/** @file Rewrite the BootOrder NvVar based on QEMU's "bootorder" fw_cfg file. Copyright (C) 2012 - 2014, Red Hat, Inc. Copyright (c) 2013 - 2016, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ExtraRootBusMap.h" /** OpenFirmware to UEFI device path translation output buffer size in CHAR16's. **/ #define TRANSLATION_OUTPUT_SIZE 0x100 /** Output buffer size for OpenFirmware to UEFI device path fragment translation, in CHAR16's, for a sequence of PCI bridges. **/ #define BRIDGE_TRANSLATION_OUTPUT_SIZE 0x40 /** Numbers of nodes in OpenFirmware device paths that are required and examined. **/ #define REQUIRED_PCI_OFW_NODES 2 #define REQUIRED_MMIO_OFW_NODES 1 #define EXAMINED_OFW_NODES 6 /** Simple character classification routines, corresponding to POSIX class names and ASCII encoding. **/ STATIC BOOLEAN IsAlnum ( IN CHAR8 Chr ) { return (('0' <= Chr && Chr <= '9') || ('A' <= Chr && Chr <= 'Z') || ('a' <= Chr && Chr <= 'z') ); } STATIC BOOLEAN IsDriverNamePunct ( IN CHAR8 Chr ) { return (Chr == ',' || Chr == '.' || Chr == '_' || Chr == '+' || Chr == '-' ); } STATIC BOOLEAN IsPrintNotDelim ( IN CHAR8 Chr ) { return (32 <= Chr && Chr <= 126 && Chr != '/' && Chr != '@' && Chr != ':'); } /** Utility types and functions. **/ typedef struct { CONST CHAR8 *Ptr; // not necessarily NUL-terminated UINTN Len; // number of non-NUL characters } SUBSTRING; /** Check if Substring and String have identical contents. The function relies on the restriction that a SUBSTRING cannot have embedded NULs either. @param[in] Substring The SUBSTRING input to the comparison. @param[in] String The ASCII string input to the comparison. @return Whether the inputs have identical contents. **/ STATIC BOOLEAN SubstringEq ( IN SUBSTRING Substring, IN CONST CHAR8 *String ) { UINTN Pos; CONST CHAR8 *Chr; Pos = 0; Chr = String; while (Pos < Substring.Len && Substring.Ptr[Pos] == *Chr) { ++Pos; ++Chr; } return (BOOLEAN)(Pos == Substring.Len && *Chr == '\0'); } /** Parse a comma-separated list of hexadecimal integers into the elements of an UINT64 array. Whitespace, "0x" prefixes, leading or trailing commas, sequences of commas, or an empty string are not allowed; they are rejected. The function relies on ASCII encoding. @param[in] UnitAddress The substring to parse. @param[out] Result The array, allocated by the caller, to receive the parsed values. This parameter may be NULL if NumResults is zero on input. @param[in out] NumResults On input, the number of elements allocated for Result. On output, the number of elements it has taken (or would have taken) to parse the string fully. @retval RETURN_SUCCESS UnitAddress has been fully parsed. NumResults is set to the number of parsed values; the corresponding elements have been set in Result. The rest of Result's elements are unchanged. @retval RETURN_BUFFER_TOO_SMALL UnitAddress has been fully parsed. NumResults is set to the number of parsed values, but elements have been stored only up to the input value of NumResults, which is less than what has been parsed. @retval RETURN_INVALID_PARAMETER Parse error. The contents of Results is indeterminate. NumResults has not been changed. **/ STATIC RETURN_STATUS ParseUnitAddressHexList ( IN SUBSTRING UnitAddress, OUT UINT64 *Result, IN OUT UINTN *NumResults ) { UINTN Entry; // number of entry currently being parsed UINT64 EntryVal; // value being constructed for current entry CHAR8 PrevChr; // UnitAddress character previously checked UINTN Pos; // current position within UnitAddress RETURN_STATUS Status; Entry = 0; EntryVal = 0; PrevChr = ','; for (Pos = 0; Pos < UnitAddress.Len; ++Pos) { CHAR8 Chr; INT8 Val; Chr = UnitAddress.Ptr[Pos]; Val = ('a' <= Chr && Chr <= 'f') ? (Chr - 'a' + 10) : ('A' <= Chr && Chr <= 'F') ? (Chr - 'A' + 10) : ('0' <= Chr && Chr <= '9') ? (Chr - '0' ) : -1; if (Val >= 0) { if (EntryVal > 0xFFFFFFFFFFFFFFFull) { return RETURN_INVALID_PARAMETER; } EntryVal = LShiftU64 (EntryVal, 4) | Val; } else if (Chr == ',') { if (PrevChr == ',') { return RETURN_INVALID_PARAMETER; } if (Entry < *NumResults) { Result[Entry] = EntryVal; } ++Entry; EntryVal = 0; } else { return RETURN_INVALID_PARAMETER; } PrevChr = Chr; } if (PrevChr == ',') { return RETURN_INVALID_PARAMETER; } if (Entry < *NumResults) { Result[Entry] = EntryVal; Status = RETURN_SUCCESS; } else { Status = RETURN_BUFFER_TOO_SMALL; } ++Entry; *NumResults = Entry; return Status; } /** A simple array of Boot Option ID's. **/ typedef struct { UINT16 *Data; UINTN Allocated; UINTN Produced; } BOOT_ORDER; /** Array element tracking an enumerated boot option that has the LOAD_OPTION_ACTIVE attribute. **/ typedef struct { CONST EFI_BOOT_MANAGER_LOAD_OPTION *BootOption; // reference only, no // ownership BOOLEAN Appended; // has been added to a // BOOT_ORDER? } ACTIVE_OPTION; /** Append an active boot option to BootOrder, reallocating the latter if needed. @param[in out] BootOrder The structure pointing to the array and holding allocation and usage counters. @param[in] ActiveOption The active boot option whose ID should be appended to the array. @retval RETURN_SUCCESS ID of ActiveOption appended. @retval RETURN_OUT_OF_RESOURCES Memory reallocation failed. **/ STATIC RETURN_STATUS BootOrderAppend ( IN OUT BOOT_ORDER *BootOrder, IN OUT ACTIVE_OPTION *ActiveOption ) { if (BootOrder->Produced == BootOrder->Allocated) { UINTN AllocatedNew; UINT16 *DataNew; ASSERT (BootOrder->Allocated > 0); AllocatedNew = BootOrder->Allocated * 2; DataNew = ReallocatePool ( BootOrder->Allocated * sizeof (*BootOrder->Data), AllocatedNew * sizeof (*DataNew), BootOrder->Data ); if (DataNew == NULL) { return RETURN_OUT_OF_RESOURCES; } BootOrder->Allocated = AllocatedNew; BootOrder->Data = DataNew; } BootOrder->Data[BootOrder->Produced++] = (UINT16) ActiveOption->BootOption->OptionNumber; ActiveOption->Appended = TRUE; return RETURN_SUCCESS; } /** Create an array of ACTIVE_OPTION elements for a boot option array. @param[in] BootOptions A boot option array, created with EfiBootManagerRefreshAllBootOption () and EfiBootManagerGetLoadOptions (). @param[in] BootOptionCount The number of elements in BootOptions. @param[out] ActiveOption Pointer to the first element in the new array. The caller is responsible for freeing the array with FreePool() after use. @param[out] Count Number of elements in the new array. @retval RETURN_SUCCESS The ActiveOption array has been created. @retval RETURN_NOT_FOUND No active entry has been found in BootOptions. @retval RETURN_OUT_OF_RESOURCES Memory allocation failed. **/ STATIC RETURN_STATUS CollectActiveOptions ( IN CONST EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions, IN UINTN BootOptionCount, OUT ACTIVE_OPTION **ActiveOption, OUT UINTN *Count ) { UINTN Index; UINTN ScanMode; *ActiveOption = NULL; // // Scan the list twice: // - count active entries, // - store links to active entries. // for (ScanMode = 0; ScanMode < 2; ++ScanMode) { *Count = 0; for (Index = 0; Index < BootOptionCount; Index++) { if ((BootOptions[Index].Attributes & LOAD_OPTION_ACTIVE) != 0) { if (ScanMode == 1) { (*ActiveOption)[*Count].BootOption = &BootOptions[Index]; (*ActiveOption)[*Count].Appended = FALSE; } ++*Count; } } if (ScanMode == 0) { if (*Count == 0) { return RETURN_NOT_FOUND; } *ActiveOption = AllocatePool (*Count * sizeof **ActiveOption); if (*ActiveOption == NULL) { return RETURN_OUT_OF_RESOURCES; } } } return RETURN_SUCCESS; } /** OpenFirmware device path node **/ typedef struct { SUBSTRING DriverName; SUBSTRING UnitAddress; SUBSTRING DeviceArguments; } OFW_NODE; /** Parse an OpenFirmware device path node into the caller-allocated OFW_NODE structure, and advance in the input string. The node format is mostly parsed after IEEE 1275-1994, 3.2.1.1 "Node names" (a leading slash is expected and not returned): /driver-name@unit-address[:device-arguments][] A single trailing character is consumed but not returned. A trailing or NUL character terminates the device path. The function relies on ASCII encoding. @param[in out] Ptr Address of the pointer pointing to the start of the node string. After successful parsing *Ptr is set to the byte immediately following the consumed characters. On error it points to the byte that caused the error. The input string is never modified. @param[out] OfwNode The members of this structure point into the input string, designating components of the node. Separators are never included. If "device-arguments" is missing, then DeviceArguments.Ptr is set to NULL. All components that are present have nonzero length. If the call doesn't succeed, the contents of this structure is indeterminate. @param[out] IsFinal In case of successul parsing, this parameter signals whether the node just parsed is the final node in the device path. The call after a final node will attempt to start parsing the next path. If the call doesn't succeed, then this parameter is not changed. @retval RETURN_SUCCESS Parsing successful. @retval RETURN_NOT_FOUND Parsing terminated. *Ptr was (and is) pointing to an empty string. @retval RETURN_INVALID_PARAMETER Parse error. **/ STATIC RETURN_STATUS ParseOfwNode ( IN OUT CONST CHAR8 **Ptr, OUT OFW_NODE *OfwNode, OUT BOOLEAN *IsFinal ) { // // A leading slash is expected. End of string is tolerated. // switch (**Ptr) { case '\0': return RETURN_NOT_FOUND; case '/': ++*Ptr; break; default: return RETURN_INVALID_PARAMETER; } // // driver-name // OfwNode->DriverName.Ptr = *Ptr; OfwNode->DriverName.Len = 0; while (OfwNode->DriverName.Len < 32 && (IsAlnum (**Ptr) || IsDriverNamePunct (**Ptr)) ) { ++*Ptr; ++OfwNode->DriverName.Len; } if (OfwNode->DriverName.Len == 0 || OfwNode->DriverName.Len == 32) { return RETURN_INVALID_PARAMETER; } // // unit-address // if (**Ptr != '@') { return RETURN_INVALID_PARAMETER; } ++*Ptr; OfwNode->UnitAddress.Ptr = *Ptr; OfwNode->UnitAddress.Len = 0; while (IsPrintNotDelim (**Ptr)) { ++*Ptr; ++OfwNode->UnitAddress.Len; } if (OfwNode->UnitAddress.Len == 0) { return RETURN_INVALID_PARAMETER; } // // device-arguments, may be omitted // OfwNode->DeviceArguments.Len = 0; if (**Ptr == ':') { ++*Ptr; OfwNode->DeviceArguments.Ptr = *Ptr; while (IsPrintNotDelim (**Ptr)) { ++*Ptr; ++OfwNode->DeviceArguments.Len; } if (OfwNode->DeviceArguments.Len == 0) { return RETURN_INVALID_PARAMETER; } } else { OfwNode->DeviceArguments.Ptr = NULL; } switch (**Ptr) { case '\n': ++*Ptr; // // fall through // case '\0': *IsFinal = TRUE; break; case '/': *IsFinal = FALSE; break; default: return RETURN_INVALID_PARAMETER; } DEBUG (( DEBUG_VERBOSE, "%a: DriverName=\"%.*a\" UnitAddress=\"%.*a\" DeviceArguments=\"%.