/** @file Big number API implementation based on OpenSSL Copyright (c) 2022, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "InternalCryptLib.h" #include /** Allocate new Big Number. @retval New BigNum opaque structure or NULL on failure. **/ VOID * EFIAPI BigNumInit ( VOID ) { return BN_new (); } /** Allocate new Big Number and assign the provided value to it. @param[in] Buf Big endian encoded buffer. @param[in] Len Buffer length. @retval New BigNum opaque structure or NULL on failure. **/ VOID * EFIAPI BigNumFromBin ( IN CONST UINT8 *Buf, IN UINTN Len ) { return BN_bin2bn (Buf, (INT32)Len, NULL); } /** Convert the absolute value of Bn into big-endian form and store it at Buf. The Buf array should have at least BigNumBytes() in it. @param[in] Bn Big number to convert. @param[out] Buf Output buffer. @retval The length of the big-endian number placed at Buf or -1 on error. **/ INTN EFIAPI BigNumToBin ( IN CONST VOID *Bn, OUT UINT8 *Buf ) { return BN_bn2bin (Bn, Buf); } /** Free the Big Number. @param[in] Bn Big number to free. @param[in] Clear TRUE if the buffer should be cleared. **/ VOID EFIAPI BigNumFree ( IN VOID *Bn, IN BOOLEAN Clear ) { if (Clear) { BN_clear_free (Bn); } else { BN_free (Bn); } } /** Calculate the sum of two Big Numbers. Please note, all "out" Big number arguments should be properly initialized by calling to BigNumInit() or BigNumFromBin() functions. @param[in] BnA Big number. @param[in] BnB Big number. @param[out] BnRes The result of BnA + BnB. @retval TRUE On success. @retval FALSE Otherwise. **/ BOOLEAN EFIAPI BigNumAdd ( IN CONST VOID *BnA, IN CONST VOID *BnB, OUT VOID *BnRes ) { return (BOOLEAN)BN_add (BnRes, BnA, BnB); } /** Subtract two Big Numbers. Please note, all "out" Big number arguments should be properly initialized by calling to BigNumInit() or BigNumFromBin() functions. @param[in] BnA Big number. @param[in] BnB Big number. @param[out] BnRes The result of BnA - BnB. @retval TRUE On success. @retval FALSE Otherwise. **/ BOOLEAN EFIAPI BigNumSub ( IN CONST VOID *BnA, IN CONST VOID *BnB, OUT VOID *BnRes ) { return (BOOLEAN)BN_sub (BnRes, BnA, BnB); } /** Calculate remainder: BnRes = BnA % BnB. Please note, all "out" Big number arguments should be properly initialized by calling to BigNumInit() or BigNumFromBin() functions. @param[in] BnA Big number. @param[in] BnB Big number. @param[out] BnRes The result of BnA % BnB. @retval TRUE On success. @retval FALSE Otherwise. **/ BOOLEAN EFIAPI BigNumMod ( IN CONST VOID *BnA, IN CONST VOID *BnB, OUT VOID *BnRes ) { BOOLEAN RetVal; BN_CTX *Ctx; Ctx = BN_CTX_new (); if (Ctx == NULL) { return FALSE; } RetVal = (BOOLEAN)BN_mod (BnRes, BnA, BnB, Ctx); BN_CTX_free (Ctx); return RetVal; } /** Compute BnA to the BnP-th power modulo BnM. Please note, all "out" Big number arguments should be properly initialized by calling to BigNumInit() or BigNumFromBin() functions. @param[in] BnA Big number. @param[in] BnP Big number (power). @param[in] BnM Big number (modulo). @param[out] BnRes The result of (BnA ^ BnP) % BnM. @retval TRUE On success. @retval FALSE Otherwise. **/ BOOLEAN EFIAPI BigNumExpMod ( IN CONST