPTOR *ConfigDesc ) { EFI_STATUS Status; USB_INTERFACE_DESCRIPTOR *IfDesc; USB_ENDPOINT_DESCRIPTOR *EpDesc; UINT8 Index; UINTN NumEp; UINTN EpIndex; UINT8 EpAddr; EFI_USB_DATA_DIRECTION Direction; UINT8 Dci; UINT8 MaxDci; EFI_PHYSICAL_ADDRESS PhyAddr; UINT8 Interval; TRANSFER_RING *EndpointTransferRing; CMD_TRB_CONFIG_ENDPOINT CmdTrbCfgEP; INPUT_CONTEXT_64 *InputContext; DEVICE_CONTEXT_64 *OutputContext; EVT_TRB_COMMAND_COMPLETION *EvtTrb; // // 4.6.6 Configure Endpoint // InputContext = Xhc->UsbDevContext[SlotId].InputContext; OutputContext = Xhc->UsbDevContext[SlotId].OutputContext; ZeroMem (InputContext, sizeof (INPUT_CONTEXT_64)); CopyMem (&InputContext->Slot, &OutputContext->Slot, sizeof (SLOT_CONTEXT_64)); ASSERT (ConfigDesc != NULL); MaxDci = 0; IfDesc = (USB_INTERFACE_DESCRIPTOR *) (ConfigDesc + 1); for (Index = 0; Index < ConfigDesc->NumInterfaces; Index++) { while ((IfDesc->DescriptorType != USB_DESC_TYPE_INTERFACE) || (IfDesc->AlternateSetting != 0)) { IfDesc = (USB_INTERFACE_DESCRIPTOR *) ((UINTN) IfDesc + IfDesc->Length); } NumEp = IfDesc->NumEndpoints; EpDesc = (USB_ENDPOINT_DESCRIPTOR *) (IfDesc + 1); for (EpIndex = 0; EpIndex < NumEp; EpIndex++) { while (EpDesc->DescriptorType != USB_DESC_TYPE_ENDPOINT) { EpDesc = (USB_ENDPOINT_DESCRIPTOR *) ((UINTN) EpDesc + EpDesc->Length); } EpAddr = (UINT8) (EpDesc->EndpointAddress & 0x0F); Direction = (UINT8) ((EpDesc->EndpointAddress & 0x80) ? EfiUsbDataIn : EfiUsbDataOut); Dci = XhcPeiEndpointToDci (EpAddr, Direction); ASSERT (Dci < 32); if (Dci > MaxDci) { MaxDci = Dci; } InputContext->InputControlContext.Dword2 |= (BIT0 << Dci); InputContext->EP[Dci-1].MaxPacketSize = EpDesc->MaxPacketSize; if (DeviceSpeed == EFI_USB_SPEED_SUPER) { // // 6.2.3.4, shall be set to the value defined in the bMaxBurst field of the SuperSpeed Endpoint Companion Descriptor. // InputContext->EP[Dci-1].MaxBurstSize = 0x0; } else { InputContext->EP[Dci-1].MaxBurstSize = 0x0; } switch (EpDesc->Attributes & USB_ENDPOINT_TYPE_MASK) { case USB_ENDPOINT_BULK: if (Direction == EfiUsbDataIn) { InputContext->EP[Dci-1].CErr = 3; InputContext->EP[Dci-1].EPType = ED_BULK_IN; } else { InputContext->EP[Dci-1].CErr = 3; InputContext->EP[Dci-1].EPType = ED_BULK_OUT; } InputContext->EP[Dci-1].AverageTRBLength = 0x1000; if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] == NULL) { EndpointTransferRing = AllocateZeroPool (sizeof (TRANSFER_RING)); Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] = (VOID *) EndpointTransferRing; XhcPeiCreateTransferRing (Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1]); } break; case USB_ENDPOINT_ISO: if (Direction == EfiUsbDataIn) { InputContext->EP[Dci-1].CErr = 0; InputContext->EP[Dci-1].EPType = ED_ISOCH_IN; } else { InputContext->EP[Dci-1].CErr = 0; InputContext->EP[Dci-1].EPType = ED_ISOCH_OUT; } // // Do not support isochronous transfer now. // DEBUG ((EFI_D_INFO, "XhcPeiSetConfigCmd64: Unsupport ISO EP found, Transfer ring is not allocated.\n")); EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length); continue; case USB_ENDPOINT_INTERRUPT: if (Direction == EfiUsbDataIn) { InputContext->EP[Dci-1].CErr = 3; InputContext->EP[Dci-1].EPType = ED_INTERRUPT_IN; } else { InputContext->EP[Dci-1].CErr = 3; InputContext->EP[Dci-1].EPType = ED_INTERRUPT_OUT; } InputContext->EP[Dci-1].AverageTRBLength = 0x1000; InputContext->EP[Dci-1].MaxESITPayload = EpDesc->MaxPacketSize; // // Get the bInterval from descriptor and init the the interval field of endpoint context // if ((DeviceSpeed == EFI_USB_SPEED_FULL) || (DeviceSpeed == EFI_USB_SPEED_LOW)) { Interval = EpDesc->Interval; // // Calculate through the bInterval field of Endpoint descriptor. // ASSERT (Interval != 0); InputContext->EP[Dci-1].Interval = (UINT32) HighBitSet32( (UINT32) Interval) + 3; } else if ((DeviceSpeed == EFI_USB_SPEED_HIGH) || (DeviceSpeed == EFI_USB_SPEED_SUPER)) { Interval = EpDesc->Interval; ASSERT (Interval >= 1 && Interval <= 16); // // Refer to XHCI 1.0 spec section 6.2.3.6, table 61 // InputContext->EP[Dci-1].Interval = Interval - 1; } if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] == NULL) { EndpointTransferRing = AllocateZeroPool (sizeof (TRANSFER_RING)); Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1] = (VOID *) EndpointTransferRing; XhcPeiCreateTransferRing (Xhc, TR_RING_TRB_NUMBER, (TRANSFER_RING *) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1]); } break; case USB_ENDPOINT_CONTROL: // // Do not support control transfer now. // DEBUG ((EFI_D_INFO, "XhcPeiSetConfigCmd64: Unsupport Control EP found, Transfer ring is not allocated.\n")); default: DEBUG ((EFI_D_INFO, "XhcPeiSetConfigCmd64: Unknown EP found, Transfer ring is not allocated.\n")); EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length); continue; } PhyAddr = UsbHcGetPciAddrForHostAddr ( Xhc->MemPool, ((TRANSFER_RING *) (UINTN) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0, sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER ); PhyAddr &= ~((EFI_PHYSICAL_ADDRESS)0x0F); PhyAddr |= (EFI_PHYSICAL_ADDRESS)((TRANSFER_RING *) (UINTN) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingPCS; InputContext->EP[Dci-1].PtrLo = XHC_LOW_32BIT (PhyAddr); InputContext->EP[Dci-1].PtrHi = XHC_HIGH_32BIT (PhyAddr); EpDesc = (USB_ENDPOINT_DESCRIPTOR *) ((UINTN)EpDesc + EpDesc->Length); } IfDesc = (USB_INTERFACE_DESCRIPTOR *) ((UINTN)IfDesc + IfDesc->Length); } InputContext->InputControlContext.Dword2 |= BIT0; InputContext->Slot.ContextEntries = MaxDci; // // configure endpoint // ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP)); PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT_64)); CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr); CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr); CmdTrbCfgEP.CycleBit = 1; CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT; CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId; DEBUG ((EFI_D_INFO, "XhcSetConfigCmd64: Configure Endpoint\n")); Status = XhcPeiCmdTransfer ( Xhc, (TRB_TEMPLATE *) (UINTN) &CmdTrbCfgEP, XHC_GENERIC_TIMEOUT, (TRB_TEMPLATE **) (UINTN) &EvtTrb ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "XhcSetConfigCmd64: Config Endpoint Failed, Status = %r\n", Status)); } return Status; } /** Evaluate the endpoint 0 context through XHCI's Evaluate_Context cmd. @param Xhc The XHCI device. @param SlotId The slot id to be evaluated. @param MaxPacketSize The max packet size supported by the device control transfer. @retval EFI_SUCCESS Successfully evaluate the device endpoint 0. **/ EFI_STATUS XhcPeiEvaluateContext ( IN PEI_XHC_DEV *Xhc, IN UINT8 SlotId, IN UINT32 MaxPacketSize ) { EFI_STATUS Status; CMD_TRB_EVALUATE_CONTEXT CmdTrbEvalu; EVT_TRB_COMMAND_COMPLETION *EvtTrb; INPUT_CONTEXT *InputContext; EFI_PHYSICAL_ADDRESS PhyAddr; ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0); // // 4.6.7 Evaluate Context // InputContext = Xhc->UsbDevContext[SlotId].InputContext; ZeroMem (InputContext, sizeof (INPUT_CONTEXT)); InputContext->InputControlContext.Dword2 |= BIT1; InputContext->EP[0].MaxPacketSize = MaxPacketSize; ZeroMem (&CmdTrbEvalu, sizeof (CmdTrbEvalu)); PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT)); CmdTrbEvalu.PtrLo = XHC_LOW_32BIT (PhyAddr); CmdTrbEvalu.PtrHi = XHC_HIGH_32BIT (PhyAddr); CmdTrbEvalu.CycleBit = 1; CmdTrbEvalu.Type = TRB_TYPE_EVALU_CONTXT; CmdTrbEvalu.SlotId = Xhc->UsbDevContext[SlotId].SlotId; DEBUG ((EFI_D_INFO, "XhcEvaluateContext: Evaluate context\n")); Status = XhcPeiCmdTransfer ( Xhc, (TRB_TEMPLATE *) (UINTN) &CmdTrbEvalu, XHC_GENERIC_TIMEOUT, (TRB_TEMPLATE **) (UINTN) &EvtTrb ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "XhcEvaluateContext: Evaluate Context Failed, Status = %r\n", Status)); } return Status; } /** Evaluate the endpoint 0 context through XHCI's