*a\"\n", __FUNCTION__, OfwNode->DriverName.Len, OfwNode->DriverName.Ptr, OfwNode->UnitAddress.Len, OfwNode->UnitAddress.Ptr, OfwNode->DeviceArguments.Len, OfwNode->DeviceArguments.Ptr == NULL ? "" : OfwNode->DeviceArguments.Ptr )); return RETURN_SUCCESS; } /** Translate a PCI-like array of OpenFirmware device nodes to a UEFI device path fragment. @param[in] OfwNode Array of OpenFirmware device nodes to translate, constituting the beginning of an OpenFirmware device path. @param[in] NumNodes Number of elements in OfwNode. @param[in] ExtraPciRoots An EXTRA_ROOT_BUS_MAP object created with CreateExtraRootBusMap(), to be used for translating positions of extra root buses to bus numbers. @param[out] Translated Destination array receiving the UEFI path fragment, allocated by the caller. If the return value differs from RETURN_SUCCESS, its contents is indeterminate. @param[in out] TranslatedSize On input, the number of CHAR16's in Translated. On RETURN_SUCCESS this parameter is assigned the number of non-NUL CHAR16's written to Translated. In case of other return values, TranslatedSize is indeterminate. @retval RETURN_SUCCESS Translation successful. @retval RETURN_BUFFER_TOO_SMALL The translation does not fit into the number of bytes provided. @retval RETURN_UNSUPPORTED The array of OpenFirmware device nodes can't be translated in the current implementation. @retval RETURN_PROTOCOL_ERROR The initial OpenFirmware node refers to an extra PCI root bus (by serial number) that is invalid according to ExtraPciRoots. **/ STATIC RETURN_STATUS TranslatePciOfwNodes ( IN CONST OFW_NODE *OfwNode, IN UINTN NumNodes, IN CONST EXTRA_ROOT_BUS_MAP *ExtraPciRoots, OUT CHAR16 *Translated, IN OUT UINTN *TranslatedSize ) { UINT32 PciRoot; CHAR8 *Comma; UINTN FirstNonBridge; CHAR16 Bridges[BRIDGE_TRANSLATION_OUTPUT_SIZE]; UINTN BridgesLen; UINT64 PciDevFun[2]; UINTN NumEntries; UINTN Written; // // Resolve the PCI root bus number. // // The initial OFW node for the main root bus (ie. bus number 0) is: // // /pci@i0cf8 // // For extra root buses, the initial OFW node is // // /pci@i0cf8,4 // ^ // root bus serial number (not PCI bus number) // if (NumNodes < REQUIRED_PCI_OFW_NODES || !SubstringEq (OfwNode[0].DriverName, "pci") ) { return RETURN_UNSUPPORTED; } PciRoot = 0; Comma = ScanMem8 (OfwNode[0].UnitAddress.Ptr, OfwNode[0].UnitAddress.Len, ','); if (Comma != NULL) { SUBSTRING PciRootSerialSubString; UINT64 PciRootSerial; // // Parse the root bus serial number from the unit address after the comma. // PciRootSerialSubString.Ptr = Comma + 1; PciRootSerialSubString.Len = OfwNode[0].UnitAddress.Len - (PciRootSerialSubString.Ptr - OfwNode[0].UnitAddress.Ptr); NumEntries = 1; if (RETURN_ERROR (ParseUnitAddressHexList (PciRootSerialSubString, &PciRootSerial, &NumEntries))) { return RETURN_UNSUPPORTED; } // // Map the extra root bus's serial number to its actual bus number. // if (EFI_ERROR (MapRootBusPosToBusNr (ExtraPciRoots, PciRootSerial, &PciRoot))) { return RETURN_PROTOCOL_ERROR; } } // // Translate a sequence of PCI bridges. For each bridge, the OFW node is: // // pci-bridge@1e[,0] // ^ ^ // PCI slot & function on the parent, holding the bridge // // and the UEFI device path node is: // // Pci(0x1E,0x0) // FirstNonBridge = 1; Bridges[0] = L'\0'; BridgesLen = 0; do { UINT64 BridgeDevFun[2]; UINTN BridgesFreeBytes; if (!SubstringEq (OfwNode[FirstNonBridge].DriverName, "pci-bridge")) { break; } BridgeDevFun[1] = 0; NumEntries = sizeof BridgeDevFun / sizeof BridgeDevFun[0]; if (ParseUnitAddressHexList (OfwNode[FirstNonBridge].UnitAddress, BridgeDevFun, &NumEntries) != RETURN_SUCCESS) { return RETURN_UNSUPPORTED; } BridgesFreeBytes = sizeof Bridges - BridgesLen * sizeof Bridges[0]; Written = UnicodeSPrintAsciiFormat (Bridges + BridgesLen, BridgesFreeBytes, "/Pci(0x%Lx,0x%Lx)", BridgeDevFun[0], BridgeDevFun[1]); BridgesLen += Written; // // There's no way to differentiate between "completely used up without // truncation" and "truncated", so treat the former as the latter. // if (BridgesLen + 1 == BRIDGE_TRANSLATION_OUTPUT_SIZE) { return RETURN_UNSUPPORTED; } ++FirstNonBridge; } while (FirstNonBridge < NumNodes); if (FirstNonBridge == NumNodes) { return RETURN_UNSUPPORTED; } // // Parse the OFW nodes starting with the first non-bridge node. // PciDevFun[1] = 0; NumEntries = sizeof (PciDevFun) / sizeof (PciDevFun[0]); if (ParseUnitAddressHexList ( OfwNode[FirstNonBridge].UnitAddress, PciDevFun, &NumEntries ) != RETURN_SUCCESS ) { return RETURN_UNSUPPORTED; } if (NumNodes >= FirstNonBridge + 3 && SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "ide") && SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "drive") && SubstringEq (OfwNode[FirstNonBridge + 2].DriverName, "disk") ) { // // OpenFirmware device path (IDE disk, IDE CD-ROM): // // /pci@i0cf8/ide@1,1/drive@0/disk@0 // ^ ^ ^ ^ ^ // | | | | master or slave // | | | primary or secondary // | PCI slot & function holding IDE controller // PCI root at system bus port, PIO // // UEFI device path: // // PciRoot(0x0)/Pci(0x1,0x1)/Ata(Primary,Master,0x0) // ^ // fixed LUN // UINT64 Secondary; UINT64 Slave; NumEntries = 1; if (ParseUnitAddressHexList ( OfwNode[FirstNonBridge + 1].UnitAddress, &Secondary, &NumEntries ) != RETURN_SUCCESS || Secondary > 1 || ParseUnitAddressHexList ( OfwNode[FirstNonBridge + 2].UnitAddress, &Slave, &NumEntries // reuse after previous single-element call ) != RETURN_SUCCESS || Slave > 1 ) { return RETURN_UNSUPPORTED; } Written = UnicodeSPrintAsciiFormat ( Translated, *TranslatedSize * sizeof (*Translated), // BufferSize in bytes "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/Ata(%a,%a,0x0)", PciRoot, Bridges, PciDevFun[0], PciDevFun[1], Secondary ? "Secondary" : "Primary", Slave ? "Slave" : "Master" ); } else if (NumNodes >= FirstNonBridge + 3 && SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "pci8086,2922") && SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "drive") && SubstringEq (OfwNode[FirstNonBridge + 2].DriverName, "disk") ) { // // OpenFirmware device path (Q35 SATA disk and CD-ROM): // // /pci@i0cf8/pci8086,2922@1f,2/drive@1/disk@0 // ^ ^ ^ ^ ^ // | | | | device number (fixed 0) // | | | channel (port) number // | PCI slot & function holding SATA HBA // PCI root at system bus port, PIO // // UEFI device path: // // PciRoot(0x0)/Pci(0x1F,0x2)/Sata(0x1,0xFFFF,0x0) // ^ ^ ^ // | | LUN (always 0 on Q35) // | port multiplier