/** @file
Copyright (c) 2014 - 2022, Intel Corporation. All rights reserved.
Copyright (c) Microsoft Corporation.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "UfsPassThru.h"
//
// Template for Ufs Pass Thru private data.
//
UFS_PASS_THRU_PRIVATE_DATA gUfsPassThruTemplate = {
UFS_PASS_THRU_SIG, // Signature
NULL, // Handle
{ // ExtScsiPassThruMode
0xFFFFFFFF,
EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_PHYSICAL | EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL | EFI_EXT_SCSI_PASS_THRU_ATTRIBUTES_NONBLOCKIO,
sizeof (UINTN)
},
{ // ExtScsiPassThru
NULL,
UfsPassThruPassThru,
UfsPassThruGetNextTargetLun,
UfsPassThruBuildDevicePath,
UfsPassThruGetTargetLun,
UfsPassThruResetChannel,
UfsPassThruResetTargetLun,
UfsPassThruGetNextTarget
},
{ // UfsDevConfig
UfsRwUfsDescriptor,
UfsRwUfsFlag,
UfsRwUfsAttribute
},
0, // UfsHostController
0, // UfsHcBase
{ 0, 0 }, // UfsHcInfo
{ NULL, NULL }, // UfsHcDriverInterface
0, // TaskTag
0, // UtpTrlBase
0, // Nutrs
0, // TrlMapping
0, // UtpTmrlBase
0, // Nutmrs
0, // TmrlMapping
{ // Luns
{
UFS_LUN_0, // Ufs Common Lun 0
UFS_LUN_1, // Ufs Common Lun 1
UFS_LUN_2, // Ufs Common Lun 2
UFS_LUN_3, // Ufs Common Lun 3
UFS_LUN_4, // Ufs Common Lun 4
UFS_LUN_5, // Ufs Common Lun 5
UFS_LUN_6, // Ufs Common Lun 6
UFS_LUN_7, // Ufs Common Lun 7
UFS_WLUN_REPORT_LUNS, // Ufs Reports Luns Well Known Lun
UFS_WLUN_UFS_DEV, // Ufs Device Well Known Lun
UFS_WLUN_BOOT, // Ufs Boot Well Known Lun
UFS_WLUN_RPMB // RPMB Well Known Lun
},
0x0000, // By default don't expose any Luns.
0x0
},
NULL, // TimerEvent
{ // Queue
NULL,
NULL
}
};
EFI_DRIVER_BINDING_PROTOCOL gUfsPassThruDriverBinding = {
UfsPassThruDriverBindingSupported,
UfsPassThruDriverBindingStart,
UfsPassThruDriverBindingStop,
0x10,
NULL,
NULL
};
UFS_DEVICE_PATH mUfsDevicePathTemplate = {
{
MESSAGING_DEVICE_PATH,
MSG_UFS_DP,
{
(UINT8)(sizeof (UFS_DEVICE_PATH)),
(UINT8)((sizeof (UFS_DEVICE_PATH)) >> 8)
}
},
0,
0
};
UINT8 mUfsTargetId[TARGET_MAX_BYTES];
GLOBAL_REMOVE_IF_UNREFERENCED EDKII_UFS_HC_PLATFORM_PROTOCOL *mUfsHcPlatform;
/**
Sends a SCSI Request Packet to a SCSI device that is attached to the SCSI channel. This function
supports both blocking I/O and nonblocking I/O. The blocking I/O functionality is required, and the
nonblocking I/O functionality is optional.
@param This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.
@param Target The Target is an array of size TARGET_MAX_BYTES and it represents
the id of the SCSI device to send the SCSI Request Packet. Each
transport driver may choose to utilize a subset of this size to suit the needs
of transport target representation. For example, a Fibre Channel driver
may use only 8 bytes (WWN) to represent an FC target.
@param Lun The LUN of the SCSI device to send the SCSI Request Packet.
@param Packet A pointer to the SCSI Request Packet to send to the SCSI device
specified by Target and Lun.
@param Event If nonblocking I/O is not supported then Event is ignored, and blocking
I/O is performed. If Event is NULL, then blocking I/O is performed. If
Event is not NULL and non blocking I/O is supported, then
nonblocking I/O is performed, and Event will be signaled when the
SCSI Request Packet completes.
@retval EFI_SUCCESS The SCSI Request Packet was sent by the host. For bi-directional
commands, InTransferLength bytes were transferred from
InDataBuffer. For write and bi-directional commands,
OutTransferLength bytes were transferred by
OutDataBuffer.
@retval EFI_BAD_BUFFER_SIZE The SCSI Request Packet was not executed. The number of bytes that
could be transferred is returned in InTransferLength. For write
and bi-directional commands, OutTransferLength bytes were
transferred by OutDataBuffer.
@retval EFI_NOT_READY The SCSI Request Packet could not be sent because there are too many
SCSI Request Packets already queued. The caller may retry again later.
@retval EFI_DEVICE_ERROR A device error occurred while attempting to send the SCSI Request
Packet.
@retval EFI_INVALID_PARAMETER Target, Lun, or the contents of ScsiRequestPacket are invalid.
@retval EFI_UNSUPPORTED The command described by the SCSI Request Packet is not supported
by the host adapter. This includes the case of Bi-directional SCSI
commands not supported by the implementation. The SCSI Request
Packet was not sent, so no additional status information is available.
@retval EFI_TIMEOUT A timeout occurred while waiting for the SCSI Request Packet to execute.