Evaluate_Context cmd. @param Xhc The XHCI device. @param SlotId The slot id to be evaluated. @param MaxPacketSize The max packet size supported by the device control transfer. @retval EFI_SUCCESS Successfully evaluate the device endpoint 0. **/ EFI_STATUS XhcPeiEvaluateContext64 ( IN PEI_XHC_DEV *Xhc, IN UINT8 SlotId, IN UINT32 MaxPacketSize ) { EFI_STATUS Status; CMD_TRB_EVALUATE_CONTEXT CmdTrbEvalu; EVT_TRB_COMMAND_COMPLETION *EvtTrb; INPUT_CONTEXT_64 *InputContext; EFI_PHYSICAL_ADDRESS PhyAddr; ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0); // // 4.6.7 Evaluate Context // InputContext = Xhc->UsbDevContext[SlotId].InputContext; ZeroMem (InputContext, sizeof (INPUT_CONTEXT_64)); InputContext->InputControlContext.Dword2 |= BIT1; InputContext->EP[0].MaxPacketSize = MaxPacketSize; ZeroMem (&CmdTrbEvalu, sizeof (CmdTrbEvalu)); PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT_64)); CmdTrbEvalu.PtrLo = XHC_LOW_32BIT (PhyAddr); CmdTrbEvalu.PtrHi = XHC_HIGH_32BIT (PhyAddr); CmdTrbEvalu.CycleBit = 1; CmdTrbEvalu.Type = TRB_TYPE_EVALU_CONTXT; CmdTrbEvalu.SlotId = Xhc->UsbDevContext[SlotId].SlotId; DEBUG ((EFI_D_INFO, "XhcEvaluateContext64: Evaluate context 64\n")); Status = XhcPeiCmdTransfer ( Xhc, (TRB_TEMPLATE *) (UINTN) &CmdTrbEvalu, XHC_GENERIC_TIMEOUT, (TRB_TEMPLATE **) (UINTN) &EvtTrb ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "XhcEvaluateContext64: Evaluate Context Failed, Status = %r\n", Status)); } return Status; } /** Evaluate the slot context for hub device through XHCI's Configure_Endpoint cmd. @param Xhc The XHCI device. @param SlotId The slot id to be configured. @param PortNum The total number of downstream port supported by the hub. @param TTT The TT think time of the hub device. @param MTT The multi-TT of the hub device. @retval EFI_SUCCESS Successfully configure the hub device's slot context. **/ EFI_STATUS XhcPeiConfigHubContext ( IN PEI_XHC_DEV *Xhc, IN UINT8 SlotId, IN UINT8 PortNum, IN UINT8 TTT, IN UINT8 MTT ) { EFI_STATUS Status; EVT_TRB_COMMAND_COMPLETION *EvtTrb; INPUT_CONTEXT *InputContext; DEVICE_CONTEXT *OutputContext; CMD_TRB_CONFIG_ENDPOINT CmdTrbCfgEP; EFI_PHYSICAL_ADDRESS PhyAddr; ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0); InputContext = Xhc->UsbDevContext[SlotId].InputContext; OutputContext = Xhc->UsbDevContext[SlotId].OutputContext; // // 4.6.7 Evaluate Context // ZeroMem (InputContext, sizeof (INPUT_CONTEXT)); InputContext->InputControlContext.Dword2 |= BIT0; // // Copy the slot context from OutputContext to Input context // CopyMem(&(InputContext->Slot), &(OutputContext->Slot), sizeof (SLOT_CONTEXT)); InputContext->Slot.Hub = 1; InputContext->Slot.PortNum = PortNum; InputContext->Slot.TTT = TTT; InputContext->Slot.MTT = MTT; ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP)); PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT)); CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr); CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr); CmdTrbCfgEP.CycleBit = 1; CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT; CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId; DEBUG ((EFI_D_INFO, "Configure Hub Slot Context\n")); Status = XhcPeiCmdTransfer ( Xhc, (TRB_TEMPLATE *) (UINTN) &CmdTrbCfgEP, XHC_GENERIC_TIMEOUT, (TRB_TEMPLATE **) (UINTN) &EvtTrb ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "XhcConfigHubContext: Config Endpoint Failed, Status = %r\n", Status)); } return Status; } /** Evaluate the slot context for hub device through XHCI's Configure_Endpoint cmd. @param Xhc The XHCI device. @param SlotId The slot id to be configured. @param PortNum The total number of downstream port supported by the hub. @param TTT The TT think time of the hub device. @param MTT The multi-TT of the hub device. @retval EFI_SUCCESS Successfully configure the hub device's slot context. **/ EFI_STATUS XhcPeiConfigHubContext64 ( IN PEI_XHC_DEV *Xhc, IN