/** @file CPU DXE Module. Copyright (c) 2008 - 2014, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "CpuDxe.h" #include "CpuMp.h" UINTN gMaxLogicalProcessorNumber; UINTN gApStackSize; UINTN gPollInterval = 100; // 100 microseconds MP_SYSTEM_DATA mMpSystemData; VOID *mCommonStack = 0; VOID *mTopOfApCommonStack = 0; VOID *mApStackStart = 0; EFI_MP_SERVICES_PROTOCOL mMpServicesTemplate = { GetNumberOfProcessors, GetProcessorInfo, NULL, // StartupAllAPs, StartupThisAP, NULL, // SwitchBSP, EnableDisableAP, WhoAmI }; /** Check whether caller processor is BSP. @retval TRUE the caller is BSP @retval FALSE the caller is AP **/ BOOLEAN IsBSP ( VOID ) { UINTN CpuIndex; CPU_DATA_BLOCK *CpuData; CpuData = NULL; WhoAmI (&mMpServicesTemplate, &CpuIndex); CpuData = &mMpSystemData.CpuDatas[CpuIndex]; return CpuData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT ? TRUE : FALSE; } /** Get the Application Processors state. @param CpuData the pointer to CPU_DATA_BLOCK of specified AP @retval CPU_STATE the AP status **/ CPU_STATE GetApState ( IN CPU_DATA_BLOCK *CpuData ) { CPU_STATE State; while (!AcquireSpinLockOrFail (&CpuData->CpuDataLock)) { CpuPause (); } State = CpuData->State; ReleaseSpinLock (&CpuData->CpuDataLock); return State; } /** Set the Application Processors state. @param CpuData The pointer to CPU_DATA_BLOCK of specified AP @param State The AP status **/ VOID SetApState ( IN CPU_DATA_BLOCK *CpuData, IN CPU_STATE State ) { while (!AcquireSpinLockOrFail (&CpuData->CpuDataLock)) { CpuPause (); } CpuData->State = State; ReleaseSpinLock (&CpuData->CpuDataLock); } /** Set the Application Processor prepare to run a function specified by Params. @param CpuData the pointer to CPU_DATA_BLOCK of specified AP @param Procedure A pointer to the function to be run on enabled APs of the system @param ProcedureArgument Pointer to the optional parameter of the assigned function **/ VOID SetApProcedure ( IN CPU_DATA_BLOCK *CpuData, IN EFI_AP_PROCEDURE Procedure, IN VOID *ProcedureArgument ) { while (!AcquireSpinLockOrFail (&CpuData->CpuDataLock)) { CpuPause (); } CpuData->Parameter = ProcedureArgument; CpuData->Procedure = Procedure; ReleaseSpinLock (&CpuData->CpuDataLock); } /** Check the Application Processors Status whether contains the Flags. @param CpuData the pointer to CPU_DATA_BLOCK of specified AP @param Flags the StatusFlag describing in EFI_PROCESSOR_INFORMATION @retval TRUE the AP status includes the StatusFlag @retval FALSE the AP status excludes the StatusFlag **/ BOOLEAN TestCpuStatusFlag ( IN CPU_DATA_BLOCK *CpuData, IN UINT32 Flags ) { UINT32 Ret; while (!AcquireSpinLockOrFail (&CpuData->CpuDataLock)) { CpuPause (); } Ret = CpuData->Info.StatusFlag & Flags; ReleaseSpinLock (&CpuData->CpuDataLock); return !!(Ret); } /** Bitwise-Or of the Application Processors Status with the Flags. @param CpuData the pointer to CPU_DATA_BLOCK of specified AP @param Flags the StatusFlag describing in EFI_PROCESSOR_INFORMATION **/ VOID CpuStatusFlagOr ( IN CPU_DATA_BLOCK *CpuData, IN UINT32 Flags ) { while (!AcquireSpinLockOrFail (&CpuData->CpuDataLock)) { CpuPause (); } CpuData->Info.StatusFlag |= Flags; ReleaseSpinLock (&CpuData->CpuDataLock); } /** Bitwise-AndNot of the Application Processors Status with the Flags. @param CpuData the pointer to CPU_DATA_BLOCK of specified AP @param Flags the StatusFlag describing in EFI_PROCESSOR_INFORMATION **/ VOID CpuStatusFlagAndNot ( IN CPU_DATA_BLOCK *CpuData, IN UINT32 Flags ) { while (!AcquireSpinLockOrFail (&CpuData->CpuDataLock)) { CpuPause (); } CpuData->Info.StatusFlag &= ~Flags; ReleaseSpinLock (&CpuData->CpuDataLock); } /** Searches for the next blocking AP. Search for the next AP that is put in blocking state by single-threaded StartupAllAPs(). @param NextNumber Pointer to the processor number of the next blocking AP. @retval EFI_SUCCESS The