VOID *BnA, IN CONST VOID *BnP, IN CONST VOID *BnM, OUT VOID *BnRes ) { BOOLEAN RetVal; BN_CTX *Ctx; Ctx = BN_CTX_new (); if (Ctx == NULL) { return FALSE; } RetVal = (BOOLEAN)BN_mod_exp (BnRes, BnA, BnP, BnM, Ctx); BN_CTX_free (Ctx); return RetVal; } /** Compute BnA inverse modulo BnM. Please note, all "out" Big number arguments should be properly initialized by calling to BigNumInit() or BigNumFromBin() functions. @param[in] BnA Big number. @param[in] BnM Big number (modulo). @param[out] BnRes The result, such that (BnA * BnRes) % BnM == 1. @retval TRUE On success. @retval FALSE Otherwise. **/ BOOLEAN EFIAPI BigNumInverseMod ( IN CONST VOID *BnA, IN CONST VOID *BnM, OUT VOID *BnRes ) { BOOLEAN RetVal; BN_CTX *Ctx; Ctx = BN_CTX_new (); if (Ctx == NULL) { return FALSE; } RetVal = FALSE; if (BN_mod_inverse (BnRes, BnA, BnM, Ctx) != NULL) { RetVal = TRUE; } BN_CTX_free (Ctx); return RetVal; } /** Divide two Big Numbers. Please note, all "out" Big number arguments should be properly initialized by calling to BigNumInit() or BigNumFromBin() functions. @param[in] BnA Big number. @param[in] BnB Big number. @param[out] BnRes The result, such that BnA / BnB. @retval TRUE On success. @retval FALSE Otherwise. **/ BOOLEAN EFIAPI BigNumDiv ( IN CONST VOID *BnA, IN CONST VOID *BnB, OUT VOID *BnRes ) { BOOLEAN RetVal; BN_CTX *Ctx; Ctx = BN_CTX_new (); if (Ctx == NULL) { return FALSE; } RetVal = (BOOLEAN)BN_div (BnRes, NULL, BnA, BnB, Ctx); BN_CTX_free (Ctx); return RetVal; } /** Multiply two Big Numbers modulo BnM. Please note, all "out" Big number arguments should be properly initialized by calling to BigNumInit() or BigNumFromBin() functions. @param[in] BnA Big number. @param[in] BnB Big number. @param[in] BnM Big number (modulo). @param[out] BnRes The result, such that (BnA * BnB) % BnM. @retval TRUE On success. @retval FALSE Otherwise. **/ BOOLEAN EFIAPI BigNumMulMod ( IN CONST VOID *BnA, IN CONST VOID *BnB, IN CONST VOID *BnM, OUT VOID *BnRes ) { BOOLEAN RetVal; BN_CTX *Ctx; Ctx = BN_CTX_new (); if (Ctx == NULL) { return FALSE; } RetVal = (BOOLEAN)BN_mod_mul (BnRes, BnA, BnB, BnM, Ctx); BN_CTX_free (Ctx); return RetVal; } /** Compare two Big Numbers. @param[in] BnA Big number. @param[in] BnB Big number. @retval 0 BnA == BnB. @retval 1 BnA > BnB. @retval -1 BnA < BnB. **/ INTN EFIAPI BigNumCmp ( IN CONST VOID *BnA, IN CONST VOID *BnB ) { return BN_cmp (BnA, BnB); } /** Get number of bits in Bn. @param[in] Bn Big number. @retval Number of bits. **/ UINTN EFIAPI BigNumBits ( IN CONST VOID *Bn ) { return BN_num_bits (Bn); } /** Get number of bytes in Bn. @param[in] Bn Big number. @retval Number of bytes. **/ UINTN EFIAPI BigNumBytes ( IN CONST VOID *Bn ) { return BN_num_bytes (Bn); } /** Checks if Big Number equals to the given Num. @param[in] Bn Big number. @param[in] Num Number. @retval TRUE iff Bn == Num. @retval FALSE otherwise. **/ BOOLEAN EFIAPI BigNumIsWord ( IN CONST VOID *Bn, IN UINTN Num ) { return (BOOLEAN)BN_is_word (Bn, Num); } /** Checks if Big Number is odd. @param[in] Bn Big number. @retval TRUE Bn is odd (Bn % 2 == 1). @retval FALSE otherwise. **/ BOOLEAN EFIAPI