UINT8 SlotId, IN UINT8 PortNum, IN UINT8 TTT, IN UINT8 MTT ) { EFI_STATUS Status; EVT_TRB_COMMAND_COMPLETION *EvtTrb; INPUT_CONTEXT_64 *InputContext; DEVICE_CONTEXT_64 *OutputContext; CMD_TRB_CONFIG_ENDPOINT CmdTrbCfgEP; EFI_PHYSICAL_ADDRESS PhyAddr; ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0); InputContext = Xhc->UsbDevContext[SlotId].InputContext; OutputContext = Xhc->UsbDevContext[SlotId].OutputContext; // // 4.6.7 Evaluate Context // ZeroMem (InputContext, sizeof (INPUT_CONTEXT_64)); InputContext->InputControlContext.Dword2 |= BIT0; // // Copy the slot context from OutputContext to Input context // CopyMem(&(InputContext->Slot), &(OutputContext->Slot), sizeof (SLOT_CONTEXT_64)); InputContext->Slot.Hub = 1; InputContext->Slot.PortNum = PortNum; InputContext->Slot.TTT = TTT; InputContext->Slot.MTT = MTT; ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP)); PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT_64)); CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr); CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr); CmdTrbCfgEP.CycleBit = 1; CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT; CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId; DEBUG ((EFI_D_INFO, "Configure Hub Slot Context 64\n")); Status = XhcPeiCmdTransfer ( Xhc, (TRB_TEMPLATE *) (UINTN) &CmdTrbCfgEP, XHC_GENERIC_TIMEOUT, (TRB_TEMPLATE **) (UINTN) &EvtTrb ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "XhcConfigHubContext64: Config Endpoint Failed, Status = %r\n", Status)); } return Status; } /** Stop endpoint through XHCI's Stop_Endpoint cmd. @param Xhc The XHCI device. @param SlotId The slot id of the target device. @param Dci The device context index of the target slot or endpoint. @retval EFI_SUCCESS Stop endpoint successfully. @retval Others Failed to stop endpoint. **/ EFI_STATUS EFIAPI XhcPeiStopEndpoint ( IN PEI_XHC_DEV *Xhc, IN UINT8 SlotId, IN UINT8 Dci ) { EFI_STATUS Status; EVT_TRB_COMMAND_COMPLETION *EvtTrb; CMD_TRB_STOP_ENDPOINT CmdTrbStopED; DEBUG ((EFI_D_INFO, "XhcPeiStopEndpoint: Slot = 0x%x, Dci = 0x%x\n", SlotId, Dci)); // // Send stop endpoint command to transit Endpoint from running to stop state // ZeroMem (&CmdTrbStopED, sizeof (CmdTrbStopED)); CmdTrbStopED.CycleBit = 1; CmdTrbStopED.Type = TRB_TYPE_STOP_ENDPOINT; CmdTrbStopED.EDID = Dci; CmdTrbStopED.SlotId = SlotId; Status = XhcPeiCmdTransfer ( Xhc, (TRB_TEMPLATE *) (UINTN) &CmdTrbStopED, XHC_GENERIC_TIMEOUT, (TRB_TEMPLATE **) (UINTN) &EvtTrb ); if (EFI_ERROR(Status)) { DEBUG ((EFI_D_ERROR, "XhcPeiStopEndpoint: Stop Endpoint Failed, Status = %r\n", Status)); } return Status; } /** Reset endpoint through XHCI's Reset_Endpoint cmd. @param Xhc The XHCI device. @param SlotId The slot id of the target device. @param Dci The device context index of the target slot or endpoint. @retval EFI_SUCCESS Reset endpoint successfully. @retval Others Failed to reset endpoint. **/ EFI_STATUS EFIAPI XhcPeiResetEndpoint ( IN PEI_XHC_DEV *Xhc, IN UINT8 SlotId, IN UINT8 Dci ) { EFI_STATUS Status; EVT_TRB_COMMAND_COMPLETION *EvtTrb; CMD_TRB_RESET_ENDPOINT CmdTrbResetED; DEBUG ((EFI_D_INFO, "XhcPeiResetEndpoint: Slot = 0x%x, Dci = 0x%x\n", SlotId, Dci)); // // Send stop endpoint command to transit Endpoint from running to stop state // ZeroMem (&CmdTrbResetED, sizeof (CmdTrbResetED)); CmdTrbResetED.CycleBit = 1; CmdTrbResetED.Type = TRB_TYPE_RESET_ENDPOINT; CmdTrbResetED.EDID = Dci; CmdTrbResetED.SlotId = SlotId; Status = XhcPeiCmdTransfer ( Xhc, (TRB_TEMPLATE *) (UINTN) &CmdTrbResetED, XHC_GENERIC_TIMEOUT, (TRB_TEMPLATE **) (UINTN) &EvtTrb ); if (EFI_ERROR(Status)) { DEBUG ((EFI_D_ERROR, "XhcPeiResetEndpoint: Reset Endpoint Failed, Status = %r\n", Status)); } return Status; } /** Set transfer ring dequeue pointer through XHCI's Set_Tr_Dequeue_Pointer cmd. @param Xhc The XHCI device. @param SlotId The slot id of the target device. @param Dci The