port number, // | always 0xFFFF on Q35 // channel (port) number // UINT64 Channel; NumEntries = 1; if (RETURN_ERROR (ParseUnitAddressHexList ( OfwNode[FirstNonBridge + 1].UnitAddress, &Channel, &NumEntries))) { return RETURN_UNSUPPORTED; } Written = UnicodeSPrintAsciiFormat ( Translated, *TranslatedSize * sizeof (*Translated), // BufferSize in bytes "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/Sata(0x%Lx,0xFFFF,0x0)", PciRoot, Bridges, PciDevFun[0], PciDevFun[1], Channel ); } else if (NumNodes >= FirstNonBridge + 3 && SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "isa") && SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "fdc") && SubstringEq (OfwNode[FirstNonBridge + 2].DriverName, "floppy") ) { // // OpenFirmware device path (floppy disk): // // /pci@i0cf8/isa@1/fdc@03f0/floppy@0 // ^ ^ ^ ^ // | | | A: or B: // | | ISA controller io-port (hex) // | PCI slot holding ISA controller // PCI root at system bus port, PIO // // UEFI device path: // // PciRoot(0x0)/Pci(0x1,0x0)/Floppy(0x0) // ^ // ACPI UID // UINT64 AcpiUid; NumEntries = 1; if (ParseUnitAddressHexList ( OfwNode[FirstNonBridge + 2].UnitAddress, &AcpiUid, &NumEntries ) != RETURN_SUCCESS || AcpiUid > 1 ) { return RETURN_UNSUPPORTED; } Written = UnicodeSPrintAsciiFormat ( Translated, *TranslatedSize * sizeof (*Translated), // BufferSize in bytes "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/Floppy(0x%Lx)", PciRoot, Bridges, PciDevFun[0], PciDevFun[1], AcpiUid ); } else if (NumNodes >= FirstNonBridge + 2 && SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "scsi") && SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "disk") ) { // // OpenFirmware device path (virtio-blk disk): // // /pci@i0cf8/scsi@6[,3]/disk@0,0 // ^ ^ ^ ^ ^ // | | | fixed // | | PCI function corresponding to disk (optional) // | PCI slot holding disk // PCI root at system bus port, PIO // // UEFI device path prefix: // // PciRoot(0x0)/Pci(0x6,0x0)/HD( -- if PCI function is 0 or absent // PciRoot(0x0)/Pci(0x6,0x3)/HD( -- if PCI function is present and nonzero // Written = UnicodeSPrintAsciiFormat ( Translated, *TranslatedSize * sizeof (*Translated), // BufferSize in bytes "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/HD(", PciRoot, Bridges, PciDevFun[0], PciDevFun[1] ); } else if (NumNodes >= FirstNonBridge + 3 && SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "scsi") && SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "channel") && SubstringEq (OfwNode[FirstNonBridge + 2].DriverName, "disk") ) { // // OpenFirmware device path (virtio-scsi disk): // // /pci@i0cf8/scsi@7[,3]/channel@0/disk@2,3 // ^ ^ ^ ^ ^ // | | | | LUN // | | | target // | | channel (unused, fixed 0) // | PCI slot[, function] holding SCSI controller // PCI root at system bus port, PIO // // UEFI device path prefix: // // PciRoot(0x0)/Pci(0x7,0x0)/Scsi(0x2,0x3) // -- if PCI function is 0 or absent // PciRoot(0x0)/Pci(0x7,0x3)/Scsi(0x2,0x3) // -- if PCI function is present and nonzero // UINT64 TargetLun[2]; TargetLun[1] = 0; NumEntries = sizeof (TargetLun) / sizeof (TargetLun[0]); if (ParseUnitAddressHexList ( OfwNode[FirstNonBridge + 2].UnitAddress, TargetLun, &NumEntries ) != RETURN_SUCCESS ) { return RETURN_UNSUPPORTED; } Written = UnicodeSPrintAsciiFormat ( Translated, *TranslatedSize * sizeof (*Translated), // BufferSize in bytes "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/Scsi(0x%Lx,0x%Lx)", PciRoot, Bridges, PciDevFun[0], PciDevFun[1], TargetLun[0], TargetLun[1] ); } else if (NumNodes >= FirstNonBridge + 2 && SubstringEq (OfwNode[FirstNonBridge + 0].DriverName, "pci8086,5845") && SubstringEq (OfwNode[FirstNonBridge + 1].DriverName, "namespace") ) { // // OpenFirmware device path (NVMe device): // // /pci@i0cf8/pci8086,5845@6[,1]/namespace@1,0 // ^ ^ ^ ^ ^ // | | | | Extended Unique Identifier // | | | | (EUI-64), big endian interp. // | | | namespace ID // | PCI slot & function holding NVMe controller // PCI root at system bus port, PIO // // UEFI device path: // // PciRoot(0x0)/Pci(0x6,0x1)/NVMe(0x1,00-00-00-00-00-00-00-00) // ^ ^ // | octets of the EUI-64 // | in address order // namespace ID // UINT64 Namespace[2]; UINTN RequiredEntries; UINT8 *Eui64; RequiredEntries = sizeof (Namespace) / sizeof (Namespace[0]); NumEntries = RequiredEntries; if (ParseUnitAddressHexList ( OfwNode[FirstNonBridge + 1].UnitAddress, Namespace, &NumEntries ) != RETURN_SUCCESS || NumEntries != RequiredEntries || Namespace[0] == 0 || Namespace[0] >= MAX_UINT32 ) { return RETURN_UNSUPPORTED; } Eui64 = (UINT8 *)&Namespace[1]; Written = UnicodeSPrintAsciiFormat ( Translated, *TranslatedSize * sizeof (*Translated), // BufferSize in bytes "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)/" "NVMe(0x%Lx,%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x)", PciRoot, Bridges, PciDevFun[0], PciDevFun[1], Namespace[0], Eui64[7], Eui64[6], Eui64[5], Eui64[4], Eui64[3], Eui64[2], Eui64[1], Eui64[0] ); } else { // // Generic OpenFirmware device path for PCI devices: // // /pci@i0cf8/ethernet@3[,2] // ^ ^ // | PCI slot[, function] holding Ethernet card // PCI root at system bus port, PIO // // UEFI device path prefix (dependent on presence of nonzero PCI function): // // PciRoot(0x0)/Pci(0x3,0x0) // PciRoot(0x0)/Pci(0x3,0x2) // Written = UnicodeSPrintAsciiFormat ( Translated, *TranslatedSize * sizeof (*Translated), // BufferSize in bytes "PciRoot(0x%x)%s/Pci(0x%Lx,0x%Lx)", PciRoot, Bridges, PciDevFun[0], PciDevFun[1] ); } // // There's no way to differentiate between "completely used up without // truncation" and "truncated", so treat the former as the latter, and return // success only for "some room left