/** @file Copyright (c) 2016, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "PiSmmCpuDxeSmm.h" #define NEXT_MEMORY_DESCRIPTOR(MemoryDescriptor, Size) \ ((EFI_MEMORY_DESCRIPTOR *)((UINT8 *)(MemoryDescriptor) + (Size))) #define PREVIOUS_MEMORY_DESCRIPTOR(MemoryDescriptor, Size) \ ((EFI_MEMORY_DESCRIPTOR *)((UINT8 *)(MemoryDescriptor) - (Size))) EFI_MEMORY_DESCRIPTOR *mUefiMemoryMap; UINTN mUefiMemoryMapSize; UINTN mUefiDescriptorSize; PAGE_ATTRIBUTE_TABLE mPageAttributeTable[] = { {Page4K, SIZE_4KB, PAGING_4K_ADDRESS_MASK_64}, {Page2M, SIZE_2MB, PAGING_2M_ADDRESS_MASK_64}, {Page1G, SIZE_1GB, PAGING_1G_ADDRESS_MASK_64}, }; /** Return page table base. @return page table base. **/ UINTN GetPageTableBase ( VOID ) { return (AsmReadCr3 () & PAGING_4K_ADDRESS_MASK_64); } /** Return length according to page attributes. @param[in] PageAttributes The page attribute of the page entry. @return The length of page entry. **/ UINTN PageAttributeToLength ( IN PAGE_ATTRIBUTE PageAttribute ) { UINTN Index; for (Index = 0; Index < sizeof(mPageAttributeTable)/sizeof(mPageAttributeTable[0]); Index++) { if (PageAttribute == mPageAttributeTable[Index].Attribute) { return (UINTN)mPageAttributeTable[Index].Length; } } return 0; } /** Return address mask according to page attributes. @param[in] PageAttributes The page attribute of the page entry. @return The address mask of page entry. **/ UINTN PageAttributeToMask ( IN PAGE_ATTRIBUTE PageAttribute ) { UINTN Index; for (Index = 0; Index < sizeof(mPageAttributeTable)/sizeof(mPageAttributeTable[0]); Index++) { if (PageAttribute == mPageAttributeTable[Index].Attribute) { return (UINTN)mPageAttributeTable[Index].AddressMask; } } return 0; } /** Return page table entry to match the address. @param[in] Address The address to be checked. @param[out] PageAttributes The page attribute of the page entry. @return The page entry. **/ VOID * GetPageTableEntry ( IN PHYSICAL_ADDRESS Address, OUT PAGE_ATTRIBUTE *PageAttribute ) { UINTN Index1; UINTN Index2; UINTN Index3; UINTN Index4; UINT64 *L1PageTable; UINT64 *L2PageTable; UINT64 *L3PageTable; UINT64 *L4PageTable; Index4 = ((UINTN)RShiftU64 (Address, 39)) & PAGING_PAE_INDEX_MASK; Index3 = ((UINTN)Address >> 30) & PAGING_PAE_INDEX_MASK; Index2 = ((UINTN)Address >> 21) & PAGING_PAE_INDEX_MASK; Index1 = ((UINTN)Address >> 12) & PAGING_PAE_INDEX_MASK; if (sizeof(UINTN) == sizeof(UINT64)) { L4PageTable = (UINT64 *)GetPageTableBase (); if (L4PageTable[Index4] == 0) { *PageAttribute = PageNone; return NULL; } L3PageTable = (UINT64 *)(UINTN)(L4PageTable[Index4] & PAGING_4K_ADDRESS_MASK_64); } else { L3PageTable = (UINT64 *)GetPageTableBase (); } if (L3PageTable[Index3] == 0) { *PageAttribute = PageNone; return NULL; } if ((L3PageTable[Index3] & IA32_PG_PS) != 0) { // 1G *PageAttribute = Page1G; return &L3PageTable[Index3]; } L2PageTable = (UINT64 *)(UINTN)(L3PageTable[Index3] & PAGING_4K_ADDRESS_MASK_64); if (L2PageTable[Index2] == 0) { *PageAttribute = PageNone; return NULL; } if ((L2PageTable[Index2] & IA32_PG_PS) != 0) { // 2M *PageAttribute = Page2M; return &L2PageTable[Index2]; } // 4k L1PageTable = (UINT64 *)(UINTN)(L2PageTable[Index2] & PAGING_4K_ADDRESS_MASK_64); if ((L1PageTable[Index1] == 0) && (Address != 0)) { *PageAttribute = PageNone; return NULL; } *PageAttribute = Page4K; return &L1PageTable[Index1]; } /** Return memory attributes of page entry. @param[in] PageEntry The page entry. @return Memory attributes of page entry. **/ UINT64 GetAttributesFromPageEntry ( IN UINT64 *PageEntry ) { UINT64 Attributes; Attributes = 0; if ((*PageEntry & IA32_PG_P) == 0) { Attributes |= EFI_MEMORY_RP; } if ((*PageEntry & IA32_PG_RW) == 0) { Attributes |= EFI_MEMORY_RO; } if ((*PageEntry & IA32_PG_NX) != 0) { Attributes |= EFI_MEMORY_XP; } return Attributes; } /** Modify memory attributes of page entry. @param[in] PageEntry The page entry. @param[in] Attributes The bit mask of attributes to modify for the memory region. @param[in] IsSet TRUE means to set attributes. FALSE means to clear attributes. @param[out] IsModified TRUE means page table modified. FALSE means page table not modified. **/ VOID ConvertPageEntryAttribute ( IN UINT64 *PageEntry, IN UINT64 Attributes, IN BOOLEAN IsSet, OUT BOOLEAN *IsModified ) { UINT64 CurrentPageEntry; UINT64 NewPageEntry; CurrentPageEntry = *PageEntry; NewPageEntry = CurrentPageEntry; if ((Attributes & EFI_MEMORY_RP) != 0) { if (IsSet) { NewPageEntry &= ~(UINT64)IA32_PG_P; } else { NewPageEntry |= IA32_PG_P; } } if ((Attributes & EFI_MEMORY_RO) != 0) { if (IsSet) { NewPageEntry &= ~(UINT64)IA32_PG_RW; } else { NewPageEntry |= IA32_PG_RW; } } if ((Attributes & EFI_MEMORY_XP) != 0) { if (mXdSupported) { if (IsSet) { NewPageEntry |= IA32_PG_NX; } else { NewPageEntry &= ~IA32_PG_NX; } } } *PageEntry = NewPageEntry; if (CurrentPageEntry != NewPageEntry) { *IsModified = TRUE; DEBUG ((DEBUG_VERBOSE, "ConvertPageEntryAttribute 0x%lx", CurrentPageEntry)); DEBUG ((DEBUG_VERBOSE, "->0x%lx\n", NewPageEntry)); } else { *IsModified = FALSE; } } /** This function returns if there is need to split page entry. @param[in] BaseAddress The base address to be checked. @param[in] Length The length to be checked. @param[in] PageEntry The page entry to be checked. @param[in] PageAttribute The page attribute of the page entry. @retval SplitAttributes on if there is need to split page entry. **/ PAGE_ATTRIBUTE NeedSplitPage ( IN PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 *PageEntry, IN PAGE_ATTRIBUTE PageAttribute ) { UINT64 PageEntryLength; PageEntryLength = PageAttributeToLength (PageAttribute); if (((BaseAddress & (PageEntryLength - 1)) == 0) && (Length >= PageEntryLength)) { return PageNone; } if (((BaseAddress & PAGING_2M_MASK) != 0) || (Length < SIZE_2MB)) { return Page4K; } return Page2M; } /** This function splits one page entry to small page entries. @param[in] PageEntry The page entry to be splitted. @param[in] PageAttribute The page attribute of the page entry. @param[in] SplitAttribute How to split the page entry. @retval RETURN_SUCCESS The page entry is splitted. @retval RETURN_UNSUPPORTED The page entry does not support to be splitted. @retval RETURN_OUT_OF_RESOURCES No resource to split page entry. **/ RETURN_STATUS SplitPage ( IN UINT64 *PageEntry, IN PAGE_ATTRIBUTE PageAttribute, IN PAGE_ATTRIBUTE SplitAttribute ) { UINT64 BaseAddress; UINT64 *NewPageEntry; UINTN Index; ASSERT (PageAttribute == Page2M || PageAttribute == Page1G); if (PageAttribute == Page2M) { // // Split 2M to 4K // ASSERT (SplitAttribute == Page4K); if (SplitAttribute == Page4K) { NewPageEntry = AllocatePageTableMemory (1); DEBUG ((DEBUG_VERBOSE, "Split - 0x%x\n", NewPageEntry)); if (NewPageEntry == NULL) { return RETURN_OUT_OF_RESOURCES; } BaseAddress = *PageEntry & PAGING_2M_ADDRESS_MASK_64; for (Index = 0; Index < SIZE_4KB / sizeof(UINT64); Index++) { NewPageEntry[Index] = BaseAddress + SIZE_4KB * Index + ((*PageEntry) & PAGE_PROGATE_BITS); } (*PageEntry) = (UINT64)(UINTN)NewPageEntry + PAGE_ATTRIBUTE_BITS; return RETURN_SUCCESS; } else { return RETURN_UNSUPPORTED; } } else if (PageAttribute == Page1G) { // // Split 1G to 2M // No need support 1G->4K directly, we should use 1G->2M, then 2M->4K to get more compact page table. // ASSERT (SplitAttribute == Page2M || SplitAttribute == Page4K); if ((SplitAttribute == Page2M || SplitAttribute == Page4K)) { NewPageEntry = AllocatePageTableMemory (1); DEBUG ((DEBUG_VERBOSE, "Split - 0x%x\n", NewPageEntry)); if (NewPageEntry == NULL) { return