/**@file Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.
Copyright (c) 2011, Andrei Warkentin SPDX-License-Identifier: BSD-2-Clause-Patent **/ // // The package level header files this module uses // #include // // The Library classes this module consumes // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include VOID EFIAPI PlatformAddIoMemoryBaseSizeHob ( IN EFI_PHYSICAL_ADDRESS MemoryBase, IN UINT64 MemorySize ) { BuildResourceDescriptorHob ( EFI_RESOURCE_MEMORY_MAPPED_IO, EFI_RESOURCE_ATTRIBUTE_PRESENT | EFI_RESOURCE_ATTRIBUTE_INITIALIZED | EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE | EFI_RESOURCE_ATTRIBUTE_TESTED, MemoryBase, MemorySize ); } VOID EFIAPI PlatformAddReservedMemoryBaseSizeHob ( IN EFI_PHYSICAL_ADDRESS MemoryBase, IN UINT64 MemorySize, IN BOOLEAN Cacheable ) { BuildResourceDescriptorHob ( EFI_RESOURCE_MEMORY_RESERVED, EFI_RESOURCE_ATTRIBUTE_PRESENT | EFI_RESOURCE_ATTRIBUTE_INITIALIZED | EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE | (Cacheable ? EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE | EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE | EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE : 0 ) | EFI_RESOURCE_ATTRIBUTE_TESTED, MemoryBase, MemorySize ); } VOID EFIAPI PlatformAddIoMemoryRangeHob ( IN EFI_PHYSICAL_ADDRESS MemoryBase, IN EFI_PHYSICAL_ADDRESS MemoryLimit ) { PlatformAddIoMemoryBaseSizeHob (MemoryBase, (UINT64)(MemoryLimit - MemoryBase)); } VOID EFIAPI PlatformAddMemoryBaseSizeHob ( IN EFI_PHYSICAL_ADDRESS MemoryBase, IN UINT64 MemorySize ) { BuildResourceDescriptorHob ( EFI_RESOURCE_SYSTEM_MEMORY, EFI_RESOURCE_ATTRIBUTE_PRESENT | EFI_RESOURCE_ATTRIBUTE_INITIALIZED | EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE | EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE | EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE | EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE | EFI_RESOURCE_ATTRIBUTE_TESTED, MemoryBase, MemorySize ); } VOID EFIAPI PlatformAddMemoryRangeHob ( IN EFI_PHYSICAL_ADDRESS MemoryBase, IN EFI_PHYSICAL_ADDRESS MemoryLimit ) { PlatformAddMemoryBaseSizeHob (MemoryBase, (UINT64)(MemoryLimit - MemoryBase)); } VOID EFIAPI PlatformMemMapInitialization ( IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob ) { UINT64 PciIoBase; UINT64 PciIoSize; UINT32 TopOfLowRam; UINT64 PciExBarBase; UINT32 PciBase; UINT32 PciSize; PciIoBase = 0xC000; PciIoSize = 0x4000; // // Video memory + Legacy BIOS region // if (!TdIsEnabled ()) { PlatformAddIoMemoryRangeHob (0x0A0000, BASE_1MB); } if (PlatformInfoHob->HostBridgeDevId == 0xffff /* microvm */) { PlatformAddIoMemoryBaseSizeHob (MICROVM_GED_MMIO_BASE, SIZE_4KB); PlatformAddIoMemoryBaseSizeHob (0xFEC00000, SIZE_4KB); /* ioapic #1 */ PlatformAddIoMemoryBaseSizeHob (0xFEC10000, SIZE_4KB); /* ioapic #2 */ return; } TopOfLowRam = PlatformGetSystemMemorySizeBelow4gb (PlatformInfoHob); PciExBarBase = 0; if (PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) { // // The MMCONFIG area is expected to fall between the top of low RAM and // the base of the 32-bit PCI host aperture. // PciExBarBase = PcdGet64 (PcdPciExpressBaseAddress); ASSERT (TopOfLowRam <= PciExBarBase); ASSERT (PciExBarBase <= MAX_UINT32 - SIZE_256MB); PciBase = (UINT32)(PciExBarBase + SIZE_256MB); } else { ASSERT (TopOfLowRam <= PlatformInfoHob->Uc32Base); PciBase = PlatformInfoHob->Uc32Base; } // // address purpose size // ------------ -------- ------------------------- // max(top, 2g) PCI MMIO 0xFC000000 - max(top, 2g) // 0xFC000000 gap 44 MB // 0xFEC00000 IO-APIC 4 KB // 0xFEC01000 gap 1020 KB // 0xFED00000 HPET 1 KB // 0xFED00400 gap 111 KB // 0xFED1C000 gap (PIIX4) / RCRB (ICH9) 16 KB // 0xFED20000 gap 896 KB // 0xFEE00000 LAPIC 1 MB // PciSize = 0xFC000000 - PciBase; PlatformAddIoMemoryBaseSizeHob (PciBase, PciSize); PlatformInfoHob->PcdPciMmio32Base = PciBase; PlatformInfoHob->PcdPciMmio32Size = PciSize; PlatformAddIoMemoryBaseSizeHob (0xFEC00000, SIZE_4KB); PlatformAddIoMemoryBaseSizeHob (0xFED00000, SIZE_1KB); if (PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) { PlatformAddIoMemoryBaseSizeHob (ICH9_ROOT_COMPLEX_BASE, SIZE_16KB); // // Note: there should be an // // PlatformAddIoMemoryBaseSizeHob (PciExBarBase, SIZE_256MB); // // call below, just like the one above for RCBA. However, Linux insists // that the MMCONFIG area be marked in the E820 or UEFI memory map as // "reserved memory" -- Linux does not content itself with a simple gap // in the memory map wherever the MCFG ACPI table points to. // // This appears to be a safety measure. The PCI Firmware Specification // (rev 3.1) says in 4.1.2. "MCFG Table Description": "The resources can // *optionally* be returned in [...] EFIGetMemoryMap as reserved memory // [...]". (Emphasis added here.) // // Normally we add memory resource descriptor HOBs in // QemuInitializeRam(), and pre-allocate from those with memory // allocation HOBs in InitializeRamRegions(). However, the MMCONFIG area // is most definitely not RAM; so, as an exception, cover it with // uncacheable reserved memory right here. // PlatformAddReservedMemoryBaseSizeHob (PciExBarBase, SIZE_256MB, FALSE); BuildMemoryAllocationHob ( PciExBarBase, SIZE_256MB, EfiReservedMemoryType ); } PlatformAddIoMemoryBaseSizeHob (PcdGet32 (PcdCpuLocalApicBaseAddress), SIZE_1MB); // // On Q35, the IO Port space is available for PCI resource allocations from // 0x6000 up. // if (PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) { PciIoBase = 0x6000; PciIoSize = 0xA000; ASSERT ((ICH9_PMBASE_VALUE & 0xF000) < PciIoBase); } // // Add PCI IO Port space available for PCI resource allocations. // BuildResourceDescriptorHob ( EFI_RESOURCE_IO, EFI_RESOURCE_ATTRIBUTE_PRESENT | EFI_RESOURCE_ATTRIBUTE_INITIALIZED, PciIoBase, PciIoSize ); PlatformInfoHob->PcdPciIoBase = PciIoBase; PlatformInfoHob->PcdPciIoSize = PciIoSize; } /** * Fetch "opt/ovmf/PcdSetNxForStack" from QEMU * * @param Setting The pointer to the setting of "/opt/ovmf/PcdSetNxForStack". * @return EFI_SUCCESS Successfully fetch the settings. */ EFI_STATUS EFIAPI PlatformNoexecDxeInitialization ( IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob ) { return QemuFwCfgParseBool ("opt/ovmf/PcdSetNxForStack", &PlatformInfoHob->PcdSetNxForStack); } VOID PciExBarInitialization ( VOID ) { union { UINT64 Uint64; UINT32 Uint32[2]; } PciExBarBase; // // We only support the 256MB size for the MMCONFIG area: // 256 buses * 32 devices * 8 functions * 4096 bytes config space. // // The masks used below enforce the Q35 requirements that the MMCONFIG area // be (a) correctly aligned -- here at 256 MB --, (b) located under 64 GB. // // Note that (b) also ensures that the minimum address width we have // determined in AddressWidthInitialization(), i.e., 36 bits, will suffice // for DXE's page tables to cover the MMCONFIG area. // PciExBarBase.Uint64 = PcdGet64 (PcdPciExpressBaseAddress); ASSERT ((PciExBarBase.Uint32[1] & MCH_PCIEXBAR_HIGHMASK) == 0); ASSERT ((PciExBarBase.Uint32[0] & MCH_PCIEXBAR_LOWMASK) == 0); // // Clear the PCIEXBAREN bit first, before programming the high register. // PciWrite32 (DRAMC_REGISTER_Q35 (MCH_PCIEXBAR_LOW), 0); // // Program the high register. Then program the low register, setting the // MMCONFIG area size and enabling decoding at once. // PciWrite32 (DRAMC_REGISTER_Q35 (MCH_PCIEXBAR_HIGH), PciExBarBase.Uint32[1]); PciWrite32 ( DRAMC_REGISTER_Q35 (MCH_PCIEXBAR_LOW), PciExBarBase.Uint32[0] | MCH_PCIEXBAR_BUS_FF | MCH_PCIEXBAR_EN ); } VOID EFIAPI PlatformMiscInitialization ( IN EFI_HOB_PLATFORM_INFO *PlatformInfoHob ) { UINTN PmCmd; UINTN Pmba; UINT32 PmbaAndVal; UINT32 PmbaOrVal; UINTN AcpiCtlReg; UINT8 AcpiEnBit; // // Disable A20 Mask // if (PlatformInfoHob->HostBridgeDevId != CLOUDHV_DEVICE_ID) { IoOr8 (0x92, BIT1); } // // Build the CPU HOB with guest RAM size dependent address width and 16-bits // of IO space. (Side note: unlike other HOBs, the CPU HOB is needed during // S3 resume as well, so we build it unconditionally.) // BuildCpuHob (PlatformInfoHob->PhysMemAddressWidth, 16); // // Determine platform type and save Host Bridge DID to PCD // switch (PlatformInfoHob->HostBridgeDevId) { case INTEL_82441_DEVICE_ID: PmCmd = POWER_MGMT_REGISTER_PIIX4 (PCI_COMMAND_OFFSET); Pmba = POWER_MGMT_REGISTER_PIIX4 (PIIX4_PMBA); PmbaAndVal = ~(UINT32)PIIX4_PMBA_MASK; PmbaOrVal = PIIX4_PMBA_VALUE; AcpiCtlReg = POWER_MGMT_REGISTER_PIIX4 (PIIX4_PMREGMISC); AcpiEnBit = PIIX4_PMREGMISC_PMIOSE; break; case INTEL_Q35_MCH_DEVICE_ID: PmCmd = POWER_MGMT_REGISTER_Q35 (PCI_COMMAND_OFFSET); Pmba = POWER_MGMT_REGISTER_Q35 (ICH9_PMBASE); PmbaAndVal = ~(UINT32)ICH9_PMBASE_MASK; PmbaOrVal = ICH9_PMBASE_VALUE; AcpiCtlReg = POWER_MGMT_REGISTER_Q35 (ICH9_ACPI_CNTL); AcpiEnBit = ICH9_ACPI_CNTL_ACPI_EN; break; case CLOUDHV_DEVICE_ID: break; default: DEBUG (( DEBUG_ERROR, "%a: Unknown Host Bridge Device ID: 0x%04x\n", __FUNCTION__, PlatformInfoHob->HostBridgeDevId )); ASSERT (FALSE); return; } if (PlatformInfoHob->HostBridgeDevId == CLOUDHV_DEVICE_ID) { DEBUG ((DEBUG_INFO, "%a: Cloud Hypervisor is done.