unused". // if (Written + 1 < *TranslatedSize) { *TranslatedSize = Written; return RETURN_SUCCESS; } return RETURN_BUFFER_TOO_SMALL; } // // A type providing easy raw access to the base address of a virtio-mmio // transport. // typedef union { UINT64 Uint64; UINT8 Raw[8]; } VIRTIO_MMIO_BASE_ADDRESS; /** Translate an MMIO-like array of OpenFirmware device nodes to a UEFI device path fragment. @param[in] OfwNode Array of OpenFirmware device nodes to translate, constituting the beginning of an OpenFirmware device path. @param[in] NumNodes Number of elements in OfwNode. @param[out] Translated Destination array receiving the UEFI path fragment, allocated by the caller. If the return value differs from RETURN_SUCCESS, its contents is indeterminate. @param[in out] TranslatedSize On input, the number of CHAR16's in Translated. On RETURN_SUCCESS this parameter is assigned the number of non-NUL CHAR16's written to Translated. In case of other return values, TranslatedSize is indeterminate. @retval RETURN_SUCCESS Translation successful. @retval RETURN_BUFFER_TOO_SMALL The translation does not fit into the number of bytes provided. @retval RETURN_UNSUPPORTED The array of OpenFirmware device nodes can't be translated in the current implementation. **/ STATIC RETURN_STATUS TranslateMmioOfwNodes ( IN CONST OFW_NODE *OfwNode, IN UINTN NumNodes, OUT CHAR16 *Translated, IN OUT UINTN *TranslatedSize ) { VIRTIO_MMIO_BASE_ADDRESS VirtioMmioBase; CHAR16 VenHwString[60 + 1]; UINTN NumEntries; UINTN Written; // // Get the base address of the virtio-mmio transport. // if (NumNodes < REQUIRED_MMIO_OFW_NODES || !SubstringEq (OfwNode[0].DriverName, "virtio-mmio") ) { return RETURN_UNSUPPORTED; } NumEntries = 1; if (ParseUnitAddressHexList ( OfwNode[0].UnitAddress, &VirtioMmioBase.Uint64, &NumEntries ) != RETURN_SUCCESS ) { return RETURN_UNSUPPORTED; } UnicodeSPrintAsciiFormat (VenHwString, sizeof VenHwString, "VenHw(%g,%02X%02X%02X%02X%02X%02X%02X%02X)", &gVirtioMmioTransportGuid, VirtioMmioBase.Raw[0], VirtioMmioBase.Raw[1], VirtioMmioBase.Raw[2], VirtioMmioBase.Raw[3], VirtioMmioBase.Raw[4], VirtioMmioBase.Raw[5], VirtioMmioBase.Raw[6], VirtioMmioBase.Raw[7]); if (NumNodes >= 2 && SubstringEq (OfwNode[1].DriverName, "disk")) { // // OpenFirmware device path (virtio-blk disk): // // /virtio-mmio@000000000a003c00/disk@0,0 // ^ ^ ^ // | fixed // base address of virtio-mmio register block // // UEFI device path prefix: // // /HD( // Written = UnicodeSPrintAsciiFormat ( Translated, *TranslatedSize * sizeof (*Translated), // BufferSize in bytes "%s/HD(", VenHwString ); } else if (NumNodes >= 3 && SubstringEq (OfwNode[1].DriverName, "channel") && SubstringEq (OfwNode[2].DriverName, "disk")) { // // OpenFirmware device path (virtio-scsi disk): // // /virtio-mmio@000000000a003a00/channel@0/disk@2,3 // ^ ^ ^ ^ // | | | LUN // | | target // | channel (unused, fixed 0) // base address of virtio-mmio register block // // UEFI device path prefix: // // /Scsi(0x2,0x3) // UINT64 TargetLun[2]; TargetLun[1] = 0; NumEntries = sizeof (TargetLun) / sizeof (TargetLun[0]); if (ParseUnitAddressHexList ( OfwNode[2].UnitAddress, TargetLun, &NumEntries ) != RETURN_SUCCESS ) { return RETURN_UNSUPPORTED; } Written = UnicodeSPrintAsciiFormat ( Translated, *TranslatedSize * sizeof (*Translated), // BufferSize in bytes "%s/Scsi(0x%Lx,0x%Lx)", VenHwString, TargetLun[0], TargetLun[1] ); } else if (NumNodes >= 2 && SubstringEq (OfwNode[1].DriverName, "ethernet-phy")) { // // OpenFirmware device path (virtio-net NIC): // // /virtio-mmio@000000000a003e00/ethernet-phy@0 // ^ ^ // | fixed // base address of virtio-mmio register block // // UEFI device path prefix (dependent on presence of nonzero PCI function): // // /MAC( // Written = UnicodeSPrintAsciiFormat ( Translated, *TranslatedSize * sizeof (*Translated), // BufferSize in bytes "%s/MAC(", VenHwString ); } else { return RETURN_UNSUPPORTED; } // // There's no way to differentiate between "completely used up without // truncation" and "truncated", so treat the former as the latter, and return // success only for "some room left unused". // if (Written + 1 < *TranslatedSize) { *TranslatedSize = Written; return RETURN_SUCCESS; } return RETURN_BUFFER_TOO_SMALL; } /** Translate an array of OpenFirmware device nodes to a UEFI device path fragment. @param[in] OfwNode Array of OpenFirmware device nodes to translate, constituting the beginning of an OpenFirmware device path. @param[in] NumNodes Number of elements in OfwNode. @param[in] ExtraPciRoots An EXTRA_ROOT_BUS_MAP object created with CreateExtraRootBusMap(), to be used for translating positions of extra root buses to bus numbers. @param[out] Translated Destination array receiving the UEFI path fragment, allocated by the caller. If the return value differs from RETURN_SUCCESS, its contents is indeterminate. @param[in out] TranslatedSize On input, the number of CHAR16's in Translated. On RETURN_SUCCESS this parameter is assigned the number of non-NUL CHAR16's written to Translated. In case of other return values, TranslatedSize is indeterminate. @retval RETURN_SUCCESS Translation successful. @retval RETURN_BUFFER_TOO_SMALL The translation does not fit into the number of bytes provided. @retval RETURN_UNSUPPORTED The array of OpenFirmware device nodes can't be translated in the current implementation. @retval RETURN_PROTOCOL_ERROR The array of OpenFirmware device nodes has been (partially) recognized, but it contains a logic error / doesn't match system state. **/ STATIC RETURN_STATUS TranslateOfwNodes ( IN CONST OFW_NODE *OfwNode, IN UINTN NumNodes, IN CONST EXTRA_ROOT_BUS_MAP *ExtraPciRoots, OUT CHAR16 *Translated, IN