device context index of the target slot or endpoint. @param Urb The dequeue pointer of the transfer ring specified by the urb to be updated. @retval EFI_SUCCESS Set transfer ring dequeue pointer succeeds. @retval Others Failed to set transfer ring dequeue pointer. **/ EFI_STATUS EFIAPI XhcPeiSetTrDequeuePointer ( IN PEI_XHC_DEV *Xhc, IN UINT8 SlotId, IN UINT8 Dci, IN URB *Urb ) { EFI_STATUS Status; EVT_TRB_COMMAND_COMPLETION *EvtTrb; CMD_SET_TR_DEQ_POINTER CmdSetTRDeq; EFI_PHYSICAL_ADDRESS PhyAddr; DEBUG ((EFI_D_INFO, "XhcPeiSetTrDequeuePointer: Slot = 0x%x, Dci = 0x%x, Urb = 0x%x\n", SlotId, Dci, Urb)); // // Send stop endpoint command to transit Endpoint from running to stop state // ZeroMem (&CmdSetTRDeq, sizeof (CmdSetTRDeq)); PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Urb->Ring->RingEnqueue, sizeof (CMD_SET_TR_DEQ_POINTER)); CmdSetTRDeq.PtrLo = XHC_LOW_32BIT (PhyAddr) | Urb->Ring->RingPCS; CmdSetTRDeq.PtrHi = XHC_HIGH_32BIT (PhyAddr); CmdSetTRDeq.CycleBit = 1; CmdSetTRDeq.Type = TRB_TYPE_SET_TR_DEQUE; CmdSetTRDeq.Endpoint = Dci; CmdSetTRDeq.SlotId = SlotId; Status = XhcPeiCmdTransfer ( Xhc, (TRB_TEMPLATE *) (UINTN) &CmdSetTRDeq, XHC_GENERIC_TIMEOUT, (TRB_TEMPLATE **) (UINTN) &EvtTrb ); if (EFI_ERROR(Status)) { DEBUG ((EFI_D_ERROR, "XhcPeiSetTrDequeuePointer: Set TR Dequeue Pointer Failed, Status = %r\n", Status)); } return Status; } /** Check if there is a new generated event. @param Xhc The XHCI device. @param EvtRing The event ring to check. @param NewEvtTrb The new event TRB found. @retval EFI_SUCCESS Found a new event TRB at the event ring. @retval EFI_NOT_READY The event ring has no new event. **/ EFI_STATUS XhcPeiCheckNewEvent ( IN PEI_XHC_DEV *Xhc, IN EVENT_RING *EvtRing, OUT TRB_TEMPLATE **NewEvtTrb ) { ASSERT (EvtRing != NULL); *NewEvtTrb = EvtRing->EventRingDequeue; if (EvtRing->EventRingDequeue == EvtRing->EventRingEnqueue) { return EFI_NOT_READY; } EvtRing->EventRingDequeue++; // // If the dequeue pointer is beyond the ring, then roll-back it to the begining of the ring. // if ((UINTN) EvtRing->EventRingDequeue >= ((UINTN) EvtRing->EventRingSeg0 + sizeof (TRB_TEMPLATE) * EvtRing->TrbNumber)) { EvtRing->EventRingDequeue = EvtRing->EventRingSeg0; } return EFI_SUCCESS; } /** Synchronize the specified event ring to update the enqueue and dequeue pointer. @param Xhc The XHCI device. @param EvtRing The event ring to sync. @retval EFI_SUCCESS The event ring is synchronized successfully. **/ EFI_STATUS XhcPeiSyncEventRing ( IN PEI_XHC_DEV *Xhc, IN EVENT_RING *EvtRing ) { UINTN Index; TRB_TEMPLATE *EvtTrb; ASSERT (EvtRing != NULL); // // Calculate the EventRingEnqueue and EventRingCCS. // Note: only support single Segment // EvtTrb = EvtRing->EventRingDequeue; for (Index = 0; Index < EvtRing->TrbNumber; Index++) { if (EvtTrb->CycleBit != EvtRing->EventRingCCS) { break; } EvtTrb++; if ((UINTN) EvtTrb >= ((UINTN) EvtRing->EventRingSeg0 + sizeof (TRB_TEMPLATE) * EvtRing->TrbNumber)) { EvtTrb = EvtRing->EventRingSeg0; EvtRing->EventRingCCS = (EvtRing->EventRingCCS) ? 0 : 1; } } if (Index < EvtRing->TrbNumber) { EvtRing->EventRingEnqueue = EvtTrb; } else { ASSERT (FALSE); } return EFI_SUCCESS; } /** Free XHCI event ring. @param Xhc The XHCI device. @param EventRing The event ring to be freed. **/ VOID XhcPeiFreeEventRing ( IN PEI_XHC_DEV *Xhc, IN EVENT_RING *EventRing ) { if(EventRing->EventRingSeg0 == NULL) { return; } // // Free EventRing Segment 0 // UsbHcFreeMem (Xhc->MemPool, EventRing->EventRingSeg0, sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER); // // Free ERST table // UsbHcFreeMem (Xhc->MemPool, EventRing->ERSTBase, sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER); } /** Create XHCI event ring. @param Xhc The XHCI device. @param EventRing The created event ring. **/ VOID XhcPeiCreateEventRing ( IN PEI_XHC_DEV *Xhc, OUT EVENT_RING *EventRing ) { VOID *Buf; EVENT_RING_SEG_TABLE_ENTRY *ERSTBase; UINTN Size; EFI_PHYSICAL_ADDRESS ERSTPhy; EFI_PHYSICAL_ADDRESS DequeuePhy; ASSERT (EventRing != NULL); Size = sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER; Buf = UsbHcAllocateMem (Xhc->MemPool, Size); ASSERT (Buf != NULL); ASSERT (((UINTN) Buf & 0x3F) == 0); ZeroMem (Buf, Size); DequeuePhy = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Buf, Size); EventRing->EventRingSeg0 = Buf; EventRing->TrbNumber = EVENT_RING_TRB_NUMBER; EventRing->EventRingDequeue = (TRB_TEMPLATE *) EventRing->EventRingSeg0; EventRing->EventRingEnqueue = (TRB_TEMPLATE *) EventRing->EventRingSeg0; // // Software maintains an Event Ring Consumer Cycle State (CCS) bit, initializing it to '1' // and toggling it every time the Event Ring Dequeue Pointer wraps back to the beginning of the Event Ring. // EventRing->EventRingCCS = 1; Size = sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER; Buf = UsbHcAllocateMem (Xhc->MemPool, Size); ASSERT (Buf != NULL); ASSERT (((UINTN) Buf & 0x3F) == 0); ZeroMem (Buf, Size); ERSTBase = (EVENT_RING_SEG_TABLE_ENTRY *) Buf; EventRing->ERSTBase = ERSTBase; ERSTBase->PtrLo = XHC_LOW_32BIT (DequeuePhy); ERSTBase->PtrHi = XHC_HIGH_32BIT (DequeuePhy); ERSTBase->RingTrbSize = EVENT_RING_TRB_NUMBER; ERSTPhy = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Buf, Size); // // Program the Interrupter Event Ring Segment Table Size (ERSTSZ) register (5.5.2.3.1) // XhcPeiWriteRuntimeReg ( Xhc, XHC_ERSTSZ_OFFSET, ERST_NUMBER ); // // Program the Interrupter Event Ring Dequeue Pointer (ERDP) register (5.5.2.3.3) // // Some 3rd party XHCI external cards don't support single 64-bytes width register access, // So divide it to two 32-bytes width register access. // XhcPeiWriteRuntimeReg ( Xhc, XHC_ERDP_OFFSET, XHC_LOW_32BIT ((UINT64) (UINTN) DequeuePhy) ); XhcPeiWriteRuntimeReg ( Xhc, XHC_ERDP_OFFSET + 4, XHC_HIGH_32BIT ((UINT64) (UINTN) DequeuePhy) ); // // Program the Interrupter Event Ring Segment Table Base Address (ERSTBA) register (5.5.2.3.2) // // Some 3rd party XHCI external cards don't support single 64-bytes width register access, // So divide it to two 32-bytes width register access. // XhcPeiWriteRuntimeReg ( Xhc, XHC_ERSTBA_OFFSET, XHC_LOW_32BIT ((UINT64) (UINTN) ERSTPhy) ); XhcPeiWriteRuntimeReg ( Xhc, XHC_ERSTBA_OFFSET + 4, XHC_HIGH_32BIT ((UINT64) (UINTN) ERSTPhy) ); // // Need set IMAN IE bit to enable the ring interrupt // XhcPeiSetRuntimeRegBit (Xhc, XHC_IMAN_OFFSET, XHC_IMAN_IE); } /** Synchronize the specified transfer ring to update the enqueue and dequeue pointer. @param Xhc The XHCI device. @param TrsRing The transfer ring to sync. @retval EFI_SUCCESS The transfer ring is synchronized successfully. **/ EFI_STATUS XhcPeiSyncTrsRing ( IN PEI_XHC_DEV *Xhc, IN TRANSFER_RING *TrsRing ) { UINTN Index; TRB_TEMPLATE *TrsTrb; ASSERT (TrsRing != NULL); // // Calculate the latest RingEnqueue and RingPCS // TrsTrb = TrsRing->RingEnqueue; ASSERT (TrsTrb != NULL); for (Index = 0; Index < TrsRing->TrbNumber; Index++) { if (TrsTrb->CycleBit != (TrsRing->RingPCS & BIT0)) { break; } TrsTrb++; if ((UINT8) TrsTrb->Type == TRB_TYPE_LINK) { ASSERT (((LINK_TRB *) TrsTrb)->TC != 0); // // set cycle bit in Link TRB as normal // ((LINK_TRB*)TrsTrb)->CycleBit = TrsRing->RingPCS & BIT0; // // Toggle PCS maintained by software // TrsRing->RingPCS = (TrsRing->RingPCS & BIT0) ? 