**/
EFI_STATUS
EFIAPI
UfsPassThruPassThru (
IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,
IN UINT8 *Target,
IN UINT64 Lun,
IN OUT EFI_EXT_SCSI_PASS_THRU_SCSI_REQUEST_PACKET *Packet,
IN EFI_EVENT Event OPTIONAL
)
{
EFI_STATUS Status;
UFS_PASS_THRU_PRIVATE_DATA *Private;
UINT8 UfsLun;
UINT16 Index;
Private = UFS_PASS_THRU_PRIVATE_DATA_FROM_THIS (This);
if ((Packet == NULL) || (Packet->Cdb == NULL)) {
return EFI_INVALID_PARAMETER;
}
//
// Don't support variable length CDB
//
if ((Packet->CdbLength != 6) && (Packet->CdbLength != 10) &&
(Packet->CdbLength != 12) && (Packet->CdbLength != 16))
{
return EFI_INVALID_PARAMETER;
}
if ((Packet->SenseDataLength != 0) && (Packet->SenseData == NULL)) {
return EFI_INVALID_PARAMETER;
}
if ((This->Mode->IoAlign > 1) && !IS_ALIGNED (Packet->InDataBuffer, This->Mode->IoAlign)) {
return EFI_INVALID_PARAMETER;
}
if ((This->Mode->IoAlign > 1) && !IS_ALIGNED (Packet->OutDataBuffer, This->Mode->IoAlign)) {
return EFI_INVALID_PARAMETER;
}
if ((This->Mode->IoAlign > 1) && !IS_ALIGNED (Packet->SenseData, This->Mode->IoAlign)) {
return EFI_INVALID_PARAMETER;
}
//
// For UFS 2.0 compatible device, 0 is always used to represent the location of the UFS device.
//
SetMem (mUfsTargetId, TARGET_MAX_BYTES, 0x00);
if ((Target == NULL) || (CompareMem (Target, mUfsTargetId, TARGET_MAX_BYTES) != 0)) {
return EFI_INVALID_PARAMETER;
}
//
// UFS 2.0 spec Section 10.6.7 - Translation of 8-bit UFS LUN to 64-bit SCSI LUN Address
// 0xC1 in the first 8 bits of the 64-bit address indicates a well known LUN address in the SAM SCSI format.
// The second 8 bits of the 64-bit address saves the corresponding 8-bit UFS LUN.
//
if ((UINT8)Lun == UFS_WLUN_PREFIX) {
UfsLun = BIT7 | (((UINT8 *)&Lun)[1] & 0xFF);
} else if ((UINT8)Lun == 0) {
UfsLun = ((UINT8 *)&Lun)[1] & 0xFF;
} else {
return EFI_INVALID_PARAMETER;
}
for (Index = 0; Index < UFS_MAX_LUNS; Index++) {
if ((Private->Luns.BitMask & (BIT0 << Index)) == 0) {
continue;
}
if (Private->Luns.Lun[Index] == UfsLun) {
break;
}
}
if (Index == UFS_MAX_LUNS) {
return EFI_INVALID_PARAMETER;
}
Status = UfsExecScsiCmds (Private, UfsLun, Packet, Event);
return Status;
}
/**
Used to retrieve the list of legal Target IDs and LUNs for SCSI devices on a SCSI channel. These
can either be the list SCSI devices that are actually present on the SCSI channel, or the list of legal
Target Ids and LUNs for the SCSI channel. Regardless, the caller of this function must probe the
Target ID and LUN returned to see if a SCSI device is actually present at that location on the SCSI
channel.
@param This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.
@param Target On input, a pointer to the Target ID (an array of size
TARGET_MAX_BYTES) of a SCSI device present on the SCSI channel.
On output, a pointer to the Target ID (an array of
TARGET_MAX_BYTES) of the next SCSI device present on a SCSI
channel. An input value of 0xF(all bytes in the array are 0xF) in the
Target array retrieves the Target ID of the first SCSI device present on a
SCSI channel.
@param Lun On input, a pointer to the LUN of a SCSI device present on the SCSI
channel. On output, a pointer to the LUN of the next SCSI device present
on a SCSI channel.
@retval EFI_SUCCESS The Target ID and LUN of the next SCSI device on the SCSI
channel was returned in Target and Lun.
@retval EFI_INVALID_PARAMETER Target array is not all 0xF, and Target and Lun were
not returned on a previous call to GetNextTargetLun().
@retval EFI_NOT_FOUND There are no more SCSI devices on this SCSI channel.
**/
EFI_STATUS
EFIAPI
UfsPassThruGetNextTargetLun (
IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,
IN OUT UINT8 **Target,
IN OUT UINT64 *Lun
)
{
UFS_PASS_THRU_PRIVATE_DATA *Private;
UINT8 UfsLun;
UINT16 Index;
UINT16 Next;
Private = UFS_PASS_THRU_PRIVATE_DATA_FROM_THIS (This);
if ((Target == NULL) || (Lun == NULL)) {
return EFI_INVALID_PARAMETER;
}
if (*Target == NULL) {
return EFI_INVALID_PARAMETER;
}
UfsLun = 0;
SetMem (mUfsTargetId, TARGET_MAX_BYTES, 0xFF);
if (CompareMem (*Target, mUfsTargetId, TARGET_MAX_BYTES) == 0) {
//
// If the array is all 0xFF's, return the first exposed Lun to caller.