next blocking AP has been found. @retval EFI_NOT_FOUND No blocking AP exists. **/ EFI_STATUS GetNextBlockedNumber ( OUT UINTN *NextNumber ) { UINTN Number; CPU_STATE CpuState; CPU_DATA_BLOCK *CpuData; for (Number = 0; Number < mMpSystemData.NumberOfProcessors; Number++) { CpuData = &mMpSystemData.CpuDatas[Number]; if (TestCpuStatusFlag (CpuData, PROCESSOR_AS_BSP_BIT)) { // // Skip BSP // continue; } CpuState = GetApState (CpuData); if (CpuState == CpuStateBlocked) { *NextNumber = Number; return EFI_SUCCESS; } } return EFI_NOT_FOUND; } /** This service retrieves the number of logical processor in the platform and the number of those logical processors that are enabled on this boot. This service may only be called from the BSP. This function is used to retrieve the following information: - The number of logical processors that are present in the system. - The number of enabled logical processors in the system at the instant this call is made. Because MP Service Protocol provides services to enable and disable processors dynamically, the number of enabled logical processors may vary during the course of a boot session. If this service is called from an AP, then EFI_DEVICE_ERROR is returned. If NumberOfProcessors or NumberOfEnabledProcessors is NULL, then EFI_INVALID_PARAMETER is returned. Otherwise, the total number of processors is returned in NumberOfProcessors, the number of currently enabled processor is returned in NumberOfEnabledProcessors, and EFI_SUCCESS is returned. @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. @param[out] NumberOfProcessors Pointer to the total number of logical processors in the system, including the BSP and disabled APs. @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical processors that exist in system, including the BSP. @retval EFI_SUCCESS The number of logical processors and enabled logical processors was retrieved. @retval EFI_DEVICE_ERROR The calling processor is an AP. @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL. @retval EFI_INVALID_PARAMETER NumberOfEnabledProcessors is NULL. **/ EFI_STATUS EFIAPI GetNumberOfProcessors ( IN EFI_MP_SERVICES_PROTOCOL *This, OUT UINTN *NumberOfProcessors, OUT UINTN *NumberOfEnabledProcessors ) { if ((NumberOfProcessors == NULL) || (NumberOfEnabledProcessors == NULL)) { return EFI_INVALID_PARAMETER; } if (!IsBSP ()) { return EFI_DEVICE_ERROR; } *NumberOfProcessors = mMpSystemData.NumberOfProcessors; *NumberOfEnabledProcessors = mMpSystemData.NumberOfEnabledProcessors; return EFI_SUCCESS; } /** Gets detailed MP-related information on the requested processor at the instant this call is made. This service may only be called from the BSP. This service retrieves detailed MP-related information about any processor on the platform. Note the following: - The processor information may change during the course of a boot session. - The information presented here is entirely MP related. Information regarding the number of caches and their sizes, frequency of operation, slot numbers is all considered platform-related information and is not provided by this service. @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. @param[in] ProcessorNumber The handle number of processor. @param[out] ProcessorInfoBuffer A pointer to the buffer where information for the requested processor is deposited. @retval EFI_SUCCESS Processor information was returned. @retval EFI_DEVICE_ERROR The calling processor is an AP. @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL. @retval EFI_NOT_FOUND The processor with the handle specified by ProcessorNumber does not exist in the platform. **/ EFI_STATUS EFIAPI GetProcessorInfo ( IN EFI_MP_SERVICES_PROTOCOL *This, IN UINTN ProcessorNumber, OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer ) { if (ProcessorInfoBuffer == NULL) { return EFI_INVALID_PARAMETER; } if (!IsBSP ()) { return EFI_DEVICE_ERROR; } if (ProcessorNumber >= mMpSystemData.NumberOfProcessors) { return EFI_NOT_FOUND; } CopyMem (ProcessorInfoBuffer, &mMpSystemData.CpuDatas[ProcessorNumber], sizeof (EFI_PROCESSOR_INFORMATION)); return EFI_SUCCESS; } /** This service lets the caller get one enabled AP to execute a caller-provided function. The caller can request the BSP to either wait for the completion of the AP or just proceed with the next task by using the EFI event mechanism. See EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() for more details on non-blocking execution support. This service may only be called from the BSP. This function is used to dispatch one enabled AP to the function specified by Procedure passing in the argument specified by ProcedureArgument. If WaitEvent is NULL, execution is in blocking mode. The BSP waits until the AP finishes or TimeoutInMicroSecondss expires. Otherwise, execution is in non-blocking mode. BSP proceeds to the next task without waiting for the AP. If a non-blocking mode is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled, then EFI_UNSUPPORTED must be returned. If the timeout specified by TimeoutInMicroseconds expires before the AP returns from Procedure, then execution of Procedure by the AP is terminated. The AP is available for subsequent calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() and EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. @param[in] Procedure A pointer to the function to be run on enabled APs of the system. See type EFI_AP_PROCEDURE. @param[in] ProcessorNumber The handle number of the AP. The range is from 0 to the total number of logical processors minus 1. The total number of logical processors can be retrieved by EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). @param[in] WaitEvent The event created by the caller with CreateEvent() service. If it is NULL, then execute in blocking mode. BSP waits until all APs finish or TimeoutInMicroseconds expires. If it's not NULL, then execute in non-blocking mode. BSP requests the function specified by Procedure to be started on all the enabled APs, and go on executing immediately. If all return from Procedure or TimeoutInMicroseconds expires, this event is signaled. The BSP can use the CheckEvent() or WaitForEvent() services to check the state of event. Type EFI_EVENT is defined in CreateEvent() in the Unified Extensible Firmware Interface Specification. @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for APs to return from Procedure, either for blocking or non-blocking mode. Zero means infinity. If the timeout expires before all APs return from Procedure, then Procedure on the failed APs is terminated. All enabled APs are available for next function assigned by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() or EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). If the timeout expires in blocking mode, BSP returns EFI_TIMEOUT. If the timeout expires in non-blocking mode, WaitEvent is signaled with SignalEvent(). @param[in] ProcedureArgument The parameter passed into Procedure for all APs. @param[out] Finished If NULL, this parameter is ignored. In blocking mode, this parameter is ignored. In non-blocking mode, if AP returns from Procedure before the timeout expires, its content is set to TRUE. Otherwise, the value is set to FALSE. The caller can determine if the AP returned from Procedure by evaluating this value. @retval EFI_SUCCESS In blocking mode, specified AP finished before the timeout expires. @retval EFI_SUCCESS In non-blocking mode, the function has been dispatched to specified AP. @retval EFI_UNSUPPORTED A non-blocking mode request was made after the UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was signaled. @retval EFI_DEVICE_ERROR The calling processor is an AP. @retval EFI_TIMEOUT In blocking