\n", __FUNCTION__)); return; } // // If the appropriate IOspace enable bit is set, assume the ACPI PMBA has // been configured and skip the setup here. This matches the logic in // AcpiTimerLibConstructor (). // if ((PciRead8 (AcpiCtlReg) & AcpiEnBit) == 0) { // // The PEI phase should be exited with fully accessibe ACPI PM IO space: // 1. set PMBA // PciAndThenOr32 (Pmba, PmbaAndVal, PmbaOrVal); // // 2. set PCICMD/IOSE // PciOr8 (PmCmd, EFI_PCI_COMMAND_IO_SPACE); // // 3. set ACPI PM IO enable bit (PMREGMISC:PMIOSE or ACPI_CNTL:ACPI_EN) // PciOr8 (AcpiCtlReg, AcpiEnBit); } if (PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) { // // Set Root Complex Register Block BAR // PciWrite32 ( POWER_MGMT_REGISTER_Q35 (ICH9_RCBA), ICH9_ROOT_COMPLEX_BASE | ICH9_RCBA_EN ); // // Set PCI Express Register Range Base Address // PciExBarInitialization (); } } /** Fetch the boot CPU count and the possible CPU count from QEMU, and expose them to UefiCpuPkg modules. **/ VOID EFIAPI PlatformMaxCpuCountInitialization ( IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob ) { UINT16 BootCpuCount = 0; UINT32 MaxCpuCount; // // Try to fetch the boot CPU count. // if (QemuFwCfgIsAvailable ()) { QemuFwCfgSelectItem (QemuFwCfgItemSmpCpuCount); BootCpuCount = QemuFwCfgRead16 (); } if (BootCpuCount == 0) { // // QEMU doesn't report the boot CPU count. (BootCpuCount == 0) will let // MpInitLib count APs up to (PcdCpuMaxLogicalProcessorNumber - 1), or // until PcdCpuApInitTimeOutInMicroSeconds elapses (whichever is reached // first). // DEBUG ((DEBUG_WARN, "%a: boot CPU count unavailable\n", __FUNCTION__)); MaxCpuCount = PlatformInfoHob->DefaultMaxCpuNumber; } else { // // We will expose BootCpuCount to MpInitLib. MpInitLib will count APs up to // (BootCpuCount - 1) precisely, regardless of timeout. // // Now try to fetch the possible CPU count. // UINTN CpuHpBase; UINT32 CmdData2; CpuHpBase = ((PlatformInfoHob->HostBridgeDevId == INTEL_Q35_MCH_DEVICE_ID) ? ICH9_CPU_HOTPLUG_BASE : PIIX4_CPU_HOTPLUG_BASE); // // If only legacy mode is available in the CPU hotplug register block, or // the register block is completely missing, then the writes below are // no-ops. // // 1. Switch the hotplug register block to modern mode. // IoWrite32 (CpuHpBase + QEMU_CPUHP_W_CPU_SEL, 0); // // 2. Select a valid CPU for deterministic reading of // QEMU_CPUHP_R_CMD_DATA2. // // CPU#0 is always valid; it is the always present and non-removable // BSP. // IoWrite32 (CpuHpBase + QEMU_CPUHP_W_CPU_SEL, 0); // // 3. Send a command after which QEMU_CPUHP_R_CMD_DATA2 is specified to // read as zero, and which does not invalidate the selector. (The // selector may change, but it must not become invalid.) // // Send QEMU_CPUHP_CMD_GET_PENDING, as it will prove useful later. // IoWrite8 (CpuHpBase + QEMU_CPUHP_W_CMD, QEMU_CPUHP_CMD_GET_PENDING); // // 4. Read QEMU_CPUHP_R_CMD_DATA2. // // If the register block is entirely missing, then this is an unassigned // IO read, returning all-bits-one. // // If only legacy mode is available, then bit#0 stands for CPU#0 in the // "CPU present bitmap". CPU#0 is always present. // // Otherwise, QEMU_CPUHP_R_CMD_DATA2 