//
SetMem (*Target, TARGET_MAX_BYTES, 0x00);
for (Index = 0; Index < UFS_MAX_LUNS; Index++) {
if ((Private->Luns.BitMask & (BIT0 << Index)) != 0) {
UfsLun = Private->Luns.Lun[Index];
break;
}
}
if (Index != UFS_MAX_LUNS) {
*Lun = 0;
if ((UfsLun & BIT7) == BIT7) {
((UINT8 *)Lun)[0] = UFS_WLUN_PREFIX;
((UINT8 *)Lun)[1] = UfsLun & ~BIT7;
} else {
((UINT8 *)Lun)[1] = UfsLun;
}
return EFI_SUCCESS;
} else {
return EFI_NOT_FOUND;
}
}
SetMem (mUfsTargetId, TARGET_MAX_BYTES, 0x00);
if (CompareMem (*Target, mUfsTargetId, TARGET_MAX_BYTES) == 0) {
if (((UINT8 *)Lun)[0] == UFS_WLUN_PREFIX) {
UfsLun = BIT7 | (((UINT8 *)Lun)[1] & 0xFF);
} else if (((UINT8 *)Lun)[0] == 0) {
UfsLun = ((UINT8 *)Lun)[1] & 0xFF;
} else {
return EFI_NOT_FOUND;
}
for (Index = 0; Index < UFS_MAX_LUNS; Index++) {
if ((Private->Luns.BitMask & (BIT0 << Index)) == 0) {
continue;
}
if (Private->Luns.Lun[Index] != UfsLun) {
continue;
}
for (Next = Index + 1; Next < UFS_MAX_LUNS; Next++) {
if ((Private->Luns.BitMask & (BIT0 << Next)) != 0) {
UfsLun = Private->Luns.Lun[Next];
break;
}
}
if (Next == UFS_MAX_LUNS) {
return EFI_NOT_FOUND;
} else {
break;
}
}
if (Index != UFS_MAX_LUNS) {
*Lun = 0;
if ((UfsLun & BIT7) == BIT7) {
((UINT8 *)Lun)[0] = UFS_WLUN_PREFIX;
((UINT8 *)Lun)[1] = UfsLun & ~BIT7;
} else {
((UINT8 *)Lun)[1] = UfsLun;
}
return EFI_SUCCESS;
} else {
return EFI_NOT_FOUND;
}
}
return EFI_NOT_FOUND;
}
/**
Used to allocate and build a device path node for a SCSI device on a SCSI channel.
@param This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.
@param Target The Target is an array of size TARGET_MAX_BYTES and it specifies the
Target ID of the SCSI device for which a device path node is to be
allocated and built. Transport drivers may chose to utilize a subset of
this size to suit the representation of targets. For example, a Fibre
Channel driver may use only 8 bytes (WWN) in the array to represent a
FC target.
@param Lun The LUN of the SCSI device for which a device path node is to be
allocated and built.
@param DevicePath A pointer to a single device path node that describes the SCSI device
specified by Target and Lun. This function is responsible for
allocating the buffer DevicePath with the boot service
AllocatePool(). It is the caller's responsibility to free
DevicePath when the caller is finished with DevicePath.
@retval EFI_SUCCESS The device path node that describes the SCSI device specified by
Target and Lun was allocated and returned in
DevicePath.
@retval EFI_INVALID_PARAMETER DevicePath is NULL.
@retval EFI_NOT_FOUND The SCSI devices specified by Target and Lun does not exist
on the SCSI channel.
@retval EFI_OUT_OF_RESOURCES There are not enough resources to allocate DevicePath.
**/
EFI_STATUS
EFIAPI
UfsPassThruBuildDevicePath (
IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,
IN UINT8 *Target,
IN UINT64 Lun,
IN OUT EFI_DEVICE_PATH_PROTOCOL **DevicePath
)
{
UFS_PASS_THRU_PRIVATE_DATA *Private;
EFI_DEV_PATH *DevicePathNode;
UINT8 UfsLun;
UINT16 Index;
Private = UFS_PASS_THRU_PRIVATE_DATA_FROM_THIS (This);
//
// Validate parameters passed in.
//
SetMem (mUfsTargetId, TARGET_MAX_BYTES, 0x00);
if (CompareMem (Target, mUfsTargetId, TARGET_MAX_BYTES) != 0) {
return EFI_INVALID_PARAMETER;
}
if ((UINT8)Lun == UFS_WLUN_PREFIX) {
UfsLun = BIT7 | (((UINT8 *)&Lun)[1] & 0xFF);
} else if ((UINT8)Lun == 0) {
UfsLun = ((UINT8 *)&Lun)[1] & 0xFF;
} else {
return EFI_NOT_FOUND;
}
for (Index = 0; Index < UFS_MAX_LUNS; Index++) {
if ((Private->Luns.BitMask & (BIT0 << Index)) == 0) {
continue;
}
if (Private->Luns.Lun[Index] == UfsLun) {
break;
}
}
if (Index == UFS_MAX_LUNS) {
return EFI_NOT_FOUND;
}
DevicePathNode = AllocateCopyPool (sizeof (UFS_DEVICE_PATH), &mUfsDevicePathTemplate);
if (DevicePathNode == NULL) {
return EFI_OUT_OF_RESOURCES;
}
DevicePathNode->Ufs.Pun = 0;
DevicePathNode->Ufs.Lun = UfsLun;
*DevicePath = (EFI_DEVICE_PATH_PROTOCOL *)DevicePathNode;
return EFI_SUCCESS;
}
/**
Used to translate a device path node to a Target ID and LUN.