RETURN_OUT_OF_RESOURCES; } BaseAddress = *PageEntry & PAGING_1G_ADDRESS_MASK_64; for (Index = 0; Index < SIZE_4KB / sizeof(UINT64); Index++) { NewPageEntry[Index] = BaseAddress + SIZE_2MB * Index + IA32_PG_PS + ((*PageEntry) & PAGE_PROGATE_BITS); } (*PageEntry) = (UINT64)(UINTN)NewPageEntry + PAGE_ATTRIBUTE_BITS; return RETURN_SUCCESS; } else { return RETURN_UNSUPPORTED; } } else { return RETURN_UNSUPPORTED; } } /** This function modifies the page attributes for the memory region specified by BaseAddress and Length from their current attributes to the attributes specified by Attributes. Caller should make sure BaseAddress and Length is at page boundary. @param[in] BaseAddress The physical address that is the start address of a memory region. @param[in] Length The size in bytes of the memory region. @param[in] Attributes The bit mask of attributes to modify for the memory region. @param[in] IsSet TRUE means to set attributes. FALSE means to clear attributes. @param[out] IsSplitted TRUE means page table splitted. FALSE means page table not splitted. @param[out] IsModified TRUE means page table modified. FALSE means page table not modified. @retval RETURN_SUCCESS The attributes were modified for the memory region. @retval RETURN_ACCESS_DENIED The attributes for the memory resource range specified by BaseAddress and Length cannot be modified. @retval RETURN_INVALID_PARAMETER Length is zero. Attributes specified an illegal combination of attributes that cannot be set together. @retval RETURN_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of the memory resource range. @retval RETURN_UNSUPPORTED The processor does not support one or more bytes of the memory resource range specified by BaseAddress and Length. The bit mask of attributes is not support for the memory resource range specified by BaseAddress and Length. **/ RETURN_STATUS EFIAPI ConvertMemoryPageAttributes ( IN PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 Attributes, IN BOOLEAN IsSet, OUT BOOLEAN *IsSplitted, OPTIONAL OUT BOOLEAN *IsModified OPTIONAL ) { UINT64 *PageEntry; PAGE_ATTRIBUTE PageAttribute; UINTN PageEntryLength; PAGE_ATTRIBUTE SplitAttribute; RETURN_STATUS Status; BOOLEAN IsEntryModified; ASSERT (Attributes != 0); ASSERT ((Attributes & ~(EFI_MEMORY_RP | EFI_MEMORY_RO | EFI_MEMORY_XP)) == 0); ASSERT ((BaseAddress & (SIZE_4KB - 1)) == 0); ASSERT ((Length & (SIZE_4KB - 1)) == 0); if (Length == 0) { return RETURN_INVALID_PARAMETER; } // DEBUG ((DEBUG_ERROR, "ConvertMemoryPageAttributes(%x) - %016lx, %016lx, %02lx\n", IsSet, BaseAddress, Length, Attributes)); if (IsSplitted != NULL) { *IsSplitted = FALSE; } if (IsModified != NULL) { *IsModified = FALSE; } // // Below logic is to check 2M/4K page to make sure we donot waist memory. // while (Length != 0) { PageEntry = GetPageTableEntry (BaseAddress, &PageAttribute); if (PageEntry == NULL) { return RETURN_UNSUPPORTED; } PageEntryLength = PageAttributeToLength (PageAttribute); SplitAttribute = NeedSplitPage (BaseAddress, Length, PageEntry, PageAttribute); if (SplitAttribute == PageNone) { ConvertPageEntryAttribute (PageEntry, Attributes, IsSet, &IsEntryModified); if (IsEntryModified) { if (IsModified != NULL) { *IsModified = TRUE; } } // // Convert success, move to next // BaseAddress += PageEntryLength; Length -= PageEntryLength; } else { Status = SplitPage (PageEntry, PageAttribute, SplitAttribute); if (RETURN_ERROR (Status)) { return RETURN_UNSUPPORTED; } if (IsSplitted != NULL) { *IsSplitted = TRUE; } if (IsModified != NULL) { *IsModified = TRUE; } // // Just split current page // Convert success in next around // } } return RETURN_SUCCESS; } /** FlushTlb on current processor. @param[in,out] Buffer Pointer to private data buffer. **/ VOID EFIAPI FlushTlbOnCurrentProcessor ( IN OUT VOID *Buffer ) { CpuFlushTlb (); } /** FlushTlb for all processors. **/ VOID FlushTlbForAll ( VOID ) { UINTN Index; FlushTlbOnCurrentProcessor (NULL); for (Index = 0; Index < gSmst->NumberOfCpus; Index++) { if (Index != gSmst->CurrentlyExecutingCpu) { // Force to start up AP in blocking mode, SmmBlockingStartupThisAp (FlushTlbOnCurrentProcessor, Index, NULL); // Do not check return status, because AP might not be present in some corner cases. } } } /** This function sets the attributes for the memory region specified by BaseAddress and Length from their current attributes to the attributes specified by Attributes. @param[in] BaseAddress The physical address that is the start address of a memory region. @param[in] Length The size in bytes of the memory region. @param[in] Attributes The bit mask of attributes to set for the memory region. @param[out] IsSplitted TRUE means page table splitted. FALSE means page table not splitted. @retval EFI_SUCCESS The attributes were set for the memory region. @retval EFI_ACCESS_DENIED The attributes for the memory resource range specified by BaseAddress and Length cannot be modified. @retval EFI_INVALID_PARAMETER Length is zero. Attributes specified an illegal combination of attributes that cannot be set together. @retval EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of the memory resource range. @retval EFI_UNSUPPORTED The processor does not support one or more bytes of the memory resource range specified by BaseAddress and Length. The bit mask of attributes is not support for the memory resource range specified by BaseAddress and Length. **/ EFI_STATUS EFIAPI SmmSetMemoryAttributesEx ( IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 Attributes, OUT BOOLEAN *IsSplitted OPTIONAL ) { EFI_STATUS Status; BOOLEAN IsModified; Status = ConvertMemoryPageAttributes (BaseAddress, Length, Attributes, TRUE, IsSplitted, &IsModified); if (!EFI_ERROR(Status)) { if (IsModified) { // // Flush TLB as last step // FlushTlbForAll(); } } return Status; } /** This function clears the attributes for the memory region specified by BaseAddress and Length from their current attributes to the attributes specified by Attributes. @param[in] BaseAddress The physical address that is the start address of a memory region. @param[in] Length The size in bytes of the memory region. @param[in] Attributes The bit mask of attributes to clear for the memory region. @param[out] IsSplitted TRUE means page table splitted. FALSE means page table not splitted. @retval EFI_SUCCESS The attributes were cleared for the memory region. @retval EFI_ACCESS_DENIED The attributes for the memory resource range specified by BaseAddress and Length cannot be modified. @retval EFI_INVALID_PARAMETER Length is zero. Attributes specified an illegal combination of attributes that cannot be set together. @retval EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of the memory resource range. @retval EFI_UNSUPPORTED The processor does not support one or more bytes of the memory resource range specified by BaseAddress and Length. The bit mask of attributes is not support for the memory resource range specified by BaseAddress and Length. **/ EFI_STATUS EFIAPI SmmClearMemoryAttributesEx ( IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 Attributes, OUT BOOLEAN *IsSplitted OPTIONAL ) { EFI_STATUS Status; BOOLEAN IsModified; Status = ConvertMemoryPageAttributes (BaseAddress, Length, Attributes, FALSE, IsSplitted, &IsModified); if (!EFI_ERROR(Status)) { if (IsModified) { // // Flush TLB as last step // FlushTlbForAll(); } } return Status; } /** This function sets the attributes for the memory region specified by BaseAddress and Length from their current attributes to the