is either still reserved (returning // all-bits-zero), or it is specified to read as zero after the above // steps. Both cases confirm modern mode. // CmdData2 = IoRead32 (CpuHpBase + QEMU_CPUHP_R_CMD_DATA2); DEBUG ((DEBUG_VERBOSE, "%a: CmdData2=0x%x\n", __FUNCTION__, CmdData2)); if (CmdData2 != 0) { // // QEMU doesn't support the modern CPU hotplug interface. Assume that the // possible CPU count equals the boot CPU count (precluding hotplug). // DEBUG (( DEBUG_WARN, "%a: modern CPU hotplug interface unavailable\n", __FUNCTION__ )); MaxCpuCount = BootCpuCount; } else { // // Grab the possible CPU count from the modern CPU hotplug interface. // UINT32 Present, Possible, Selected; Present = 0; Possible = 0; // // We've sent QEMU_CPUHP_CMD_GET_PENDING last; this ensures // QEMU_CPUHP_RW_CMD_DATA can now be read usefully. However, // QEMU_CPUHP_CMD_GET_PENDING may have selected a CPU with actual pending // hotplug events; therefore, select CPU#0 forcibly. // IoWrite32 (CpuHpBase + QEMU_CPUHP_W_CPU_SEL, Possible); do { UINT8 CpuStatus; // // Read the status of the currently selected CPU. This will help with a // sanity check against "BootCpuCount". // CpuStatus = IoRead8 (CpuHpBase + QEMU_CPUHP_R_CPU_STAT); if ((CpuStatus & QEMU_CPUHP_STAT_ENABLED) != 0) { ++Present; } // // Attempt to select the next CPU. // ++Possible; IoWrite32 (CpuHpBase + QEMU_CPUHP_W_CPU_SEL, Possible); // // If the selection is successful, then the following read will return // the selector (which we know is positive at this point). Otherwise, // the read will return 0. // Selected = IoRead32 (CpuHpBase + QEMU_CPUHP_RW_CMD_DATA); ASSERT (Selected == Possible || Selected == 0); } while (Selected > 0); // // Sanity check: fw_cfg and the modern CPU hotplug interface should // return the same boot CPU count. // if (BootCpuCount != Present) { DEBUG (( DEBUG_WARN, "%a: QEMU v2.7 reset bug: BootCpuCount=%d " "Present=%u\n", __FUNCTION__, BootCpuCount, Present )); // // The handling of QemuFwCfgItemSmpCpuCount, across CPU hotplug plus // platform reset (including S3), was corrected in QEMU commit // e3cadac073a9 ("pc: fix FW_CFG_NB_CPUS to account for -device added // CPUs", 2016-11-16), part of release v2.8.0. // BootCpuCount = (UINT16)Present; } MaxCpuCount = Possible; } } DEBUG (( DEBUG_INFO, "%a: BootCpuCount=%d MaxCpuCount=%u\n", __FUNCTION__, BootCpuCount, MaxCpuCount )); ASSERT (BootCpuCount <= MaxCpuCount); PlatformInfoHob->PcdCpuMaxLogicalProcessorNumber = MaxCpuCount; PlatformInfoHob->PcdCpuBootLogicalProcessorNumber = BootCpuCount; } /** Check padding data all bit should be 1. @param[in] Buffer - A pointer to buffer header @param[in] BufferSize - Buffer size @retval TRUE - The padding data is valid. @retval TRUE - The padding data is invalid. **/ BOOLEAN CheckPaddingData ( IN UINT8 *Buffer, IN UINT32 BufferSize ) { UINT32 index; for (index = 0; index < BufferSize; index++) { if (Buffer[index] != 0xFF) { return FALSE; } } return TRUE; } /** Check the integrity of NvVarStore. @param[in] NvVarStoreBase - A pointer to NvVarStore header @param[in] NvVarStoreSize - NvVarStore size @retval TRUE - The NvVarStore is valid. @retval FALSE - The NvVarStore is invalid. **/ BOOLEAN EFIAPI PlatformValidateNvVarStore ( IN UINT8 *NvVarStoreBase, IN UINT32 NvVarStoreSize ) { UINT16 Checksum; UINTN VariableBase; UINT32 VariableOffset; UINT32 VariableOffsetBeforeAlign; EFI_FIRMWARE_VOLUME_HEADER *NvVarStoreFvHeader; VARIABLE_STORE_HEADER *NvVarStoreHeader; AUTHENTICATED_VARIABLE_HEADER *VariableHeader; static EFI_GUID FvHdrGUID = EFI_SYSTEM_NV_DATA_FV_GUID; static EFI_GUID VarStoreHdrGUID = EFI_AUTHENTICATED_VARIABLE_GUID; VariableOffset = 0; if (NvVarStoreBase == NULL) { DEBUG ((DEBUG_ERROR, "NvVarStore pointer is NULL.\n")); return FALSE; } // // Verify the header zerovetor, filesystemguid, // revision, signature, attributes, fvlength, checksum // HeaderLength cannot be an odd number // NvVarStoreFvHeader = (EFI_FIRMWARE_VOLUME_HEADER *)NvVarStoreBase; if ((!IsZeroBuffer (NvVarStoreFvHeader->ZeroVector, 16)) || (!CompareGuid (&FvHdrGUID, &NvVarStoreFvHeader->FileSystemGuid)) || (NvVarStoreFvHeader->Signature != EFI_FVH_SIGNATURE) || (NvVarStoreFvHeader->Attributes != 0x4feff) || (NvVarStoreFvHeader->Revision != EFI_FVH_REVISION) || (NvVarStoreFvHeader->FvLength != NvVarStoreSize) ) { DEBUG ((DEBUG_ERROR, "NvVarStore FV headers were invalid.\n")); return FALSE; } // // Verify the header checksum // Checksum = CalculateSum16 ((VOID *)NvVarStoreFvHeader, NvVarStoreFvHeader->HeaderLength); if (Checksum != 0) { DEBUG ((DEBUG_ERROR, "NvVarStore FV checksum was invalid.\n")); return FALSE; } // // Verify the header signature, size, format, state // NvVarStoreHeader = (VARIABLE_STORE_HEADER *)(NvVarStoreBase + NvVarStoreFvHeader->HeaderLength); if ((!CompareGuid (&VarStoreHdrGUID, &NvVarStoreHeader->Signature)) || (NvVarStoreHeader->Format != VARIABLE_STORE_FORMATTED) || (NvVarStoreHeader->State != VARIABLE_STORE_HEALTHY) || (NvVarStoreHeader->Size > (NvVarStoreFvHeader->FvLength - NvVarStoreFvHeader->HeaderLength)) || (NvVarStoreHeader->Size < sizeof (VARIABLE_STORE_HEADER)) ) { DEBUG ((DEBUG_ERROR, "NvVarStore header signature/size/format/state were invalid.\n")); return FALSE; } // // Verify the header startId, state // Verify data to the end // VariableBase = (UINTN)NvVarStoreBase + NvVarStoreFvHeader->HeaderLength + sizeof (VARIABLE_STORE_HEADER); while (VariableOffset < (NvVarStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER))) { VariableHeader = (AUTHENTICATED_VARIABLE_HEADER *)(VariableBase + VariableOffset); if (VariableHeader->StartId != VARIABLE_DATA) { if (!CheckPaddingData ((UINT8 *)VariableHeader, NvVarStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER) - VariableOffset)) { DEBUG ((DEBUG_ERROR, "NvVarStore variable header StartId was invalid.\n")); return FALSE; } VariableOffset = NvVarStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER); } else { if (!