@param This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.
@param DevicePath A pointer to a single device path node that describes the SCSI device
on the SCSI channel.
@param Target A pointer to the Target Array which represents the ID of a SCSI device
on the SCSI channel.
@param Lun A pointer to the LUN of a SCSI device on the SCSI channel.
@retval EFI_SUCCESS DevicePath was successfully translated to a Target ID and
LUN, and they were returned in Target and Lun.
@retval EFI_INVALID_PARAMETER DevicePath or Target or Lun is NULL.
@retval EFI_NOT_FOUND A valid translation from DevicePath to a Target ID and LUN
does not exist.
@retval EFI_UNSUPPORTED This driver does not support the device path node type in
DevicePath.
**/
EFI_STATUS
EFIAPI
UfsPassThruGetTargetLun (
IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,
IN EFI_DEVICE_PATH_PROTOCOL *DevicePath,
OUT UINT8 **Target,
OUT UINT64 *Lun
)
{
UFS_PASS_THRU_PRIVATE_DATA *Private;
EFI_DEV_PATH *DevicePathNode;
UINT8 Pun;
UINT8 UfsLun;
UINT16 Index;
Private = UFS_PASS_THRU_PRIVATE_DATA_FROM_THIS (This);
//
// Validate parameters passed in.
//
if ((DevicePath == NULL) || (Target == NULL) || (Lun == NULL)) {
return EFI_INVALID_PARAMETER;
}
if (*Target == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// Check whether the DevicePath belongs to UFS_DEVICE_PATH
//
if ((DevicePath->Type != MESSAGING_DEVICE_PATH) || (DevicePath->SubType != MSG_UFS_DP) ||
(DevicePathNodeLength (DevicePath) != sizeof (UFS_DEVICE_PATH)))
{
return EFI_UNSUPPORTED;
}
DevicePathNode = (EFI_DEV_PATH *)DevicePath;
Pun = (UINT8)DevicePathNode->Ufs.Pun;
UfsLun = (UINT8)DevicePathNode->Ufs.Lun;
if (Pun != 0) {
return EFI_NOT_FOUND;
}
for (Index = 0; Index < UFS_MAX_LUNS; Index++) {
if ((Private->Luns.BitMask & (BIT0 << Index)) == 0) {
continue;
}
if (Private->Luns.Lun[Index] == UfsLun) {
break;
}
}
if (Index == UFS_MAX_LUNS) {
return EFI_NOT_FOUND;
}
SetMem (*Target, TARGET_MAX_BYTES, 0x00);
*Lun = 0;
if ((UfsLun & BIT7) == BIT7) {
((UINT8 *)Lun)[0] = UFS_WLUN_PREFIX;
((UINT8 *)Lun)[1] = UfsLun & ~BIT7;
} else {
((UINT8 *)Lun)[1] = UfsLun;
}
return EFI_SUCCESS;
}
/**
Resets a SCSI channel. This operation resets all the SCSI devices connected to the SCSI channel.
@param This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.
@retval EFI_SUCCESS The SCSI channel was reset.
@retval EFI_DEVICE_ERROR A device error occurred while attempting to reset the SCSI channel.
@retval EFI_TIMEOUT A timeout occurred while attempting to reset the SCSI channel.
@retval EFI_UNSUPPORTED The SCSI channel does not support a channel reset operation.
**/
EFI_STATUS
EFIAPI
UfsPassThruResetChannel (
IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This
)
{
//
// Return success directly then upper layer driver could think reset channel operation is done.
//
return EFI_SUCCESS;
}
/**
Resets a SCSI logical unit that is connected to a SCSI channel.
@param This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.
@param Target The Target is an array of size TARGET_MAX_BYTE and it represents the
target port ID of the SCSI device containing the SCSI logical unit to
reset. Transport drivers may chose to utilize a subset of this array to suit
the representation of their targets.
@param Lun The LUN of the SCSI device to reset.
@retval EFI_SUCCESS The SCSI device specified by Target and Lun was reset.
@retval EFI_INVALID_PARAMETER Target or Lun is NULL.
@retval EFI_TIMEOUT A timeout occurred while attempting to reset the SCSI device
specified by Target and Lun.
@retval EFI_UNSUPPORTED The SCSI channel does not support a target reset operation.
@retval EFI_DEVICE_ERROR A device error occurred while attempting to reset the SCSI device
specified by Target and Lun.
**/
EFI_STATUS
EFIAPI
UfsPassThruResetTargetLun (
IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,
IN UINT8 *Target,
IN UINT64 Lun
)
{
//
// Return success directly then upper layer driver could think reset target LUN operation is done.
//
return EFI_SUCCESS;
}
/**
Used to retrieve the list of legal Target IDs for SCSI devices on a SCSI channel. These can either
be the list SCSI devices that are actually present on the SCSI channel, or the list of legal Target IDs
for the SCSI channel. Regardless, the caller of this function must probe the Target ID returned to
see if a SCSI device is actually present at that location on the SCSI channel.
@param This A pointer to the EFI_EXT_SCSI_PASS_THRU_PROTOCOL instance.
@param Target (TARGET_MAX_BYTES) of a SCSI device present on the SCSI channel.
