/** @file The protocol provides support to allocate, free, map and umap a DMA buffer for bus master (e.g PciHostBridge). When SEV is enabled, the DMA operations must be performed on unencrypted buffer hence we use a bounce buffer to map the guest buffer into an unencrypted DMA buffer. Copyright (c) 2017, AMD Inc. All rights reserved.
Copyright (c) 2017, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "AmdSevIoMmu.h" #define MAP_INFO_SIG SIGNATURE_64 ('M', 'A', 'P', '_', 'I', 'N', 'F', 'O') typedef struct { UINT64 Signature; LIST_ENTRY Link; EDKII_IOMMU_OPERATION Operation; UINTN NumberOfBytes; UINTN NumberOfPages; EFI_PHYSICAL_ADDRESS CryptedAddress; EFI_PHYSICAL_ADDRESS PlainTextAddress; } MAP_INFO; // // List of MAP_INFO structures recycled by Unmap(). // // Recycled MAP_INFO structures are equally good for future recycling and // freeing. // STATIC LIST_ENTRY mRecycledMapInfos = INITIALIZE_LIST_HEAD_VARIABLE ( mRecycledMapInfos ); #define COMMON_BUFFER_SIG SIGNATURE_64 ('C', 'M', 'N', 'B', 'U', 'F', 'F', 'R') // // The following structure enables Map() and Unmap() to perform in-place // decryption and encryption, respectively, for BusMasterCommonBuffer[64] // operations, without dynamic memory allocation or release. // // Both COMMON_BUFFER_HEADER and COMMON_BUFFER_HEADER.StashBuffer are allocated // by AllocateBuffer() and released by FreeBuffer(). // #pragma pack (1) typedef struct { UINT64 Signature; // // Always allocated from EfiBootServicesData type memory, and always // encrypted. // VOID *StashBuffer; // // Followed by the actual common buffer, starting at the next page. // } COMMON_BUFFER_HEADER; #pragma pack () /** Provides the controller-specific addresses required to access system memory from a DMA bus master. On SEV guest, the DMA operations must be performed on shared buffer hence we allocate a bounce buffer to map the HostAddress to a DeviceAddress. The Encryption attribute is removed from the DeviceAddress buffer. @param This The protocol instance pointer. @param Operation Indicates if the bus master is going to read or write to system memory. @param HostAddress The system memory address to map to the PCI controller. @param NumberOfBytes On input the number of bytes to map. On output the number of bytes that were mapped. @param DeviceAddress The resulting map address for the bus master PCI controller to use to access the hosts HostAddress. @param Mapping A resulting value to pass to Unmap(). @retval EFI_SUCCESS The range was mapped for the returned NumberOfBytes. @retval EFI_UNSUPPORTED The HostAddress cannot be mapped as a common buffer. @retval EFI_INVALID_PARAMETER One or more parameters are invalid. @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources. @retval EFI_DEVICE_ERROR The system hardware could not map the requested address. **/ EFI_STATUS EFIAPI IoMmuMap ( IN EDKII_IOMMU_PROTOCOL *This, IN EDKII_IOMMU_OPERATION Operation, IN VOID *HostAddress, IN OUT UINTN *NumberOfBytes, OUT EFI_PHYSICAL_ADDRESS *DeviceAddress, OUT VOID **Mapping ) { EFI_STATUS Status; LIST_ENTRY *RecycledMapInfo; MAP_INFO *MapInfo; EFI_ALLOCATE_TYPE AllocateType; COMMON_BUFFER_HEADER *CommonBufferHeader; VOID *DecryptionSource; if (HostAddress == NULL || NumberOfBytes == NULL || DeviceAddress == NULL || Mapping == NULL) { return EFI_INVALID_PARAMETER; } // // Allocate a MAP_INFO structure to remember the mapping when Unmap() is // called later. // RecycledMapInfo = GetFirstNode (&mRecycledMapInfos); if (RecycledMapInfo == &mRecycledMapInfos) { // // No recycled MAP_INFO structure, allocate a new one. // MapInfo = AllocatePool (sizeof (MAP_INFO)); if (MapInfo == NULL) { Status = EFI_OUT_OF_RESOURCES; goto Failed; } } else { MapInfo = CR (RecycledMapInfo, MAP_INFO, Link, MAP_INFO_SIG); RemoveEntryList (RecycledMapInfo); } // // Initialize the MAP_INFO structure, except the PlainTextAddress field // ZeroMem (&MapInfo->Link, sizeof MapInfo->Link); MapInfo->Signature = MAP_INFO_SIG; MapInfo->Operation = Operation; MapInfo->NumberOfBytes = *NumberOfBytes; MapInfo->NumberOfPages = EFI_SIZE_TO_PAGES (MapInfo->NumberOfBytes); MapInfo->CryptedAddress = (UINTN)HostAddress; // // In the switch statement below, we point "MapInfo->PlainTextAddress" to the // plaintext buffer, according to Operation. We also set "DecryptionSource". // MapInfo->PlainTextAddress = MAX_ADDRESS; AllocateType = AllocateAnyPages; DecryptionSource = (VOID *)(UINTN)MapInfo->CryptedAddress; switch (Operation) { // // For BusMasterRead[64] and BusMasterWrite[64] operations, a bounce buffer // is necessary regardless of whether the original (crypted) buffer crosses // the 4GB limit or not -- we have to allocate a separate plaintext buffer. // The only variable is whether the plaintext buffer should be under 4GB. // case EdkiiIoMmuOperationBusMasterRead: case EdkiiIoMmuOperationBusMasterWrite: MapInfo->PlainTextAddress = BASE_4GB - 1; AllocateType = AllocateMaxAddress; // // fall through // case EdkiiIoMmuOperationBusMasterRead64: case EdkiiIoMmuOperationBusMasterWrite64: // // Allocate the implicit plaintext bounce buffer. // Status = gBS->AllocatePages ( AllocateType, EfiBootServicesData, MapInfo->NumberOfPages, &MapInfo->PlainTextAddress ); if (EFI_ERROR (Status)) { goto FreeMapInfo; } break; // // For BusMasterCommonBuffer[64] operations, a to-be-plaintext buffer and a // stash buffer (for in-place decryption) have been allocated already, with // AllocateBuffer(). We only check whether the address of the to-be-plaintext // buffer is low enough for the requested operation. // case EdkiiIoMmuOperationBusMasterCommonBuffer: if ((MapInfo->CryptedAddress > BASE_4GB) || (EFI_PAGES_TO_SIZE (MapInfo->NumberOfPages) > BASE_4GB - MapInfo->CryptedAddress)) { // // CommonBuffer operations cannot be remapped. If the common buffer is // above 4GB, then it is not possible to generate a mapping, so return an // error. // Status = EFI_UNSUPPORTED; goto FreeMapInfo; } // // fall through // case EdkiiIoMmuOperationBusMasterCommonBuffer64: // // The buffer at MapInfo->CryptedAddress comes from AllocateBuffer(). // MapInfo->PlainTextAddress = MapInfo->CryptedAddress; // // Stash the crypted data. // CommonBufferHeader = (COMMON_BUFFER_HEADER *)( (UINTN)MapInfo->CryptedAddress - EFI_PAGE_SIZE ); ASSERT (CommonBufferHeader->Signature == COMMON_BUFFER_SIG); CopyMem ( CommonBufferHeader->StashBuffer, (VOID *)(UINTN)MapInfo->CryptedAddress, MapInfo->NumberOfBytes ); // // Point "DecryptionSource" to the stash buffer so that we decrypt // it to the original location, after the switch statement. // DecryptionSource = CommonBufferHeader->StashBuffer; break; default: // // Operation is invalid // Status = EFI_INVALID_PARAMETER; goto FreeMapInfo; } // // Clear the memory encryption mask on the plaintext buffer. // Status = MemEncryptSevClearPageEncMask ( 0, MapInfo->PlainTextAddress, MapInfo->NumberOfPages, TRUE ); ASSERT_EFI_ERROR (Status); if (EFI_ERROR (Status)) { CpuDeadLoop (); } // // If this is a read operation from the Bus Master's point of view, // then copy the contents of the real buffer into the mapped buffer // so the Bus Master can read the contents of the real buffer. // // For BusMasterCommonBuffer[64] operations, the CopyMem() below will decrypt // the original data (from the stash buffer) back