0 : 1; TrsTrb = (TRB_TEMPLATE *) TrsRing->RingSeg0; // Use host address } } ASSERT (Index != TrsRing->TrbNumber); if (TrsTrb != TrsRing->RingEnqueue) { TrsRing->RingEnqueue = TrsTrb; } // // Clear the Trb context for enqueue, but reserve the PCS bit // TrsTrb->Parameter1 = 0; TrsTrb->Parameter2 = 0; TrsTrb->Status = 0; TrsTrb->RsvdZ1 = 0; TrsTrb->Type = 0; TrsTrb->Control = 0; return EFI_SUCCESS; } /** Create XHCI transfer ring. @param Xhc The XHCI Device. @param TrbNum The number of TRB in the ring. @param TransferRing The created transfer ring. **/ VOID XhcPeiCreateTransferRing ( IN PEI_XHC_DEV *Xhc, IN UINTN TrbNum, OUT TRANSFER_RING *TransferRing ) { VOID *Buf; LINK_TRB *EndTrb; EFI_PHYSICAL_ADDRESS PhyAddr; Buf = UsbHcAllocateMem (Xhc->MemPool, sizeof (TRB_TEMPLATE) * TrbNum); ASSERT (Buf != NULL); ASSERT (((UINTN) Buf & 0x3F) == 0); ZeroMem (Buf, sizeof (TRB_TEMPLATE) * TrbNum); TransferRing->RingSeg0 = Buf; TransferRing->TrbNumber = TrbNum; TransferRing->RingEnqueue = (TRB_TEMPLATE *) TransferRing->RingSeg0; TransferRing->RingDequeue = (TRB_TEMPLATE *) TransferRing->RingSeg0; TransferRing->RingPCS = 1; // // 4.9.2 Transfer Ring Management // To form a ring (or circular queue) a Link TRB may be inserted at the end of a ring to // point to the first TRB in the ring. // EndTrb = (LINK_TRB *) ((UINTN) Buf + sizeof (TRB_TEMPLATE) * (TrbNum - 1)); EndTrb->Type = TRB_TYPE_LINK; PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Buf, sizeof (TRB_TEMPLATE) * TrbNum); EndTrb->PtrLo = XHC_LOW_32BIT (PhyAddr); EndTrb->PtrHi = XHC_HIGH_32BIT (PhyAddr); // // Toggle Cycle (TC). When set to '1', the xHC shall toggle its interpretation of the Cycle bit. // EndTrb->TC = 1; // // Set Cycle bit as other TRB PCS init value // EndTrb->CycleBit = 0; } /** Initialize the XHCI host controller for schedule. @param Xhc The XHCI device to be initialized. **/ VOID XhcPeiInitSched ( IN PEI_XHC_DEV *Xhc ) { VOID *Dcbaa; EFI_PHYSICAL_ADDRESS DcbaaPhy; UINTN Size; EFI_PHYSICAL_ADDRESS CmdRingPhy; UINT32 MaxScratchpadBufs; UINT64 *ScratchBuf; EFI_PHYSICAL_ADDRESS ScratchPhy; UINT64 *ScratchEntry; EFI_PHYSICAL_ADDRESS ScratchEntryPhy; UINT32 Index; EFI_STATUS Status; // // Initialize memory management. // Xhc->MemPool = UsbHcInitMemPool (); ASSERT (Xhc->MemPool != NULL); // // Program the Max Device Slots Enabled (MaxSlotsEn) field in the CONFIG register (5.4.7) // to enable the device slots that system software is going to use. // Xhc->MaxSlotsEn = Xhc->HcSParams1.Data.MaxSlots; ASSERT (Xhc->MaxSlotsEn >= 1 && Xhc->MaxSlotsEn <= 255); XhcPeiWriteOpReg (Xhc, XHC_CONFIG_OFFSET, (XhcPeiReadOpReg (Xhc, XHC_CONFIG_OFFSET) & ~XHC_CONFIG_MASK) | Xhc->MaxSlotsEn); // // The Device Context Base Address Array entry associated with each allocated Device Slot // shall contain a 64-bit pointer to the base of the associated Device Context. // The Device Context Base Address Array shall contain MaxSlotsEn + 1 entries. // Software shall set Device Context Base Address Array entries for unallocated Device Slots to '0'. // Size = (Xhc->MaxSlotsEn + 1) * sizeof (UINT64); Dcbaa = UsbHcAllocateMem (Xhc->MemPool, Size); ASSERT (Dcbaa != NULL); // // A Scratchpad Buffer is a PAGESIZE block of system memory located on a PAGESIZE boundary. // System software shall allocate the Scratchpad Buffer(s) before placing the xHC in to Run // mode (Run/Stop(R/S) ='1'). // MaxScratchpadBufs = ((Xhc->HcSParams2.Data.ScratchBufHi) << 5) | (Xhc->HcSParams2.Data.ScratchBufLo); Xhc->MaxScratchpadBufs = MaxScratchpadBufs; ASSERT (MaxScratchpadBufs <= 1023); if (MaxScratchpadBufs != 0) { // // Allocate the buffer to record the host address for each entry // ScratchEntry = AllocateZeroPool (sizeof (UINT64) * MaxScratchpadBufs); ASSERT (ScratchEntry != NULL); Xhc->ScratchEntry = ScratchEntry; ScratchPhy = 0; Status = UsbHcAllocateAlignedPages ( EFI_SIZE_TO_PAGES (MaxScratchpadBufs * sizeof (UINT64)), Xhc->PageSize, (VOID **) &ScratchBuf, &ScratchPhy ); ASSERT_EFI_ERROR (Status); ZeroMem (ScratchBuf, MaxScratchpadBufs * sizeof (UINT64)); Xhc->ScratchBuf = ScratchBuf; // // Allocate each scratch buffer // for (Index = 0; Index < MaxScratchpadBufs; Index++) { ScratchEntryPhy = 0; Status = UsbHcAllocateAlignedPages ( EFI_SIZE_TO_PAGES (Xhc->PageSize), Xhc->PageSize, (VOID **) &ScratchEntry[Index], &ScratchEntryPhy ); ASSERT_EFI_ERROR (Status); ZeroMem ((VOID *) (UINTN) ScratchEntry[Index], Xhc->PageSize); // // Fill