On output, a pointer to the Target ID (an array of
TARGET_MAX_BYTES) of the next SCSI device present on a SCSI
channel. An input value of 0xF(all bytes in the array are 0xF) in the
Target array retrieves the Target ID of the first SCSI device present on a
SCSI channel.
@retval EFI_SUCCESS The Target ID of the next SCSI device on the SCSI
channel was returned in Target.
@retval EFI_INVALID_PARAMETER Target or Lun is NULL.
@retval EFI_TIMEOUT Target array is not all 0xF, and Target was not
returned on a previous call to GetNextTarget().
@retval EFI_NOT_FOUND There are no more SCSI devices on this SCSI channel.
**/
EFI_STATUS
EFIAPI
UfsPassThruGetNextTarget (
IN EFI_EXT_SCSI_PASS_THRU_PROTOCOL *This,
IN OUT UINT8 **Target
)
{
if ((Target == NULL) || (*Target == NULL)) {
return EFI_INVALID_PARAMETER;
}
SetMem (mUfsTargetId, TARGET_MAX_BYTES, 0xFF);
if (CompareMem (*Target, mUfsTargetId, TARGET_MAX_BYTES) == 0) {
SetMem (*Target, TARGET_MAX_BYTES, 0x00);
return EFI_SUCCESS;
}
return EFI_NOT_FOUND;
}
/**
Tests to see if this driver supports a given controller. If a child device is provided,
it further tests to see if this driver supports creating a handle for the specified child device.
This function checks to see if the driver specified by This supports the device specified by
ControllerHandle. Drivers will typically use the device path attached to
ControllerHandle and/or the services from the bus I/O abstraction attached to
ControllerHandle to determine if the driver supports ControllerHandle. This function
may be called many times during platform initialization. In order to reduce boot times, the tests
performed by this function must be very small, and take as little time as possible to execute. This
function must not change the state of any hardware devices, and this function must be aware that the
device specified by ControllerHandle may already be managed by the same driver or a
different driver. This function must match its calls to AllocatePages() with FreePages(),
AllocatePool() with FreePool(), and OpenProtocol() with CloseProtocol().
Since ControllerHandle may have been previously started by the same driver, if a protocol is
already in the opened state, then it must not be closed with CloseProtocol(). This is required
to guarantee the state of ControllerHandle is not modified by this function.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle The handle of the controller to test. This handle
must support a protocol interface that supplies
an I/O abstraction to the driver.
@param[in] RemainingDevicePath A pointer to the remaining portion of a device path. This
parameter is ignored by device drivers, and is optional for bus
drivers. For bus drivers, if this parameter is not NULL, then
the bus driver must determine if the bus controller specified
by ControllerHandle and the child controller specified
by RemainingDevicePath are both supported by this
bus driver.
@retval EFI_SUCCESS The device specified by ControllerHandle and
RemainingDevicePath is supported by the driver specified by This.
@retval EFI_ALREADY_STARTED The device specified by ControllerHandle and
RemainingDevicePath is already being managed by the driver
specified by This.
@retval EFI_ACCESS_DENIED The device specified by ControllerHandle and
RemainingDevicePath is already being managed by a different
driver or an application that requires exclusive access.
Currently not implemented.
@retval EFI_UNSUPPORTED The device specified by ControllerHandle and
RemainingDevicePath is not supported by the driver specified by This.
**/
EFI_STATUS
EFIAPI
UfsPassThruDriverBindingSupported (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
)
{
EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *ParentDevicePath;
EDKII_UFS_HOST_CONTROLLER_PROTOCOL *UfsHostController;
//
// Ufs Pass Thru driver is a device driver, and should ingore the
// "RemainingDevicePath" according to UEFI spec
//
Status = gBS->OpenProtocol (
Controller,
&gEfiDevicePathProtocolGuid,
(VOID *)&ParentDevicePath,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (EFI_ERROR (Status)) {
//
// EFI_ALREADY_STARTED is also an error
//
return Status;
}
//
// Close the protocol because we don't use it here
//
gBS->CloseProtocol (
Controller,
&gEfiDevicePathProtocolGuid,
This->DriverBindingHandle,
Controller
);
Status = gBS->OpenProtocol (
Controller,
&gEdkiiUfsHostControllerProtocolGuid,
(VOID **)&UfsHostController,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (EFI_ERROR (Status)) {
//
// EFI_ALREADY_STARTED is also an error
//
return Status;
}
//
// Close the I/O Abstraction(s) used to perform the supported test
//
gBS->CloseProtocol (
Controller,
&gEdkiiUfsHostControllerProtocolGuid,
This->DriverBindingHandle,
Controller
);
return EFI_SUCCESS;
}
/**
Finishes device initialization by setting fDeviceInit flag and waiting untill device responds by
clearing it.
@param[in] Private Pointer to the UFS_PASS_THRU_PRIVATE_DATA.
@retval EFI_SUCCESS The operation succeeds.
@retval Others The operation fails.
**/
EFI_STATUS
UfsFinishDeviceInitialization (
IN UFS_PASS_THRU_PRIVATE_DATA *Private
)
{
EFI_STATUS Status;
UINT8 DeviceInitStatus;
UINT32 Timeout;
DeviceInitStatus = 0xFF;
//
// The host enables the device initialization completion by setting fDeviceInit flag.
//
Status = UfsSetFlag (Private, UfsFlagDevInit);
if (EFI_ERROR (Status)) {
return Status;
}
//
// There are cards that can take upto 600ms to clear fDeviceInit flag.