attributes specified by Attributes. @param[in] BaseAddress The physical address that is the start address of a memory region. @param[in] Length The size in bytes of the memory region. @param[in] Attributes The bit mask of attributes to set for the memory region. @retval EFI_SUCCESS The attributes were set for the memory region. @retval EFI_ACCESS_DENIED The attributes for the memory resource range specified by BaseAddress and Length cannot be modified. @retval EFI_INVALID_PARAMETER Length is zero. Attributes specified an illegal combination of attributes that cannot be set together. @retval EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of the memory resource range. @retval EFI_UNSUPPORTED The processor does not support one or more bytes of the memory resource range specified by BaseAddress and Length. The bit mask of attributes is not support for the memory resource range specified by BaseAddress and Length. **/ EFI_STATUS EFIAPI SmmSetMemoryAttributes ( IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 Attributes ) { return SmmSetMemoryAttributesEx (BaseAddress, Length, Attributes, NULL); } /** This function clears the attributes for the memory region specified by BaseAddress and Length from their current attributes to the attributes specified by Attributes. @param[in] BaseAddress The physical address that is the start address of a memory region. @param[in] Length The size in bytes of the memory region. @param[in] Attributes The bit mask of attributes to clear for the memory region. @retval EFI_SUCCESS The attributes were cleared for the memory region. @retval EFI_ACCESS_DENIED The attributes for the memory resource range specified by BaseAddress and Length cannot be modified. @retval EFI_INVALID_PARAMETER Length is zero. Attributes specified an illegal combination of attributes that cannot be set together. @retval EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of the memory resource range. @retval EFI_UNSUPPORTED The processor does not support one or more bytes of the memory resource range specified by BaseAddress and Length. The bit mask of attributes is not support for the memory resource range specified by BaseAddress and Length. **/ EFI_STATUS EFIAPI SmmClearMemoryAttributes ( IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 Attributes ) { return SmmClearMemoryAttributesEx (BaseAddress, Length, Attributes, NULL); } /** Retrieves a pointer to the system configuration table from the SMM System Table based on a specified GUID. @param[in] TableGuid The pointer to table's GUID type. @param[out] Table The pointer to the table associated with TableGuid in the EFI System Table. @retval EFI_SUCCESS A configuration table matching TableGuid was found. @retval EFI_NOT_FOUND A configuration table matching TableGuid could not be found. **/ EFI_STATUS EFIAPI SmmGetSystemConfigurationTable ( IN EFI_GUID *TableGuid, OUT VOID **Table ) { UINTN Index; ASSERT (TableGuid != NULL); ASSERT (Table != NULL); *Table = NULL; for (Index = 0; Index < gSmst->NumberOfTableEntries; Index++) { if (CompareGuid (TableGuid, &(gSmst->SmmConfigurationTable[Index].VendorGuid))) { *Table = gSmst->SmmConfigurationTable[Index].VendorTable; return EFI_SUCCESS; } } return EFI_NOT_FOUND; } /** This function sets SMM save state buffer to be RW and XP. **/ VOID PatchSmmSaveStateMap ( VOID ) { UINTN Index; UINTN TileCodeSize; UINTN TileDataSize; UINTN TileSize; TileCodeSize = GetSmiHandlerSize (); TileCodeSize = ALIGN_VALUE(TileCodeSize, SIZE_4KB); TileDataSize = (SMRAM_SAVE_STATE_MAP_OFFSET - SMM_PSD_OFFSET) + sizeof (SMRAM_SAVE_STATE_MAP); TileDataSize = ALIGN_VALUE(TileDataSize, SIZE_4KB); TileSize = TileDataSize + TileCodeSize - 1; TileSize = 2 * GetPowerOfTwo32 ((UINT32)TileSize); DEBUG ((DEBUG_INFO, "PatchSmmSaveStateMap:\n")); for (Index = 0; Index < mMaxNumberOfCpus - 1; Index++) { // // Code // SmmSetMemoryAttributes ( mCpuHotPlugData.SmBase[Index] + SMM_HANDLER_OFFSET, TileCodeSize, EFI_MEMORY_RO ); SmmClearMemoryAttributes ( mCpuHotPlugData.SmBase[Index] + SMM_HANDLER_OFFSET, TileCodeSize, EFI_MEMORY_XP ); // // Data // SmmClearMemoryAttributes ( mCpuHotPlugData.SmBase[Index] + SMM_HANDLER_OFFSET + TileCodeSize, TileSize - TileCodeSize, EFI_MEMORY_RO ); SmmSetMemoryAttributes ( mCpuHotPlugData.SmBase[Index] + SMM_HANDLER_OFFSET + TileCodeSize, TileSize - TileCodeSize, EFI_MEMORY_XP ); } // // Code // SmmSetMemoryAttributes ( mCpuHotPlugData.SmBase[mMaxNumberOfCpus - 1] + SMM_HANDLER_OFFSET, TileCodeSize, EFI_MEMORY_RO ); SmmClearMemoryAttributes ( mCpuHotPlugData.SmBase[mMaxNumberOfCpus - 1] + SMM_HANDLER_OFFSET, TileCodeSize, EFI_MEMORY_XP ); // // Data // SmmClearMemoryAttributes ( mCpuHotPlugData.SmBase[mMaxNumberOfCpus - 1] + SMM_HANDLER_OFFSET + TileCodeSize, SIZE_32KB - TileCodeSize, EFI_MEMORY_RO ); SmmSetMemoryAttributes ( mCpuHotPlugData.SmBase[mMaxNumberOfCpus - 1] + SMM_HANDLER_OFFSET + TileCodeSize, SIZE_32KB - TileCodeSize, EFI_MEMORY_XP ); } /** This function sets memory attribute according to MemoryAttributesTable. **/ VOID SetMemMapAttributes ( VOID ) { EFI_MEMORY_DESCRIPTOR *MemoryMap; EFI_MEMORY_DESCRIPTOR *MemoryMapStart; UINTN MemoryMapEntryCount; UINTN DescriptorSize; UINTN Index; EDKII_PI_SMM_MEMORY_ATTRIBUTES_TABLE *MemoryAttributesTable; SmmGetSystemConfigurationTable (&gEdkiiPiSmmMemoryAttributesTableGuid, (VOID **)&MemoryAttributesTable); if (MemoryAttributesTable == NULL) { DEBUG ((DEBUG_INFO, "MemoryAttributesTable - NULL\n")); return ; } DEBUG ((DEBUG_INFO, "MemoryAttributesTable:\n")); DEBUG ((DEBUG_INFO, " Version - 0x%08x\n", MemoryAttributesTable->Version)); DEBUG ((DEBUG_INFO, " NumberOfEntries - 0x%08x\n", MemoryAttributesTable->NumberOfEntries)); DEBUG ((DEBUG_INFO, " DescriptorSize - 0x%08x\n", MemoryAttributesTable->DescriptorSize)); MemoryMapEntryCount = MemoryAttributesTable->NumberOfEntries; DescriptorSize = MemoryAttributesTable->DescriptorSize; MemoryMapStart = (EFI_MEMORY_DESCRIPTOR *)(MemoryAttributesTable + 1); MemoryMap = MemoryMapStart; for (Index = 0; Index < MemoryMapEntryCount; Index++) { DEBUG ((DEBUG_INFO, "Entry (0x%x)\n", MemoryMap)); DEBUG ((DEBUG_INFO, " Type - 0x%x\n", MemoryMap->Type)); DEBUG ((DEBUG_INFO, " PhysicalStart - 0x%016lx\n", MemoryMap->PhysicalStart)); DEBUG ((DEBUG_INFO, " VirtualStart - 0x%016lx\n", MemoryMap->VirtualStart)); DEBUG ((DEBUG_INFO, " NumberOfPages - 0x%016lx\n", MemoryMap->NumberOfPages)); DEBUG ((DEBUG_INFO, " Attribute - 0x%016lx\n", MemoryMap->Attribute)); MemoryMap = NEXT_MEMORY_DESCRIPTOR(MemoryMap, DescriptorSize); } MemoryMap = MemoryMapStart; for (Index = 0; Index < MemoryMapEntryCount; Index++) { DEBUG ((DEBUG_VERBOSE, "SetAttribute: Memory Entry - 0x%lx, 0x%x\n", MemoryMap->PhysicalStart, MemoryMap->NumberOfPages)); switch (MemoryMap->Type) { case EfiRuntimeServicesCode: SmmSetMemoryAttributes ( MemoryMap->PhysicalStart, EFI_PAGES_TO_SIZE((UINTN)MemoryMap->NumberOfPages), EFI_MEMORY_RO ); break; case EfiRuntimeServicesData: SmmSetMemoryAttributes ( MemoryMap->PhysicalStart, EFI_PAGES_TO_SIZE((UINTN)MemoryMap->NumberOfPages), EFI_MEMORY_XP ); break; default: SmmSetMemoryAttributes ( MemoryMap->PhysicalStart, EFI_PAGES_TO_SIZE((UINTN)MemoryMap->NumberOfPages), EFI_MEMORY_XP ); break; } MemoryMap = NEXT_MEMORY_DESCRIPTOR(MemoryMap, DescriptorSize); } PatchSmmSaveStateMap (); PatchGdtIdtMap (); return ; } /** Sort memory map entries based upon PhysicalStart, from low to high. @param MemoryMap A pointer to the buffer in which firmware places the current memory map. @param