mode, the timeout expired before the specified AP has finished. @retval EFI_NOT_READY The specified AP is busy. @retval EFI_NOT_FOUND The processor with the handle specified by ProcessorNumber does not exist. @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP. @retval EFI_INVALID_PARAMETER Procedure is NULL. **/ EFI_STATUS EFIAPI StartupThisAP ( IN EFI_MP_SERVICES_PROTOCOL *This, IN EFI_AP_PROCEDURE Procedure, IN UINTN ProcessorNumber, IN EFI_EVENT WaitEvent OPTIONAL, IN UINTN TimeoutInMicroseconds, IN VOID *ProcedureArgument OPTIONAL, OUT BOOLEAN *Finished OPTIONAL ) { CPU_DATA_BLOCK *CpuData; EFI_STATUS Status; CpuData = NULL; if (Finished != NULL) { *Finished = FALSE; } if (!IsBSP ()) { return EFI_DEVICE_ERROR; } if (Procedure == NULL) { return EFI_INVALID_PARAMETER; } if (ProcessorNumber >= mMpSystemData.NumberOfProcessors) { return EFI_NOT_FOUND; } CpuData = &mMpSystemData.CpuDatas[ProcessorNumber]; if (TestCpuStatusFlag (CpuData, PROCESSOR_AS_BSP_BIT) || !TestCpuStatusFlag (CpuData, PROCESSOR_ENABLED_BIT)) { return EFI_INVALID_PARAMETER; } if (GetApState (CpuData) != CpuStateIdle) { return EFI_NOT_READY; } SetApState (CpuData, CpuStateReady); SetApProcedure (CpuData, Procedure, ProcedureArgument); CpuData->Timeout = TimeoutInMicroseconds; CpuData->WaitEvent = WaitEvent; CpuData->TimeoutActive = !!(TimeoutInMicroseconds); CpuData->Finished = Finished; if (WaitEvent != NULL) { // // Non Blocking // Status = gBS->SetTimer ( CpuData->CheckThisAPEvent, TimerPeriodic, EFI_TIMER_PERIOD_MICROSECONDS (100) ); return Status; } // // Blocking // while (TRUE) { if (GetApState (CpuData) == CpuStateFinished) { SetApState (CpuData, CpuStateIdle); break; } if (CpuData->TimeoutActive && CpuData->Timeout < 0) { ResetProcessorToIdleState (CpuData); return EFI_TIMEOUT; } gBS->Stall (gPollInterval); CpuData->Timeout -= gPollInterval; } return EFI_SUCCESS; } /** This service lets the caller enable or disable an AP from this point onward. This service may only be called from the BSP. This service allows the caller enable or disable an AP from this point onward. The caller can optionally specify the health status of the AP by Health. If an AP is being disabled, then the state of the disabled AP is implementation dependent. If an AP is enabled, then the implementation must guarantee that a complete initialization sequence is performed on the AP, so the AP is in a state that is compatible with an MP operating system. This service may not be supported after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled. If the enable or disable AP operation cannot be completed prior to the return from this service, then EFI_UNSUPPORTED must be returned. @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. @param[in] ProcessorNumber The handle number of AP that is to become the new BSP. The range is from 0 to the total number of logical processors minus 1. The total number of logical processors can be retrieved by EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). @param[in] EnableAP Specifies the new state for the processor for enabled, FALSE for disabled. @param[in] HealthFlag If not NULL, a pointer to a value that specifies the new health status of the AP. This flag corresponds to StatusFlag defined in EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only the PROCESSOR_HEALTH_STATUS_BIT is used. All other bits are ignored. If it is NULL, this parameter is ignored. @retval EFI_SUCCESS The specified AP was enabled or disabled successfully. @retval EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed prior to this service returning. @retval EFI_UNSUPPORTED Enabling or disabling an AP is not supported. @retval EFI_DEVICE_ERROR The calling processor is an AP. @retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber does not exist. @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP. **/ EFI_STATUS EFIAPI EnableDisableAP ( IN EFI_MP_SERVICES_PROTOCOL *This, IN UINTN ProcessorNumber, IN BOOLEAN EnableAP, IN UINT32 *HealthFlag OPTIONAL ) { CPU_DATA_BLOCK *CpuData; if (!IsBSP ()) { return EFI_DEVICE_ERROR; } if (ProcessorNumber >= mMpSystemData.NumberOfProcessors) { return EFI_NOT_FOUND; } CpuData = &mMpSystemData.CpuDatas[ProcessorNumber]; if (TestCpuStatusFlag (CpuData, PROCESSOR_AS_BSP_BIT)) { return EFI_INVALID_PARAMETER; } if (GetApState (CpuData) != CpuStateIdle) { return EFI_UNSUPPORTED; } if (EnableAP) { if (!