//
Timeout = UFS_INIT_COMPLETION_TIMEOUT;
do {
Status = UfsReadFlag (Private, UfsFlagDevInit, &DeviceInitStatus);
if (EFI_ERROR (Status)) {
return Status;
}
MicroSecondDelay (1);
Timeout--;
} while (DeviceInitStatus != 0 && Timeout != 0);
if (Timeout == 0) {
DEBUG ((DEBUG_ERROR, "UfsFinishDeviceInitialization DeviceInitStatus=%x EFI_TIMEOUT \n", DeviceInitStatus));
return EFI_TIMEOUT;
} else {
DEBUG ((DEBUG_INFO, "UfsFinishDeviceInitialization Timeout left=%x EFI_SUCCESS \n", Timeout));
return EFI_SUCCESS;
}
}
/**
Starts a device controller or a bus controller.
The Start() function is designed to be invoked from the EFI boot service ConnectController().
As a result, much of the error checking on the parameters to Start() has been moved into this
common boot service. It is legal to call Start() from other locations,
but the following calling restrictions must be followed or the system behavior will not be deterministic.
1. ControllerHandle must be a valid EFI_HANDLE.
2. If RemainingDevicePath is not NULL, then it must be a pointer to a naturally aligned
EFI_DEVICE_PATH_PROTOCOL.
3. Prior to calling Start(), the Supported() function for the driver specified by This must
have been called with the same calling parameters, and Supported() must have returned EFI_SUCCESS.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle The handle of the controller to start. This handle
must support a protocol interface that supplies
an I/O abstraction to the driver.
@param[in] RemainingDevicePath A pointer to the remaining portion of a device path. This
parameter is ignored by device drivers, and is optional for bus
drivers. For a bus driver, if this parameter is NULL, then handles
for all the children of Controller are created by this driver.
If this parameter is not NULL and the first Device Path Node is
not the End of Device Path Node, then only the handle for the
child device specified by the first Device Path Node of
RemainingDevicePath is created by this driver.
If the first Device Path Node of RemainingDevicePath is
the End of Device Path Node, no child handle is created by this
driver.
@retval EFI_SUCCESS The device was started.
@retval EFI_DEVICE_ERROR The device could not be started due to a device error.Currently not implemented.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
@retval Others The driver failded to start the device.
**/
EFI_STATUS
EFIAPI
UfsPassThruDriverBindingStart (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
)
{
EFI_STATUS Status;
EDKII_UFS_HOST_CONTROLLER_PROTOCOL *UfsHc;
UFS_PASS_THRU_PRIVATE_DATA *Private;
UINTN UfsHcBase;
UINT32 Index;
UFS_UNIT_DESC UnitDescriptor;
UFS_DEV_DESC DeviceDescriptor;
UINT32 UnitDescriptorSize;
UINT32 DeviceDescriptorSize;
EDKII_UFS_CARD_REF_CLK_FREQ_ATTRIBUTE Attributes;
UINT8 RefClkAttr;
Status = EFI_SUCCESS;
UfsHc = NULL;
Private = NULL;
UfsHcBase = 0;
DEBUG ((DEBUG_INFO, "==UfsPassThru Start== Controller = %x\n", Controller));
Status = gBS->OpenProtocol (
Controller,
&gEdkiiUfsHostControllerProtocolGuid,
(VOID **)&UfsHc,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Open Ufs Host Controller Protocol Error, Status = %r\n", Status));
goto Error;
}
//
// Get the UFS Host Controller MMIO Bar Base Address.
//
Status = UfsHc->GetUfsHcMmioBar (UfsHc, &UfsHcBase);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Get Ufs Host Controller Mmio Bar Error, Status = %r\n", Status));
goto Error;
}
//
// Initialize Ufs Pass Thru private data for managed UFS Host Controller.
//
Private = AllocateCopyPool (sizeof (UFS_PASS_THRU_PRIVATE_DATA), &gUfsPassThruTemplate);
if (Private == NULL) {
DEBUG ((DEBUG_ERROR, "Unable to allocate Ufs Pass Thru private data\n"));
Status = EFI_OUT_OF_RESOURCES;
goto Error;
}
Private->ExtScsiPassThru.Mode = &Private->ExtScsiPassThruMode;
Private->UfsHostController = UfsHc;
Private->UfsHcBase = UfsHcBase;
Private->Handle = Controller;
Private->UfsHcDriverInterface.UfsHcProtocol = UfsHc;
Private->UfsHcDriverInterface.UfsExecUicCommand = UfsHcDriverInterfaceExecUicCommand;
InitializeListHead (&Private->Queue);
//
// This has to be done before initializing UfsHcInfo or calling the UfsControllerInit
//
if (mUfsHcPlatform == NULL) {
Status = gBS->LocateProtocol (&gEdkiiUfsHcPlatformProtocolGuid, NULL, (VOID **)&mUfsHcPlatform);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_INFO, "No UfsHcPlatformProtocol present\n"));
}
}
Status = GetUfsHcInfo (Private);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Failed to initialize UfsHcInfo\n"));
goto Error;
}
//
// Initialize UFS Host Controller H/W.
//
Status = UfsControllerInit (Private);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Ufs Host Controller Initialization Error, Status = %r\n", Status));
goto Error;
}
//
// UFS 2.0 spec Section 13.1.3.3:
// At the end of the UFS Interconnect Layer initialization on both host and device side,
// the host shall send a NOP OUT UPIU to verify that the device UTP Layer is ready.