to the original location. // if (Operation == EdkiiIoMmuOperationBusMasterRead || Operation == EdkiiIoMmuOperationBusMasterRead64 || Operation == EdkiiIoMmuOperationBusMasterCommonBuffer || Operation == EdkiiIoMmuOperationBusMasterCommonBuffer64) { CopyMem ( (VOID *) (UINTN) MapInfo->PlainTextAddress, DecryptionSource, MapInfo->NumberOfBytes ); } // // Populate output parameters. // *DeviceAddress = MapInfo->PlainTextAddress; *Mapping = MapInfo; DEBUG (( DEBUG_VERBOSE, "%a PlainText 0x%Lx Crypted 0x%Lx Pages 0x%Lx Bytes 0x%Lx\n", __FUNCTION__, MapInfo->PlainTextAddress, MapInfo->CryptedAddress, (UINT64)MapInfo->NumberOfPages, (UINT64)MapInfo->NumberOfBytes )); return EFI_SUCCESS; FreeMapInfo: FreePool (MapInfo); Failed: *NumberOfBytes = 0; return Status; } /** Completes the Map() operation and releases any corresponding resources. @param This The protocol instance pointer. @param Mapping The mapping value returned from Map(). @retval EFI_SUCCESS The range was unmapped. @retval EFI_INVALID_PARAMETER Mapping is not a value that was returned by Map(). @retval EFI_DEVICE_ERROR The data was not committed to the target system memory. **/ EFI_STATUS EFIAPI IoMmuUnmap ( IN EDKII_IOMMU_PROTOCOL *This, IN VOID *Mapping ) { MAP_INFO *MapInfo; EFI_STATUS Status; COMMON_BUFFER_HEADER *CommonBufferHeader; VOID *EncryptionTarget; if (Mapping == NULL) { return EFI_INVALID_PARAMETER; } MapInfo = (MAP_INFO *)Mapping; // // set CommonBufferHeader to suppress incorrect compiler/analyzer warnings // CommonBufferHeader = NULL; // // For BusMasterWrite[64] operations and BusMasterCommonBuffer[64] operations // we have to encrypt the results, ultimately to the original place (i.e., // "MapInfo->CryptedAddress"). // // For BusMasterCommonBuffer[64] operations however, this encryption has to // land in-place, so divert the encryption to the stash buffer first. // EncryptionTarget = (VOID *)(UINTN)MapInfo->CryptedAddress; switch (MapInfo->Operation) { case EdkiiIoMmuOperationBusMasterCommonBuffer: case EdkiiIoMmuOperationBusMasterCommonBuffer64: ASSERT (MapInfo->PlainTextAddress == MapInfo->CryptedAddress); CommonBufferHeader = (COMMON_BUFFER_HEADER *)( (UINTN)MapInfo->PlainTextAddress - EFI_PAGE_SIZE ); ASSERT (CommonBufferHeader->Signature == COMMON_BUFFER_SIG); EncryptionTarget = CommonBufferHeader->StashBuffer; // // fall through // case EdkiiIoMmuOperationBusMasterWrite: case EdkiiIoMmuOperationBusMasterWrite64: CopyMem ( EncryptionTarget, (VOID *) (UINTN) MapInfo->PlainTextAddress, MapInfo->NumberOfBytes ); break; default: // // nothing to encrypt after BusMasterRead[64] operations // break; } DEBUG (( DEBUG_VERBOSE, "%a PlainText 0x%Lx Crypted 0x%Lx Pages 0x%Lx Bytes 0x%Lx\n", __FUNCTION__, MapInfo->PlainTextAddress, MapInfo->CryptedAddress, (UINT64)MapInfo->NumberOfPages, (UINT64)MapInfo->NumberOfBytes )); // // Restore the memory encryption mask on the area we used to hold the // plaintext. // Status = MemEncryptSevSetPageEncMask ( 0, MapInfo->PlainTextAddress, MapInfo->NumberOfPages, TRUE ); ASSERT_EFI_ERROR (Status); if (EFI_ERROR (Status)) { CpuDeadLoop (); } // // For BusMasterCommonBuffer[64] operations, copy the stashed data to the // original (now encrypted) location. // // For all other operations, fill the late bounce buffer (which existed as // plaintext at some point) with zeros, and then release it. // if (MapInfo->Operation == EdkiiIoMmuOperationBusMasterCommonBuffer || MapInfo->Operation == EdkiiIoMmuOperationBusMasterCommonBuffer64) { CopyMem ( (VOID *)(UINTN)MapInfo->CryptedAddress, CommonBufferHeader->StashBuffer, MapInfo->NumberOfBytes ); // // Recycle the MAP_INFO