(TestCpuStatusFlag (CpuData, PROCESSOR_ENABLED_BIT))) { mMpSystemData.NumberOfEnabledProcessors++; } CpuStatusFlagOr (CpuData, PROCESSOR_ENABLED_BIT); } else { if (TestCpuStatusFlag (CpuData, PROCESSOR_ENABLED_BIT)) { mMpSystemData.NumberOfEnabledProcessors--; } CpuStatusFlagAndNot (CpuData, PROCESSOR_ENABLED_BIT); } if (HealthFlag != NULL) { CpuStatusFlagAndNot (CpuData, (UINT32)~PROCESSOR_HEALTH_STATUS_BIT); CpuStatusFlagOr (CpuData, (*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT)); } return EFI_SUCCESS; } /** This return the handle number for the calling processor. This service may be called from the BSP and APs. This service returns the processor handle number for the calling processor. The returned value is in the range from 0 to the total number of logical processors minus 1. The total number of logical processors can be retrieved with EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). This service may be called from the BSP and APs. If ProcessorNumber is NULL, then EFI_INVALID_PARAMETER is returned. Otherwise, the current processors handle number is returned in ProcessorNumber, and EFI_SUCCESS is returned. @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. @param[out] ProcessorNumber The handle number of AP that is to become the new BSP. The range is from 0 to the total number of logical processors minus 1. The total number of logical processors can be retrieved by EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). @retval EFI_SUCCESS The current processor handle number was returned in ProcessorNumber. @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL. **/ EFI_STATUS EFIAPI WhoAmI ( IN EFI_MP_SERVICES_PROTOCOL *This, OUT UINTN *ProcessorNumber ) { UINTN Index; UINT32 ProcessorId; if (ProcessorNumber == NULL) { return EFI_INVALID_PARAMETER; } ProcessorId = GetApicId (); for (Index = 0; Index < mMpSystemData.NumberOfProcessors; Index++) { if (mMpSystemData.CpuDatas[Index].Info.ProcessorId == ProcessorId) { break; } } *ProcessorNumber = Index; return EFI_SUCCESS; } /** Terminate AP's task and set it to idle state. This function terminates AP's task due to timeout by sending INIT-SIPI, and sends it to idle state. @param CpuData the pointer to CPU_DATA_BLOCK of specified AP **/ VOID ResetProcessorToIdleState ( IN CPU_DATA_BLOCK *CpuData ) { } /** Application Processors do loop routine after switch to its own stack. @param Context1 A pointer to the context to pass into the function. @param Context2 A pointer to the context to pass into the function. **/ VOID ProcessorToIdleState ( IN VOID *Context1, OPTIONAL IN VOID *Context2 OPTIONAL ) { DEBUG ((DEBUG_INFO, "Ap apicid is %d\n", GetApicId ())); AsmApDoneWithCommonStack (); CpuSleep (); CpuDeadLoop (); } /** Checks AP' status periodically. This function is triggerred by timer perodically to check the state of AP forStartupThisAP() executed in non-blocking mode. @param Event Event triggered. @param Context Parameter passed with the event. **/ VOID EFIAPI CheckThisAPStatus ( IN EFI_EVENT Event, IN VOID *Context ) { CPU_DATA_BLOCK *CpuData; CPU_STATE CpuState; CpuData = (CPU_DATA_BLOCK *) Context; if (CpuData->TimeoutActive) { CpuData->Timeout -= gPollInterval; } CpuState = GetApState (CpuData); if (CpuState == CpuStateFinished) { if (CpuData->Finished) { *CpuData->Finished = TRUE; } SetApState (CpuData, CpuStateIdle); goto out; } if (CpuData->TimeoutActive && CpuData->Timeout < 0) { if (CpuState != CpuStateIdle && CpuData->Finished) { *CpuData->Finished = FALSE; } ResetProcessorToIdleState (CpuData); goto out; } return; out: gBS->SetTimer (CpuData->CheckThisAPEvent, TimerCancel, 0); if (CpuData->WaitEvent) { gBS->SignalEvent (CpuData->WaitEvent); CpuData->WaitEvent = NULL; } } /** Application Processor C code entry point. **/ VOID EFIAPI ApEntryPointInC ( VOID ) { VOID* TopOfApStack; FillInProcessorInformation (FALSE, mMpSystemData.NumberOfProcessors); TopOfApStack = (UINT8*)mApStackStart + gApStackSize; mApStackStart = TopOfApStack; mMpSystemData.NumberOfProcessors++; SwitchStack ( (SWITCH_STACK_ENTRY_POINT)(UINTN)ProcessorToIdleState, NULL, NULL, TopOfApStack); } /** This function is called by all processors (both BSP and AP) once and collects MP related data. @param Bsp TRUE if the CPU is BSP @param ProcessorNumber The specific processor number @retval EFI_SUCCESS Data for the processor collected and filled in **/ EFI_STATUS FillInProcessorInformation ( IN BOOLEAN Bsp, IN UINTN ProcessorNumber ) { CPU_DATA_BLOCK *CpuData; UINT32 ProcessorId; CpuData = &mMpSystemData.CpuDatas[ProcessorNumber]; ProcessorId = GetApicId (); CpuData->Info.ProcessorId = ProcessorId; CpuData->Info.StatusFlag = PROCESSOR_ENABLED_BIT | PROCESSOR_HEALTH_STATUS_BIT; if (Bsp) { CpuData->Info.StatusFlag |= PROCESSOR_AS_BSP_BIT; } CpuData->Info.Location.Package = ProcessorId; CpuData->Info.Location.Core = 0; CpuData->Info.Location.Thread = 0; CpuData->State = Bsp ? CpuStateBuzy : CpuStateIdle; CpuData->Procedure = NULL; CpuData->Parameter = NULL; InitializeSpinLock (&CpuData->CpuDataLock); return EFI_SUCCESS; } /** Prepare the System Data. @retval EFI_SUCCESS the System Data finished initilization. **/ EFI_STATUS InitMpSystemData ( VOID ) { UINTN ProcessorNumber; CPU_DATA_BLOCK *CpuData; EFI_STATUS Status; ZeroMem (&mMpSystemData, sizeof (MP_SYSTEM_DATA)); mMpSystemData.NumberOfProcessors = 1; mMpSystemData.NumberOfEnabledProcessors = 1; mMpSystemData.CpuDatas = AllocateZeroPool (sizeof (CPU_DATA_BLOCK) * gMaxLogicalProcessorNumber); ASSERT(mMpSystemData.CpuDatas != NULL); for (ProcessorNumber = 0; ProcessorNumber < gMaxLogicalProcessorNumber; ProcessorNumber++) { CpuData = &mMpSystemData.CpuDatas[ProcessorNumber]; Status = gBS->CreateEvent ( EVT_TIMER | EVT_NOTIFY_SIGNAL, TPL_CALLBACK, CheckThisAPStatus, (VOID *) CpuData, &CpuData->CheckThisAPEvent ); ASSERT_EFI_ERROR (Status); } // // BSP // FillInProcessorInformation (TRUE, 0); return EFI_SUCCESS; } /** Initialize Multi-processor support. **/ VOID InitializeMpSupport ( VOID ) { gMaxLogicalProcessorNumber = (UINTN) PcdGet32 (PcdCpuMaxLogicalProcessorNumber); if (gMaxLogicalProcessorNumber < 1) { DEBUG ((DEBUG_ERROR, "Setting PcdCpuMaxLogicalProcessorNumber should be more than zero.\n")); return; } if (gMaxLogicalProcessorNumber == 1) { return; } gApStackSize = (UINTN) PcdGet32 (PcdCpuApStackSize); ASSERT ((gApStackSize & (SIZE_4KB - 1)) == 0); mApStackStart = AllocatePages (EFI_SIZE_TO_PAGES (gMaxLogicalProcessorNumber * gApStackSize)); ASSERT (mApStackStart != NULL); // // the first buffer of stack size used for common stack, when the amount of AP // more than 1, we should never free the common stack which maybe used for AP reset. // mCommonStack = mApStackStart; mTopOfApCommonStack = (UINT8*) mApStackStart + gApStackSize; mApStackStart = mTopOfApCommonStack; InitMpSystemData (); if (mMpSystemData.NumberOfProcessors == 1) { FreePages (mCommonStack, EFI_SIZE_TO_PAGES (gMaxLogicalProcessorNumber * gApStackSize)); return; } if (mMpSystemData.NumberOfProcessors < gMaxLogicalProcessorNumber) { FreePages (mApStackStart, EFI_SIZE_TO_PAGES ( (gMaxLogicalProcessorNumber - mMpSystemData.NumberOfProcessors) * gApStackSize)); } }