//
Status = UfsExecNopCmds (Private);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Ufs Sending NOP IN command Error, Status = %r\n", Status));
goto Error;
}
Status = UfsFinishDeviceInitialization (Private);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Device failed to finish initialization, Status = %r\n", Status));
goto Error;
}
if ((mUfsHcPlatform != NULL) &&
((mUfsHcPlatform->RefClkFreq == EdkiiUfsCardRefClkFreq19p2Mhz) ||
(mUfsHcPlatform->RefClkFreq == EdkiiUfsCardRefClkFreq26Mhz) ||
(mUfsHcPlatform->RefClkFreq == EdkiiUfsCardRefClkFreq38p4Mhz)))
{
RefClkAttr = UfsAttrRefClkFreq;
Attributes = EdkiiUfsCardRefClkFreqObsolete;
Status = UfsRwAttributes (Private, TRUE, RefClkAttr, 0, 0, (UINT32 *)&Attributes);
if (!EFI_ERROR (Status)) {
if (Attributes != mUfsHcPlatform->RefClkFreq) {
Attributes = mUfsHcPlatform->RefClkFreq;
DEBUG (
(DEBUG_INFO,
"Setting bRefClkFreq attribute(%x) to %x\n 0 -> 19.2 Mhz\n 1 -> 26 Mhz\n 2 -> 38.4 Mhz\n 3 -> Obsolete\n",
RefClkAttr,
Attributes)
);
Status = UfsRwAttributes (Private, FALSE, RefClkAttr, 0, 0, (UINT32 *)&Attributes);
if (EFI_ERROR (Status)) {
DEBUG (
(DEBUG_ERROR,
"Failed to Change Reference Clock Attribute to %d, Status = %r \n",
mUfsHcPlatform->RefClkFreq,
Status)
);
}
}
} else {
DEBUG (
(DEBUG_ERROR,
"Failed to Read Reference Clock Attribute, Status = %r \n",
Status)
);
}
}
if ((mUfsHcPlatform != NULL) && (mUfsHcPlatform->Callback != NULL)) {
Status = mUfsHcPlatform->Callback (Private->Handle, EdkiiUfsHcPostLinkStartup, &Private->UfsHcDriverInterface);
if (EFI_ERROR (Status)) {
DEBUG (
(DEBUG_ERROR,
"Failure from platform driver during EdkiiUfsHcPostLinkStartup, Status = %r\n",
Status)
);
return Status;
}
}
//
// Check if 8 common luns are active and set corresponding bit mask.
//
UnitDescriptorSize = sizeof (UFS_UNIT_DESC);
for (Index = 0; Index < 8; Index++) {
Status = UfsRwDeviceDesc (Private, TRUE, UfsUnitDesc, (UINT8)Index, 0, &UnitDescriptor, &UnitDescriptorSize);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Failed to read unit descriptor, index = %X, status = %r\n", Index, Status));
continue;
}
if (UnitDescriptor.LunEn == 0x1) {
DEBUG ((DEBUG_INFO, "UFS LUN %X is enabled\n", Index));
Private->Luns.BitMask |= (BIT0 << Index);
}
}
//
// Check if RPMB WLUN is supported and set corresponding bit mask.
//
DeviceDescriptorSize = sizeof (UFS_DEV_DESC);
Status = UfsRwDeviceDesc (Private, TRUE, UfsDeviceDesc, 0, 0, &DeviceDescriptor, &DeviceDescriptorSize);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Failed to read device descriptor, status = %r\n", Status));
} else {
if (DeviceDescriptor.SecurityLun == 0x1) {
DEBUG ((DEBUG_INFO, "UFS WLUN RPMB is supported\n"));
Private->Luns.BitMask |= BIT11;
}
}
//
// Start the asynchronous interrupt monitor
//
Status = gBS->CreateEvent (
EVT_TIMER | EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
ProcessAsyncTaskList,
Private,
&Private->TimerEvent
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Ufs Create Async Tasks Event Error, Status = %r\n", Status));
goto Error;
}
Status = gBS->SetTimer (
Private->TimerEvent,
TimerPeriodic,
UFS_HC_ASYNC_TIMER
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Ufs Set Periodic Timer Error, Status = %r\n", Status));
goto Error;
}
Status = gBS->InstallMultipleProtocolInterfaces (
&Controller,
&gEfiExtScsiPassThruProtocolGuid,
&(Private->ExtScsiPassThru),
&gEfiUfsDeviceConfigProtocolGuid,
&(Private->UfsDevConfig),
NULL
);
ASSERT_EFI_ERROR (Status);
return EFI_SUCCESS;
Error:
if (Private != NULL) {
if (Private->TmrlMapping != NULL) {
UfsHc->Unmap (UfsHc, Private->TmrlMapping);
}
if (Private->UtpTmrlBase != NULL) {
UfsHc->FreeBuffer (UfsHc, EFI_SIZE_TO_PAGES (Private->Nutmrs * sizeof (UTP_TMRD)), Private->UtpTmrlBase);
}
if (Private->TrlMapping != NULL) {
UfsHc->Unmap (UfsHc, Private->TrlMapping);
}
if (Private->UtpTrlBase != NULL) {
UfsHc->FreeBuffer (UfsHc, EFI_SIZE_TO_PAGES (Private->Nutrs * sizeof (UTP_TMRD)), Private->UtpTrlBase);
}
if (Private->TimerEvent != NULL) {
gBS->CloseEvent (Private->TimerEvent);
}
FreePool (Private);
}
if (UfsHc != NULL) {
gBS->CloseProtocol (
Controller,
&gEdkiiUfsHostControllerProtocolGuid,
This->DriverBindingHandle,
Controller
);
}
return Status;
}
/**
Stops a device controller or a bus controller.