((VariableHeader->State == VAR_IN_DELETED_TRANSITION) || (VariableHeader->State == VAR_DELETED) || (VariableHeader->State == VAR_HEADER_VALID_ONLY) || (VariableHeader->State == VAR_ADDED))) { DEBUG ((DEBUG_ERROR, "NvVarStore Variable header State was invalid.\n")); return FALSE; } VariableOffset += sizeof (AUTHENTICATED_VARIABLE_HEADER) + VariableHeader->NameSize + VariableHeader->DataSize; // Verify VariableOffset should be less than or equal NvVarStoreHeader->Size - sizeof(VARIABLE_STORE_HEADER) if (VariableOffset > (NvVarStoreHeader->Size - sizeof (VARIABLE_STORE_HEADER))) { DEBUG ((DEBUG_ERROR, "NvVarStore Variable header VariableOffset was invalid.\n")); return FALSE; } VariableOffsetBeforeAlign = VariableOffset; // 4 byte align VariableOffset = (VariableOffset + 3) & (UINTN)(~3); if (!CheckPaddingData ((UINT8 *)(VariableBase + VariableOffsetBeforeAlign), VariableOffset - VariableOffsetBeforeAlign)) { DEBUG ((DEBUG_ERROR, "NvVarStore Variable header PaddingData was invalid.\n")); return FALSE; } } } return TRUE; } /** Allocate storage for NV variables early on so it will be at a consistent address. Since VM memory is preserved across reboots, this allows the NV variable storage to survive a VM reboot. * * @retval VOID* The pointer to the storage for NV Variables */ VOID * EFIAPI PlatformReserveEmuVariableNvStore ( VOID ) { VOID *VariableStore; UINT32 VarStoreSize; VarStoreSize = 2 * PcdGet32 (PcdFlashNvStorageFtwSpareSize); // // Allocate storage for NV variables early on so it will be // at a consistent address. Since VM memory is preserved // across reboots, this allows the NV variable storage to survive // a VM reboot. // VariableStore = AllocateRuntimePages ( EFI_SIZE_TO_PAGES (VarStoreSize) ); DEBUG (( DEBUG_INFO, "Reserved variable store memory: 0x%p; size: %dkb\n", VariableStore, VarStoreSize / 1024 )); return VariableStore; } /** When OVMF is lauched with -bios parameter, UEFI variables will be partially emulated, and non-volatile variables may lose their contents after a reboot. This makes the secure boot feature not working. This function is used to initialize the EmuVariableNvStore with the conent in PcdOvmfFlashNvStorageVariableBase. @param[in] EmuVariableNvStore - A pointer to EmuVariableNvStore @retval EFI_SUCCESS - Successfully init the EmuVariableNvStore @retval Others - As the error code indicates */ EFI_STATUS EFIAPI PlatformInitEmuVariableNvStore ( IN VOID *EmuVariableNvStore ) { UINT8 *Base; UINT32 Size; UINT32 EmuVariableNvStoreSize; EmuVariableNvStoreSize = 2 * PcdGet32 (PcdFlashNvStorageFtwSpareSize); if ((EmuVariableNvStore == NULL) || (EmuVariableNvStoreSize == 0)) { DEBUG ((DEBUG_ERROR, "Invalid EmuVariableNvStore parameter.\n")); return EFI_INVALID_PARAMETER; } Base = (UINT8 *)(UINTN)PcdGet32 (PcdOvmfFlashNvStorageVariableBase); Size = (UINT32)PcdGet32 (PcdFlashNvStorageVariableSize); ASSERT (Size < EmuVariableNvStoreSize); if (!PlatformValidateNvVarStore (Base, PcdGet32 (PcdCfvRawDataSize))) { ASSERT (FALSE); return EFI_INVALID_PARAMETER; } DEBUG ((DEBUG_INFO, "Init EmuVariableNvStore with the content in FlashNvStorage\n")); CopyMem (EmuVariableNvStore, Base, Size); return EFI_SUCCESS; }