OUT UINTN *TranslatedSize ) { RETURN_STATUS Status; Status = RETURN_UNSUPPORTED; if (FeaturePcdGet (PcdQemuBootOrderPciTranslation)) { Status = TranslatePciOfwNodes (OfwNode, NumNodes, ExtraPciRoots, Translated, TranslatedSize); } if (Status == RETURN_UNSUPPORTED && FeaturePcdGet (PcdQemuBootOrderMmioTranslation)) { Status = TranslateMmioOfwNodes (OfwNode, NumNodes, Translated, TranslatedSize); } return Status; } /** Translate an OpenFirmware device path fragment to a UEFI device path fragment, and advance in the input string. @param[in out] Ptr Address of the pointer pointing to the start of the path string. After successful translation (RETURN_SUCCESS) or at least successful parsing (RETURN_UNSUPPORTED, RETURN_BUFFER_TOO_SMALL), *Ptr is set to the byte immediately following the consumed characters. In other error cases, it points to the byte that caused the error. @param[in] ExtraPciRoots An EXTRA_ROOT_BUS_MAP object created with CreateExtraRootBusMap(), to be used for translating positions of extra root buses to bus numbers. @param[out] Translated Destination array receiving the UEFI path fragment, allocated by the caller. If the return value differs from RETURN_SUCCESS, its contents is indeterminate. @param[in out] TranslatedSize On input, the number of CHAR16's in Translated. On RETURN_SUCCESS this parameter is assigned the number of non-NUL CHAR16's written to Translated. In case of other return values, TranslatedSize is indeterminate. @retval RETURN_SUCCESS Translation successful. @retval RETURN_BUFFER_TOO_SMALL The OpenFirmware device path was parsed successfully, but its translation did not fit into the number of bytes provided. Further calls to this function are possible. @retval RETURN_UNSUPPORTED The OpenFirmware device path was parsed successfully, but it can't be translated in the current implementation. Further calls to this function are possible. @retval RETURN_PROTOCOL_ERROR The OpenFirmware device path has been (partially) recognized, but it contains a logic error / doesn't match system state. Further calls to this function are possible. @retval RETURN_NOT_FOUND Translation terminated. On input, *Ptr was pointing to the empty string or "HALT". On output, *Ptr points to the empty string (ie. "HALT" is consumed transparently when present). @retval RETURN_INVALID_PARAMETER Parse error. This is a permanent error. **/ STATIC RETURN_STATUS TranslateOfwPath ( IN OUT CONST CHAR8 **Ptr, IN CONST EXTRA_ROOT_BUS_MAP *ExtraPciRoots, OUT CHAR16 *Translated, IN OUT UINTN *TranslatedSize ) { UINTN NumNodes; RETURN_STATUS Status; OFW_NODE Node[EXAMINED_OFW_NODES]; BOOLEAN IsFinal; OFW_NODE Skip; IsFinal = FALSE; NumNodes = 0; if (AsciiStrCmp (*Ptr, "HALT") == 0) { *Ptr += 4; Status = RETURN_NOT_FOUND; } else { Status = ParseOfwNode (Ptr, &Node[NumNodes], &IsFinal); } if (Status == RETURN_NOT_FOUND) { DEBUG ((DEBUG_VERBOSE, "%a: no more nodes\n", __FUNCTION__)); return RETURN_NOT_FOUND; } while (Status == RETURN_SUCCESS && !IsFinal) { ++NumNodes; Status = ParseOfwNode ( Ptr, (NumNodes < EXAMINED_OFW_NODES) ? &Node[NumNodes] : &Skip, &IsFinal ); } switch (Status) { case RETURN_SUCCESS: ++NumNodes; break; case RETURN_INVALID_PARAMETER: DEBUG ((DEBUG_VERBOSE, "%a: parse error\n", __FUNCTION__)); return RETURN_INVALID_PARAMETER; default: ASSERT (0); } Status = TranslateOfwNodes ( Node, NumNodes < EXAMINED_OFW_NODES ? NumNodes : EXAMINED_OFW_NODES, ExtraPciRoots, Translated, TranslatedSize); switch (Status) { case RETURN_SUCCESS: DEBUG ((DEBUG_VERBOSE, "%a: success: \"%s\"\n", __FUNCTION__, Translated)); break; case RETURN_BUFFER_TOO_SMALL: DEBUG ((DEBUG_VERBOSE, "%a: buffer too small\n", __FUNCTION__)); break; case RETURN_UNSUPPORTED: DEBUG ((DEBUG_VERBOSE, "%a: unsupported\n", __FUNCTION__)); break; case RETURN_PROTOCOL_ERROR: DEBUG ((DEBUG_VERBOSE, "%a: logic error / system state mismatch\n", __FUNCTION__)); break; default: ASSERT (0); } return Status; } /** Convert the UEFI DevicePath to full text representation with DevPathToText, then match the UEFI device path fragment in Translated against it. @param[in] Translated UEFI device path fragment, translated from OpenFirmware format, to search for. @param[in] TranslatedLength The length of Translated in CHAR16's. @param[in] DevicePath Boot option device path whose textual rendering to search in. @param[in] DevPathToText Binary-to-text conversion protocol for DevicePath. @retval TRUE If Translated was found at the beginning of DevicePath after converting the latter to text. @retval FALSE If DevicePath was NULL, or it could not be converted, or there was no match. **/ STATIC BOOLEAN Match ( IN CONST CHAR16 *Translated, IN UINTN TranslatedLength, IN EFI_DEVICE_PATH_PROTOCOL *DevicePath ) { CHAR16 *Converted; BOOLEAN Result; VOID *FileBuffer; UINTN FileSize; EFI_DEVICE_PATH_PROTOCOL *AbsDevicePath; CHAR16 *AbsConverted; BOOLEAN Shortform; EFI_DEVICE_PATH_PROTOCOL *Node; Converted = ConvertDevicePathToText ( DevicePath, FALSE, // DisplayOnly FALSE // AllowShortcuts ); if (Converted == NULL) { return FALSE; } Result = FALSE; Shortform = FALSE; // // Expand the short-form device path to full device path // if ((DevicePathType (DevicePath) == MEDIA_DEVICE_PATH) && (DevicePathSubType (DevicePath) == MEDIA_HARDDRIVE_DP)) { // // Harddrive shortform device path // Shortform = TRUE; } else if ((DevicePathType (DevicePath) == MEDIA_DEVICE_PATH) && (DevicePathSubType (DevicePath) == MEDIA_FILEPATH_DP)) { // // File-path shortform device path // Shortform = TRUE; } else if ((DevicePathType (DevicePath) == MESSAGING_DEVICE_PATH) && (DevicePathSubType (DevicePath) == MSG_URI_DP)) { // // URI shortform device path // Shortform = TRUE; } else { for ( Node = DevicePath ; !IsDevicePathEnd (Node) ; Node = NextDevicePathNode (Node) ) { if ((DevicePathType (Node) == MESSAGING_DEVICE_PATH) && ((DevicePathSubType (Node) == MSG_USB_CLASS_DP) || (DevicePathSubType (Node) == MSG_USB_WWID_DP))) { Shortform = TRUE; break; } } } // // Attempt to expand any relative UEFI device path to // an absolute device path first. // if (Shortform) { FileBuffer = EfiBootManagerGetLoadOptionBuffer ( DevicePath, &AbsDevicePath, &FileSize ); if (FileBuffer == NULL) { goto Exit; } FreePool (FileBuffer); AbsConverted = ConvertDevicePathToText (AbsDevicePath, FALSE, FALSE); FreePool (AbsDevicePath); if (AbsConverted == NULL) { goto Exit; } DEBUG ((DEBUG_VERBOSE, "%a: expanded relative device path \"%s\" for prefix matching\n", __FUNCTION__, Converted)); FreePool (Converted); Converted = AbsConverted; } // // Is Translated a prefix of Converted? // Result = (BOOLEAN)(StrnCmp (Converted, Translated, TranslatedLength) == 0); DEBUG (( DEBUG_VERBOSE, "%a: against \"%s\": %a\n", __FUNCTION__, Converted, Result ? "match" : "no match" )); Exit: FreePool (Converted); return Result; } /** Append some of the unselected active boot options to the boot order. This function should accommodate any further policy changes in "boot option survival". Currently we're adding back everything that starts with neither PciRoot() nor HD() nor a virtio-mmio VenHw() node. @param[in,out] BootOrder The structure holding the boot order to complete. The caller is responsible for initializing (and potentially populating) it before calling this function. @param[in,out] ActiveOption The array of active boot options to scan. Entries marked as Appended will be skipped. Those of the rest that satisfy the survival policy will be added to BootOrder with BootOrderAppend(). @param[in] ActiveCount Number of elements in ActiveOption. @retval RETURN_SUCCESS BootOrder has been extended with any eligible boot options. @return Error codes returned by BootOrderAppend(). **/ STATIC RETURN_STATUS BootOrderComplete ( IN OUT BOOT_ORDER *BootOrder, IN OUT ACTIVE_OPTION *ActiveOption, IN UINTN ActiveCount ) { RETURN_STATUS Status; UINTN Idx; Status = RETURN_SUCCESS; Idx = 0; while (!RETURN_ERROR (Status) && Idx < ActiveCount) { if (!ActiveOption[Idx].Appended) { CONST EFI_BOOT_MANAGER_LOAD_OPTION *Current; CONST EFI_DEVICE_PATH_PROTOCOL *FirstNode; Current = ActiveOption[Idx].BootOption; FirstNode = Current->FilePath; if (FirstNode != NULL) { CHAR16 *Converted; STATIC CHAR16 ConvFallBack[] = L""; BOOLEAN Keep; Converted = ConvertDevicePathToText (FirstNode, FALSE, FALSE); if (Converted == NULL) { Converted = ConvFallBack; } Keep = TRUE; if (DevicePathType(FirstNode) == MEDIA_DEVICE_PATH && DevicePathSubType(FirstNode) == MEDIA_HARDDRIVE_DP) { // // drop HD() // Keep = FALSE; } else if (DevicePathType(FirstNode) == ACPI_DEVICE_PATH && DevicePathSubType(FirstNode) == ACPI_DP) { ACPI_HID_DEVICE_PATH *Acpi; Acpi = (ACPI_HID_DEVICE_PATH *) FirstNode; if ((Acpi->HID & PNP_EISA_ID_MASK) == PNP_EISA_ID_CONST && EISA_ID_TO_NUM (Acpi->HID) == 0x0a03) { // // drop PciRoot() if we enabled the user to select PCI-like boot // options, by providing translation for such OFW device path // fragments // Keep = !FeaturePcdGet (PcdQemuBootOrderPciTranslation); } } else if (DevicePathType(FirstNode) == HARDWARE_DEVICE_PATH && DevicePathSubType(FirstNode) == HW_VENDOR_DP) { VENDOR_DEVICE_PATH *VenHw; VenHw = (VENDOR_DEVICE_PATH *)FirstNode; if (CompareGuid (&VenHw->Guid, &gVirtioMmioTransportGuid)) { // // drop virtio-mmio if we enabled the user to select boot options // referencing such device paths // Keep = !FeaturePcdGet (PcdQemuBootOrderMmioTranslation); } } if (Keep) { Status = BootOrderAppend (BootOrder, &ActiveOption[Idx]); if (!RETURN_ERROR (Status)) { DEBUG ((DEBUG_VERBOSE, "%a: keeping \"%s\"\n", __FUNCTION__, Converted)); } } else { DEBUG ((DEBUG_VERBOSE, "%a: dropping \"%s\"\n", __FUNCTION__, Converted)); } if (Converted != ConvFallBack) { FreePool (Converted); } } } ++Idx; } return Status; } /** Delete Boot#### variables that stand for such active boot options that have been dropped (ie. have not been selected by either matching or "survival policy"). @param[in] ActiveOption The array of active boot options to scan. Each entry not marked as appended will trigger the deletion of the matching Boot#### variable. @param[in] ActiveCount Number of elements in ActiveOption. **/ STATIC VOID PruneBootVariables ( IN CONST ACTIVE_OPTION *ActiveOption, IN UINTN ActiveCount ) { UINTN Idx; for (Idx = 0; Idx < ActiveCount; ++Idx) { if (!ActiveOption[Idx].Appended) { CHAR16 VariableName[9]; UnicodeSPrintAsciiFormat (VariableName, sizeof VariableName, "Boot%04x", ActiveOption[Idx].BootOption->OptionNumber); // // "The space consumed by the deleted variable may not be available until // the next power cycle", but that's good enough. // gRT->SetVariable (VariableName, &gEfiGlobalVariableGuid, 0, // Attributes, 0 means deletion 0, // DataSize, 0 means deletion NULL // Data ); } } } /** Set the boot order based on configuration retrieved from QEMU. Attempt to retrieve the "bootorder" fw_cfg file from QEMU. Translate the OpenFirmware device paths therein to UEFI device path fragments. Match the translated fragments against the current list of boot options, and rewrite the BootOrder NvVar so that it corresponds to the order described in fw_cfg. Platform BDS should call this function after EfiBootManagerConnectAll () and EfiBootManagerRefreshAllBootOption () return. @retval RETURN_SUCCESS BootOrder NvVar rewritten. @retval RETURN_UNSUPPORTED QEMU's fw_cfg is not supported. @retval RETURN_NOT_FOUND