MemoryMapSize Size, in bytes, of the MemoryMap buffer. @param DescriptorSize Size, in bytes, of an individual EFI_MEMORY_DESCRIPTOR. **/ STATIC VOID SortMemoryMap ( IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap, IN UINTN MemoryMapSize, IN UINTN DescriptorSize ) { EFI_MEMORY_DESCRIPTOR *MemoryMapEntry; EFI_MEMORY_DESCRIPTOR *NextMemoryMapEntry; EFI_MEMORY_DESCRIPTOR *MemoryMapEnd; EFI_MEMORY_DESCRIPTOR TempMemoryMap; MemoryMapEntry = MemoryMap; NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize); MemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) MemoryMap + MemoryMapSize); while (MemoryMapEntry < MemoryMapEnd) { while (NextMemoryMapEntry < MemoryMapEnd) { if (MemoryMapEntry->PhysicalStart > NextMemoryMapEntry->PhysicalStart) { CopyMem (&TempMemoryMap, MemoryMapEntry, sizeof(EFI_MEMORY_DESCRIPTOR)); CopyMem (MemoryMapEntry, NextMemoryMapEntry, sizeof(EFI_MEMORY_DESCRIPTOR)); CopyMem (NextMemoryMapEntry, &TempMemoryMap, sizeof(EFI_MEMORY_DESCRIPTOR)); } NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (NextMemoryMapEntry, DescriptorSize); } MemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize); NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize); } } /** Return if a UEFI memory page should be marked as not present in SMM page table. If the memory map entries type is EfiLoaderCode/Data, EfiBootServicesCode/Data, EfiConventionalMemory, EfiUnusableMemory, EfiACPIReclaimMemory, return TRUE. Or return FALSE. @param[in] MemoryMap A pointer to the memory descriptor. @return TRUE The memory described will be marked as not present in SMM page table. @return FALSE The memory described will not be marked as not present in SMM page table. **/ BOOLEAN IsUefiPageNotPresent ( IN EFI_MEMORY_DESCRIPTOR *MemoryMap ) { switch (MemoryMap->Type) { case EfiLoaderCode: case EfiLoaderData: case EfiBootServicesCode: case EfiBootServicesData: case EfiConventionalMemory: case EfiUnusableMemory: case EfiACPIReclaimMemory: return TRUE; default: return FALSE; } } /** Merge continous memory map entries whose type is EfiLoaderCode/Data, EfiBootServicesCode/Data, EfiConventionalMemory, EfiUnusableMemory, EfiACPIReclaimMemory, because the memory described by these entries will be set as NOT present in SMM page table. @param[in, out] MemoryMap A pointer to the buffer in which firmware places the current memory map. @param[in, out] MemoryMapSize A pointer to the size, in bytes, of the MemoryMap buffer. On input, this is the size of the current memory map. On output, it is the size of new memory map after merge. @param[in] DescriptorSize Size, in bytes, of an individual EFI_MEMORY_DESCRIPTOR. **/ STATIC VOID MergeMemoryMapForNotPresentEntry ( IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap, IN OUT UINTN *MemoryMapSize, IN UINTN DescriptorSize ) { EFI_MEMORY_DESCRIPTOR *MemoryMapEntry; EFI_MEMORY_DESCRIPTOR *MemoryMapEnd; UINT64 MemoryBlockLength; EFI_MEMORY_DESCRIPTOR *NewMemoryMapEntry; EFI_MEMORY_DESCRIPTOR *NextMemoryMapEntry; MemoryMapEntry = MemoryMap; NewMemoryMapEntry = MemoryMap; MemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) MemoryMap + *MemoryMapSize); while ((UINTN)MemoryMapEntry < (UINTN)MemoryMapEnd) { CopyMem (NewMemoryMapEntry, MemoryMapEntry, sizeof(EFI_MEMORY_DESCRIPTOR)); NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize); do { MemoryBlockLength = (UINT64) (EFI_PAGES_TO_SIZE((UINTN)MemoryMapEntry->NumberOfPages)); if (((UINTN)NextMemoryMapEntry < (UINTN)MemoryMapEnd) && IsUefiPageNotPresent(MemoryMapEntry) && IsUefiPageNotPresent(NextMemoryMapEntry) && ((MemoryMapEntry->PhysicalStart + MemoryBlockLength) == NextMemoryMapEntry->PhysicalStart)) { MemoryMapEntry->NumberOfPages += NextMemoryMapEntry->NumberOfPages; if (NewMemoryMapEntry != MemoryMapEntry) { NewMemoryMapEntry->NumberOfPages += NextMemoryMapEntry->NumberOfPages; } NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (NextMemoryMapEntry, DescriptorSize); continue; } else { MemoryMapEntry = PREVIOUS_MEMORY_DESCRIPTOR (NextMemoryMapEntry, DescriptorSize); break; } } while (TRUE); MemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize); NewMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (NewMemoryMapEntry, DescriptorSize); } *MemoryMapSize = (UINTN)NewMemoryMapEntry - (UINTN)MemoryMap; return ; } /** This function caches the UEFI memory map information. **/ VOID GetUefiMemoryMap ( VOID ) { EFI_STATUS Status; UINTN MapKey; UINT32 DescriptorVersion; EFI_MEMORY_DESCRIPTOR *MemoryMap; UINTN UefiMemoryMapSize; DEBUG ((DEBUG_INFO, "GetUefiMemoryMap\n")); UefiMemoryMapSize = 0; MemoryMap = NULL; Status = gBS->GetMemoryMap ( &UefiMemoryMapSize, MemoryMap, &MapKey, &mUefiDescriptorSize, &DescriptorVersion ); ASSERT (Status == EFI_BUFFER_TOO_SMALL); do { Status = gBS->AllocatePool (EfiBootServicesData, UefiMemoryMapSize, (VOID **)&MemoryMap); ASSERT (MemoryMap != NULL); if (MemoryMap == NULL) { return ; } Status = gBS->GetMemoryMap ( &UefiMemoryMapSize, MemoryMap, &MapKey, &mUefiDescriptorSize, &DescriptorVersion ); if (EFI_ERROR (Status)) { gBS->FreePool (MemoryMap); MemoryMap = NULL; } } while (Status == EFI_BUFFER_TOO_SMALL); if (MemoryMap == NULL) { return ; } SortMemoryMap (MemoryMap, UefiMemoryMapSize, mUefiDescriptorSize); MergeMemoryMapForNotPresentEntry (MemoryMap, &UefiMemoryMapSize, mUefiDescriptorSize); mUefiMemoryMapSize = UefiMemoryMapSize; mUefiMemoryMap = AllocateCopyPool (UefiMemoryMapSize, MemoryMap); ASSERT (mUefiMemoryMap != NULL); gBS->FreePool (MemoryMap); } /** This function sets UEFI memory attribute according to UEFI memory map. The normal memory region is marked as not present, such as EfiLoaderCode/Data, EfiBootServicesCode/Data, EfiConventionalMemory, EfiUnusableMemory, EfiACPIReclaimMemory. **/ VOID SetUefiMemMapAttributes ( VOID ) { EFI_MEMORY_DESCRIPTOR *MemoryMap; UINTN MemoryMapEntryCount; UINTN Index; DEBUG ((DEBUG_INFO, "SetUefiMemMapAttributes\n")); if (mUefiMemoryMap == NULL) { DEBUG ((DEBUG_INFO, "UefiMemoryMap - NULL\n")); return ; } MemoryMapEntryCount = mUefiMemoryMapSize/mUefiDescriptorSize; MemoryMap = mUefiMemoryMap; for (Index = 0; Index < MemoryMapEntryCount; Index++) { if (IsUefiPageNotPresent(MemoryMap)) { DEBUG ((DEBUG_INFO, "UefiMemory protection: 0x%lx - 0x%lx\n", MemoryMap->PhysicalStart, MemoryMap->PhysicalStart + (UINT64)EFI_PAGES_TO_SIZE((UINTN)MemoryMap->NumberOfPages))); SmmSetMemoryAttributes ( MemoryMap->PhysicalStart, EFI_PAGES_TO_SIZE((UINTN)MemoryMap->NumberOfPages), EFI_MEMORY_RP ); } MemoryMap = NEXT_MEMORY_DESCRIPTOR(MemoryMap, mUefiDescriptorSize); } // // Do free mUefiMemoryMap, it will be checked in IsSmmCommBufferForbiddenAddress(). // } /** Return if the Address is forbidden as SMM communication buffer. @param[in] Address the address to be checked @return TRUE The address is forbidden as SMM communication buffer. @return FALSE The address is allowed as SMM communication buffer. **/ BOOLEAN IsSmmCommBufferForbiddenAddress ( IN UINT64 Address ) { EFI_MEMORY_DESCRIPTOR *MemoryMap; UINTN MemoryMapEntryCount; UINTN Index; if (mUefiMemoryMap == NULL) { return FALSE; } MemoryMap = mUefiMemoryMap; MemoryMapEntryCount = mUefiMemoryMapSize/mUefiDescriptorSize; for (Index = 0; Index < MemoryMapEntryCount; Index++) { if (IsUefiPageNotPresent (MemoryMap)) { if ((Address >= MemoryMap->PhysicalStart) && (Address < MemoryMap->PhysicalStart + EFI_PAGES_TO_SIZE((UINTN)MemoryMap->NumberOfPages)) ) { return TRUE; } } MemoryMap = NEXT_MEMORY_DESCRIPTOR(MemoryMap, mUefiDescriptorSize); } return FALSE; }