structure. // InsertTailList (&mRecycledMapInfos, &MapInfo->Link); } else { ZeroMem ( (VOID *)(UINTN)MapInfo->PlainTextAddress, EFI_PAGES_TO_SIZE (MapInfo->NumberOfPages) ); gBS->FreePages (MapInfo->PlainTextAddress, MapInfo->NumberOfPages); // // Free the MAP_INFO structure. // FreePool (MapInfo); } return EFI_SUCCESS; } /** Allocates pages that are suitable for an OperationBusMasterCommonBuffer or OperationBusMasterCommonBuffer64 mapping. @param This The protocol instance pointer. @param Type This parameter is not used and must be ignored. @param MemoryType The type of memory to allocate, EfiBootServicesData or EfiRuntimeServicesData. @param Pages The number of pages to allocate. @param HostAddress A pointer to store the base system memory address of the allocated range. @param Attributes The requested bit mask of attributes for the allocated range. @retval EFI_SUCCESS The requested memory pages were allocated. @retval EFI_UNSUPPORTED Attributes is unsupported. The only legal attribute bits are MEMORY_WRITE_COMBINE and MEMORY_CACHED. @retval EFI_INVALID_PARAMETER One or more parameters are invalid. @retval EFI_OUT_OF_RESOURCES The memory pages could not be allocated. **/ EFI_STATUS EFIAPI IoMmuAllocateBuffer ( IN EDKII_IOMMU_PROTOCOL *This, IN EFI_ALLOCATE_TYPE Type, IN EFI_MEMORY_TYPE MemoryType, IN UINTN Pages, IN OUT VOID **HostAddress, IN UINT64 Attributes ) { EFI_STATUS Status; EFI_PHYSICAL_ADDRESS PhysicalAddress; VOID *StashBuffer; UINTN CommonBufferPages; COMMON_BUFFER_HEADER *CommonBufferHeader; // // Validate Attributes // if ((Attributes & EDKII_IOMMU_ATTRIBUTE_INVALID_FOR_ALLOCATE_BUFFER) != 0) { return EFI_UNSUPPORTED; } // // Check for invalid inputs // if (HostAddress == NULL) { return EFI_INVALID_PARAMETER; } // // The only valid memory types are EfiBootServicesData and // EfiRuntimeServicesData // if (MemoryType != EfiBootServicesData && MemoryType != EfiRuntimeServicesData) { return EFI_INVALID_PARAMETER; } // // We'll need a header page for the COMMON_BUFFER_HEADER structure. // if (Pages > MAX_UINTN - 1) { return EFI_OUT_OF_RESOURCES; } CommonBufferPages = Pages + 1; // // Allocate the stash in EfiBootServicesData type memory. // // Map() will temporarily save encrypted data in the stash for // BusMasterCommonBuffer[64] operations, so the data can be decrypted to the // original location. // // Unmap() will temporarily save plaintext data in the stash for // BusMasterCommonBuffer[64] operations, so the data can be encrypted to the // original location. // // StashBuffer always resides in encrypted memory. // StashBuffer = AllocatePages (Pages); if (StashBuffer == NULL) { return EFI_OUT_OF_RESOURCES; } PhysicalAddress = (UINTN)-1; if ((Attributes & EDKII_IOMMU_ATTRIBUTE_DUAL_ADDRESS_CYCLE) == 0) { // // Limit allocations to memory below 4GB // PhysicalAddress = SIZE_4GB - 1; } Status = gBS->AllocatePages ( AllocateMaxAddress, MemoryType, CommonBufferPages, &PhysicalAddress ); if (EFI_ERROR (Status)) { goto FreeStashBuffer; } CommonBufferHeader = (VOID *)(UINTN)PhysicalAddress; PhysicalAddress += EFI_PAGE_SIZE; CommonBufferHeader->Signature = COMMON_BUFFER_SIG; CommonBufferHeader->StashBuffer = StashBuffer; *HostAddress = (VOID *)(UINTN)PhysicalAddress; DEBUG (( DEBUG_VERBOSE, "%a Address 0x%Lx Pages 0x%Lx\n", __FUNCTION__, PhysicalAddress, (UINT64)Pages )); return EFI_SUCCESS; FreeStashBuffer: FreePages (StashBuffer, Pages); return Status; } /** Frees memory that was allocated with AllocateBuffer(). @param This The protocol instance pointer. @param Pages The number of pages to free. @param HostAddress The base system memory address of the allocated range. @retval