with the PCI device address // *ScratchBuf++ = ScratchEntryPhy; } // // The Scratchpad Buffer Array contains pointers to the Scratchpad Buffers. Entry 0 of the // Device Context Base Address Array points to the Scratchpad Buffer Array. // *(UINT64 *) Dcbaa = (UINT64) (UINTN) ScratchPhy; } // // Program the Device Context Base Address Array Pointer (DCBAAP) register (5.4.6) with // a 64-bit address pointing to where the Device Context Base Address Array is located. // Xhc->DCBAA = (UINT64 *) (UINTN) Dcbaa; // // Some 3rd party XHCI external cards don't support single 64-bytes width register access, // So divide it to two 32-bytes width register access. // DcbaaPhy = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Dcbaa, Size); XhcPeiWriteOpReg (Xhc, XHC_DCBAAP_OFFSET, XHC_LOW_32BIT (DcbaaPhy)); XhcPeiWriteOpReg (Xhc, XHC_DCBAAP_OFFSET + 4, XHC_HIGH_32BIT (DcbaaPhy)); DEBUG ((EFI_D_INFO, "XhcPeiInitSched:DCBAA=0x%x\n", Xhc->DCBAA)); // // Define the Command Ring Dequeue Pointer by programming the Command Ring Control Register // (5.4.5) with a 64-bit address pointing to the starting address of the first TRB of the Command Ring. // Note: The Command Ring is 64 byte aligned, so the low order 6 bits of the Command Ring Pointer shall // always be '0'. // XhcPeiCreateTransferRing (Xhc, CMD_RING_TRB_NUMBER, &Xhc->CmdRing); // // The xHC uses the Enqueue Pointer to determine when a Transfer Ring is empty. As it fetches TRBs from a // Transfer Ring it checks for a Cycle bit transition. If a transition detected, the ring is empty. // So we set RCS as inverted PCS init value to let Command Ring empty // CmdRingPhy = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Xhc->CmdRing.RingSeg0, sizeof (TRB_TEMPLATE) * CMD_RING_TRB_NUMBER); ASSERT ((CmdRingPhy & 0x3F) == 0); CmdRingPhy |= XHC_CRCR_RCS; // // Some 3rd party XHCI external cards don't support single 64-bytes width register access, // So divide it to two 32-bytes width register access. // XhcPeiWriteOpReg (Xhc, XHC_CRCR_OFFSET, XHC_LOW_32BIT (CmdRingPhy)); XhcPeiWriteOpReg (Xhc, XHC_CRCR_OFFSET + 4, XHC_HIGH_32BIT (CmdRingPhy)); DEBUG ((EFI_D_INFO, "XhcPeiInitSched:XHC_CRCR=0x%x\n", Xhc->CmdRing.RingSeg0)); // // Disable the 'interrupter enable' bit in USB_CMD // and clear IE & IP bit in all Interrupter X Management Registers. // XhcPeiClearOpRegBit (Xhc, XHC_USBCMD_OFFSET, XHC_USBCMD_INTE); for (Index = 0; Index < (UINT16)(Xhc->HcSParams1.Data.MaxIntrs); Index++) { XhcPeiClearRuntimeRegBit (Xhc, XHC_IMAN_OFFSET + (Index * 32), XHC_IMAN_IE); XhcPeiSetRuntimeRegBit (Xhc, XHC_IMAN_OFFSET + (Index * 32), XHC_IMAN_IP); } // // Allocate EventRing for Cmd, Ctrl, Bulk, Interrupt, AsynInterrupt transfer // XhcPeiCreateEventRing (Xhc, &Xhc->EventRing); DEBUG ((EFI_D_INFO, "XhcPeiInitSched:XHC_EVENTRING=0x%x\n", Xhc->EventRing.EventRingSeg0)); } /** Free the resouce allocated at initializing schedule. @param Xhc The XHCI device. **/ VOID XhcPeiFreeSched ( IN PEI_XHC_DEV *Xhc ) { UINT32 Index; UINT64 *ScratchEntry; if (Xhc->ScratchBuf != NULL) { ScratchEntry = Xhc->ScratchEntry; for (Index = 0; Index < Xhc->MaxScratchpadBufs; Index++) { // // Free Scratchpad Buffers // UsbHcFreeAlignedPages ((VOID*) (UINTN) ScratchEntry[Index], EFI_SIZE_TO_PAGES (Xhc->PageSize)); } // // Free Scratchpad Buffer Array // UsbHcFreeAlignedPages (Xhc->ScratchBuf, EFI_SIZE_TO_PAGES (Xhc->MaxScratchpadBufs * sizeof (UINT64))); FreePool (Xhc->ScratchEntry); } if (Xhc->CmdRing.RingSeg0 != NULL) { UsbHcFreeMem (Xhc->MemPool, Xhc->CmdRing.RingSeg0, sizeof (TRB_TEMPLATE) * CMD_RING_TRB_NUMBER); Xhc->CmdRing.RingSeg0 = NULL; } XhcPeiFreeEventRing (Xhc,&Xhc->EventRing); if (Xhc->DCBAA != NULL) { UsbHcFreeMem (Xhc->MemPool, Xhc->DCBAA, (Xhc->MaxSlotsEn + 1) * sizeof (UINT64)); Xhc->DCBAA = NULL; } // // Free memory pool at last // if (Xhc->MemPool != NULL) { UsbHcFreeMemPool (Xhc->MemPool); Xhc->MemPool = NULL; } }