Empty or nonexistent "bootorder" fw_cfg file, or no match found between the "bootorder" fw_cfg file and BootOptionList. @retval RETURN_INVALID_PARAMETER Parse error in the "bootorder" fw_cfg file. @retval RETURN_OUT_OF_RESOURCES Memory allocation failed. @return Values returned by gBS->LocateProtocol () or gRT->SetVariable (). **/ RETURN_STATUS SetBootOrderFromQemu ( VOID ) { RETURN_STATUS Status; FIRMWARE_CONFIG_ITEM FwCfgItem; UINTN FwCfgSize; CHAR8 *FwCfg; CONST CHAR8 *FwCfgPtr; BOOT_ORDER BootOrder; ACTIVE_OPTION *ActiveOption; UINTN ActiveCount; EXTRA_ROOT_BUS_MAP *ExtraPciRoots; UINTN TranslatedSize; CHAR16 Translated[TRANSLATION_OUTPUT_SIZE]; EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions; UINTN BootOptionCount; Status = QemuFwCfgFindFile ("bootorder", &FwCfgItem, &FwCfgSize); if (Status != RETURN_SUCCESS) { return Status; } if (FwCfgSize == 0) { return RETURN_NOT_FOUND; } FwCfg = AllocatePool (FwCfgSize); if (FwCfg == NULL) { return RETURN_OUT_OF_RESOURCES; } QemuFwCfgSelectItem (FwCfgItem); QemuFwCfgReadBytes (FwCfgSize, FwCfg); if (FwCfg[FwCfgSize - 1] != '\0') { Status = RETURN_INVALID_PARAMETER; goto ErrorFreeFwCfg; } DEBUG ((DEBUG_VERBOSE, "%a: FwCfg:\n", __FUNCTION__)); DEBUG ((DEBUG_VERBOSE, "%a\n", FwCfg)); DEBUG ((DEBUG_VERBOSE, "%a: FwCfg: \n", __FUNCTION__)); FwCfgPtr = FwCfg; BootOrder.Produced = 0; BootOrder.Allocated = 1; BootOrder.Data = AllocatePool ( BootOrder.Allocated * sizeof (*BootOrder.Data) ); if (BootOrder.Data == NULL) { Status = RETURN_OUT_OF_RESOURCES; goto ErrorFreeFwCfg; } BootOptions = EfiBootManagerGetLoadOptions ( &BootOptionCount, LoadOptionTypeBoot ); if (BootOptions == NULL) { Status = RETURN_NOT_FOUND; goto ErrorFreeBootOrder; } Status = CollectActiveOptions ( BootOptions, BootOptionCount, &ActiveOption, &ActiveCount ); if (RETURN_ERROR (Status)) { goto ErrorFreeBootOptions; } if (FeaturePcdGet (PcdQemuBootOrderPciTranslation)) { Status = CreateExtraRootBusMap (&ExtraPciRoots); if (EFI_ERROR (Status)) { goto ErrorFreeActiveOption; } } else { ExtraPciRoots = NULL; } // // translate each OpenFirmware path // TranslatedSize = sizeof (Translated) / sizeof (Translated[0]); Status = TranslateOfwPath (&FwCfgPtr, ExtraPciRoots, Translated, &TranslatedSize); while (Status == RETURN_SUCCESS || Status == RETURN_UNSUPPORTED || Status == RETURN_PROTOCOL_ERROR || Status == RETURN_BUFFER_TOO_SMALL) { if (Status == RETURN_SUCCESS) { UINTN Idx; // // match translated OpenFirmware path against all active boot options // for (Idx = 0; Idx < ActiveCount; ++Idx) { if (Match ( Translated, TranslatedSize, // contains length, not size, in CHAR16's here ActiveOption[Idx].BootOption->FilePath ) ) { // // match found, store ID and continue with next OpenFirmware path // Status = BootOrderAppend (&BootOrder, &ActiveOption[Idx]); if (Status != RETURN_SUCCESS) { goto ErrorFreeExtraPciRoots; } break; } } // scanned all active boot options } // translation successful TranslatedSize = sizeof (Translated) / sizeof (Translated[0]); Status = TranslateOfwPath (&FwCfgPtr, ExtraPciRoots, Translated, &TranslatedSize); } // scanning of OpenFirmware paths done if (Status == RETURN_NOT_FOUND && BootOrder.Produced > 0) { // // No more OpenFirmware paths, some matches found: rewrite BootOrder NvVar. // Some of the active boot options that have not been selected over fw_cfg // should be preserved at the end of the boot order. // Status = BootOrderComplete (&BootOrder, ActiveOption, ActiveCount); if (RETURN_ERROR (Status)) { goto ErrorFreeExtraPciRoots; } // // See Table 10 in the UEFI Spec 2.3.1 with Errata C for the required // attributes. // Status = gRT->SetVariable ( L"BootOrder", &gEfiGlobalVariableGuid, EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS, BootOrder.Produced * sizeof (*BootOrder.Data), BootOrder.Data ); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_ERROR, "%a: setting BootOrder: %r\n", __FUNCTION__, Status)); goto ErrorFreeExtraPciRoots; } DEBUG ((DEBUG_INFO, "%a: setting BootOrder: success\n", __FUNCTION__)); PruneBootVariables (ActiveOption, ActiveCount); } ErrorFreeExtraPciRoots: if (ExtraPciRoots != NULL) { DestroyExtraRootBusMap (ExtraPciRoots); } ErrorFreeActiveOption: FreePool (ActiveOption); ErrorFreeBootOptions: EfiBootManagerFreeLoadOptions (BootOptions, BootOptionCount); ErrorFreeBootOrder: FreePool (BootOrder.Data); ErrorFreeFwCfg: FreePool (FwCfg); return Status; } /** Calculate the number of seconds we should be showing the FrontPage progress bar for. @return The TimeoutDefault argument for PlatformBdsEnterFrontPage(). **/ UINT16 GetFrontPageTimeoutFromQemu ( VOID ) { FIRMWARE_CONFIG_ITEM BootMenuWaitItem; UINTN BootMenuWaitSize; QemuFwCfgSelectItem (QemuFwCfgItemBootMenu); if (QemuFwCfgRead16 () == 0) { // // The user specified "-boot menu=off", or didn't specify "-boot // menu=(on|off)" at all. Return the platform default. // return PcdGet16 (PcdPlatformBootTimeOut); } if (RETURN_ERROR (QemuFwCfgFindFile ("etc/boot-menu-wait", &BootMenuWaitItem, &BootMenuWaitSize)) || BootMenuWaitSize != sizeof (UINT16)) { // // "-boot menu=on" was specified without "splash-time=N". In this case, // return three seconds if the platform default would cause us to skip the // front page, and return the platform default otherwise. // UINT16 Timeout; Timeout = PcdGet16 (PcdPlatformBootTimeOut); if (Timeout == 0) { Timeout = 3; } return Timeout; } // // "-boot menu=on,splash-time=N" was specified, where N is in units of // milliseconds. The Intel BDS Front Page progress bar only supports whole // seconds, round N up. // QemuFwCfgSelectItem (BootMenuWaitItem); return (UINT16)((QemuFwCfgRead16 () + 999) / 1000); }