The Stop() function is designed to be invoked from the EFI boot service DisconnectController().
As a result, much of the error checking on the parameters to Stop() has been moved
into this common boot service. It is legal to call Stop() from other locations,
but the following calling restrictions must be followed or the system behavior will not be deterministic.
1. ControllerHandle must be a valid EFI_HANDLE that was used on a previous call to this
same driver's Start() function.
2. The first NumberOfChildren handles of ChildHandleBuffer must all be a valid
EFI_HANDLE. In addition, all of these handles must have been created in this driver's
Start() function, and the Start() function must have called OpenProtocol() on
ControllerHandle with an Attribute of EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle A handle to the device being stopped. The handle must
support a bus specific I/O protocol for the driver
to use to stop the device.
@param[in] NumberOfChildren The number of child device handles in ChildHandleBuffer.
@param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL
if NumberOfChildren is 0.
@retval EFI_SUCCESS The device was stopped.
@retval EFI_DEVICE_ERROR The device could not be stopped due to a device error.
**/
EFI_STATUS
EFIAPI
UfsPassThruDriverBindingStop (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN UINTN NumberOfChildren,
IN EFI_HANDLE *ChildHandleBuffer
)
{
EFI_STATUS Status;
UFS_PASS_THRU_PRIVATE_DATA *Private;
EFI_EXT_SCSI_PASS_THRU_PROTOCOL *ExtScsiPassThru;
EDKII_UFS_HOST_CONTROLLER_PROTOCOL *UfsHc;
UFS_PASS_THRU_TRANS_REQ *TransReq;
LIST_ENTRY *Entry;
LIST_ENTRY *NextEntry;
DEBUG ((DEBUG_INFO, "==UfsPassThru Stop== Controller Controller = %x\n", Controller));
Status = gBS->OpenProtocol (
Controller,
&gEfiExtScsiPassThruProtocolGuid,
(VOID **)&ExtScsiPassThru,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
return EFI_DEVICE_ERROR;
}
Private = UFS_PASS_THRU_PRIVATE_DATA_FROM_THIS (ExtScsiPassThru);
UfsHc = Private->UfsHostController;
//
// Cleanup the resources of I/O requests in the async I/O queue
//
if (!IsListEmpty (&Private->Queue)) {
BASE_LIST_FOR_EACH_SAFE (Entry, NextEntry, &Private->Queue) {
TransReq = UFS_PASS_THRU_TRANS_REQ_FROM_THIS (Entry);
//
// TODO: Should find/add a proper host adapter return status for this
// case.
//
TransReq->Packet->HostAdapterStatus =
EFI_EXT_SCSI_STATUS_HOST_ADAPTER_PHASE_ERROR;
SignalCallerEvent (Private, TransReq);
}
}
Status = gBS->UninstallMultipleProtocolInterfaces (
Controller,
&gEfiExtScsiPassThruProtocolGuid,
&(Private->ExtScsiPassThru),
&gEfiUfsDeviceConfigProtocolGuid,
&(Private->UfsDevConfig),
NULL
);
if (EFI_ERROR (Status)) {
return EFI_DEVICE_ERROR;
}
//
// Stop Ufs Host Controller
//
Status = UfsControllerStop (Private);
ASSERT_EFI_ERROR (Status);
if (Private->TmrlMapping != NULL) {
UfsHc->Unmap (UfsHc, Private->TmrlMapping);
}
if (Private->UtpTmrlBase != NULL) {
UfsHc->FreeBuffer (UfsHc, EFI_SIZE_TO_PAGES (Private->Nutmrs * sizeof (UTP_TMRD)), Private->UtpTmrlBase);
}
if (Private->TrlMapping != NULL) {
UfsHc->Unmap (UfsHc, Private->TrlMapping);
}
if (Private->UtpTrlBase != NULL) {
UfsHc->FreeBuffer (UfsHc, EFI_SIZE_TO_PAGES (Private->Nutrs * sizeof (UTP_TMRD)), Private->UtpTrlBase);
}
if (Private->TimerEvent != NULL) {
gBS->CloseEvent (Private->TimerEvent);
}
FreePool (Private);
//
// Close protocols opened by UfsPassThru controller driver
//
gBS->CloseProtocol (
Controller,
&gEdkiiUfsHostControllerProtocolGuid,
This->DriverBindingHandle,
Controller
);
return Status;
}
/**
The user Entry Point for module UfsPassThru. The user code starts with this function.
@param[in] ImageHandle The firmware allocated handle for the EFI image.
@param[in] SystemTable A pointer to the EFI System Table.
@retval EFI_SUCCESS The entry point is executed successfully.
@retval other Some error occurs when executing this entry point.
**/
EFI_STATUS
EFIAPI
InitializeUfsPassThru (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
//
// Install driver model protocol(s).
//
Status = EfiLibInstallDriverBindingComponentName2 (
ImageHandle,
SystemTable,
&gUfsPassThruDriverBinding,
ImageHandle,
&gUfsPassThruComponentName,
&gUfsPassThruComponentName2
);
ASSERT_EFI_ERROR (Status);
return Status;
}