BigNumIsOdd ( IN CONST VOID *Bn ) { return (BOOLEAN)BN_is_odd (Bn); } /** Copy Big number. @param[out] BnDst Destination. @param[in] BnSrc Source. @retval BnDst on success. @retval NULL otherwise. **/ VOID * EFIAPI BigNumCopy ( OUT VOID *BnDst, IN CONST VOID *BnSrc ) { return BN_copy (BnDst, BnSrc); } /** Get constant Big number with value of "1". This may be used to save expensive allocations. @retval Big Number with value of 1. **/ CONST VOID * EFIAPI BigNumValueOne ( VOID ) { return BN_value_one (); } /** Shift right Big Number. Please note, all "out" Big number arguments should be properly initialized by calling to BigNumInit() or BigNumFromBin() functions. @param[in] Bn Big number. @param[in] N Number of bits to shift. @param[out] BnRes The result. @retval TRUE On success. @retval FALSE Otherwise. **/ BOOLEAN EFIAPI BigNumRShift ( IN CONST VOID *Bn, IN UINTN N, OUT VOID *BnRes ) { return (BOOLEAN)BN_rshift (BnRes, Bn, (INT32)N); } /** Mark Big Number for constant time computations. This function should be called before any constant time computations are performed on the given Big number. @param[in] Bn Big number **/ VOID EFIAPI BigNumConstTime ( IN VOID *Bn ) { BN_set_flags (Bn, BN_FLG_CONSTTIME); } /** Calculate square modulo. Please note, all "out" Big number arguments should be properly initialized by calling to BigNumInit() or BigNumFromBin() functions. @param[in] BnA Big number. @param[in] BnM Big number (modulo). @param[out] BnRes The result, such that (BnA ^ 2) % BnM. @retval TRUE On success. @retval FALSE Otherwise. **/ BOOLEAN EFIAPI BigNumSqrMod ( IN CONST VOID *BnA, IN CONST VOID *BnM, OUT VOID *BnRes ) { BOOLEAN RetVal; BN_CTX *Ctx; Ctx = BN_CTX_new (); if (Ctx == NULL) { return FALSE; } RetVal = (BOOLEAN)BN_mod_sqr (BnRes, BnA, BnM, Ctx); BN_CTX_free (Ctx); return RetVal; } /** Create new Big Number computation context. This is an opaque structure which should be passed to any function that requires it. The BN context is needed to optimize calculations and expensive allocations. @retval Big Number context struct or NULL on failure. **/ VOID * EFIAPI BigNumNewContext ( VOID ) { return BN_CTX_new (); } /** Free Big Number context that was allocated with BigNumNewContext(). @param[in] BnCtx Big number context to free. **/ VOID EFIAPI BigNumContextFree ( IN VOID *BnCtx ) { BN_CTX_free (BnCtx); } /** Set Big Number to a given value. @param[in] Bn Big number to set. @param[in] Val Value to set. @retval TRUE On success. @retval FALSE Otherwise. **/ BOOLEAN EFIAPI BigNumSetUint ( IN VOID *Bn, IN UINTN Val ) { return (BOOLEAN)BN_set_word (Bn, Val); } /** Add two Big Numbers modulo BnM. @param[in] BnA Big number. @param[in] BnB Big number. @param[in] BnM Big number (modulo). @param[out] BnRes The result, such that (BnA + BnB) % BnM. @retval TRUE On success. @retval FALSE Otherwise. **/ BOOLEAN EFIAPI BigNumAddMod ( IN CONST VOID *BnA, IN CONST VOID *BnB, IN CONST VOID *BnM, OUT VOID *BnRes ) { BOOLEAN RetVal; BN_CTX *Ctx; Ctx = BN_CTX_new (); if (Ctx == NULL) { return FALSE; } RetVal = (BOOLEAN)BN_mod_add (BnRes, BnA, BnB, BnM, Ctx); BN_CTX_free (Ctx); return RetVal; }