EFI_SUCCESS The requested memory pages were freed. @retval EFI_INVALID_PARAMETER The memory range specified by HostAddress and Pages was not allocated with AllocateBuffer(). **/ EFI_STATUS EFIAPI IoMmuFreeBuffer ( IN EDKII_IOMMU_PROTOCOL *This, IN UINTN Pages, IN VOID *HostAddress ) { UINTN CommonBufferPages; COMMON_BUFFER_HEADER *CommonBufferHeader; CommonBufferPages = Pages + 1; CommonBufferHeader = (COMMON_BUFFER_HEADER *)( (UINTN)HostAddress - EFI_PAGE_SIZE ); // // Check the signature. // ASSERT (CommonBufferHeader->Signature == COMMON_BUFFER_SIG); if (CommonBufferHeader->Signature != COMMON_BUFFER_SIG) { return EFI_INVALID_PARAMETER; } // // Free the stash buffer. This buffer was always encrypted, so no need to // zero it. // FreePages (CommonBufferHeader->StashBuffer, Pages); DEBUG (( DEBUG_VERBOSE, "%a Address 0x%Lx Pages 0x%Lx\n", __FUNCTION__, (UINT64)(UINTN)HostAddress, (UINT64)Pages )); // // Release the common buffer itself. Unmap() has re-encrypted it in-place, so // no need to zero it. // return gBS->FreePages ((UINTN)CommonBufferHeader, CommonBufferPages); } /** Set IOMMU attribute for a system memory. If the IOMMU protocol exists, the system memory cannot be used for DMA by default. When a device requests a DMA access for a system memory, the device driver need use SetAttribute() to update the IOMMU attribute to request DMA access (read and/or write). The DeviceHandle is used to identify which device submits the request. The IOMMU implementation need translate the device path to an IOMMU device ID, and set IOMMU hardware register accordingly. 1) DeviceHandle can be a standard PCI device. The memory for BusMasterRead need set EDKII_IOMMU_ACCESS_READ. The memory for BusMasterWrite need set EDKII_IOMMU_ACCESS_WRITE. The memory for BusMasterCommonBuffer need set EDKII_IOMMU_ACCESS_READ|EDKII_IOMMU_ACCESS_WRITE. After the memory is used, the memory need set 0 to keep it being protected. 2) DeviceHandle can be an ACPI device (ISA, I2C, SPI, etc). The memory for DMA access need set EDKII_IOMMU_ACCESS_READ and/or EDKII_IOMMU_ACCESS_WRITE. @param[in] This The protocol instance pointer. @param[in] DeviceHandle The device who initiates the DMA access request. @param[in] Mapping The mapping value returned from Map(). @param[in] IoMmuAccess The IOMMU access. @retval EFI_SUCCESS The IoMmuAccess is set for the memory range specified by DeviceAddress and Length. @retval EFI_INVALID_PARAMETER DeviceHandle is an invalid handle. @retval EFI_INVALID_PARAMETER Mapping is not a value that was returned by Map(). @retval EFI_INVALID_PARAMETER IoMmuAccess specified an illegal combination of access. @retval EFI_UNSUPPORTED DeviceHandle is unknown by the IOMMU. @retval EFI_UNSUPPORTED The bit mask of IoMmuAccess is not supported by the IOMMU. @retval EFI_UNSUPPORTED The IOMMU does not support the memory range specified by Mapping. @retval EFI_OUT_OF_RESOURCES There are not enough resources available to modify the IOMMU access. @retval EFI_DEVICE_ERROR The IOMMU device reported an error while attempting the operation. **/ EFI_STATUS EFIAPI IoMmuSetAttribute ( IN EDKII_IOMMU_PROTOCOL *This, IN EFI_HANDLE DeviceHandle, IN VOID *Mapping, IN UINT64 IoMmuAccess ) { return EFI_UNSUPPORTED; } EDKII_IOMMU_PROTOCOL mAmdSev = { EDKII_IOMMU_PROTOCOL_REVISION, IoMmuSetAttribute, IoMmuMap, IoMmuUnmap, IoMmuAllocateBuffer, IoMmuFreeBuffer, }; /** Initialize Iommu Protocol. **/ EFI_STATUS EFIAPI AmdSevInstallIoMmuProtocol ( VOID ) { EFI_STATUS Status; EFI_HANDLE Handle; Handle = NULL; Status = gBS->InstallMultipleProtocolInterfaces ( &Handle, &gEdkiiIoMmuProtocolGuid, &mAmdSev, NULL ); return Status; }