/** @file EFI PEI Core dispatch services Copyright (c) 2006 - 2019, Intel Corporation. All rights reserved.
(C) Copyright 2016 Hewlett Packard Enterprise Development LP
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "PeiMain.h" /** Discover all PEIMs and optional Apriori file in one FV. There is at most one Apriori file in one FV. @param Private Pointer to the private data passed in from caller @param CoreFileHandle The instance of PEI_CORE_FV_HANDLE. **/ VOID DiscoverPeimsAndOrderWithApriori ( IN PEI_CORE_INSTANCE *Private, IN PEI_CORE_FV_HANDLE *CoreFileHandle ) { EFI_STATUS Status; EFI_PEI_FILE_HANDLE FileHandle; EFI_PEI_FILE_HANDLE AprioriFileHandle; EFI_GUID *Apriori; UINTN Index; UINTN Index2; UINTN PeimIndex; UINTN PeimCount; EFI_GUID *Guid; EFI_PEI_FILE_HANDLE *TempFileHandles; EFI_GUID *TempFileGuid; EFI_PEI_FIRMWARE_VOLUME_PPI *FvPpi; EFI_FV_FILE_INFO FileInfo; FvPpi = CoreFileHandle->FvPpi; // // Walk the FV and find all the PEIMs and the Apriori file. // AprioriFileHandle = NULL; Private->CurrentFvFileHandles = NULL; Guid = NULL; // // If the current FV has been scanned, directly get its cached records. // if (CoreFileHandle->ScanFv) { Private->CurrentFvFileHandles = CoreFileHandle->FvFileHandles; return; } TempFileHandles = Private->TempFileHandles; TempFileGuid = Private->TempFileGuid; // // Go ahead to scan this FV, get PeimCount and cache FileHandles within it to TempFileHandles. // PeimCount = 0; FileHandle = NULL; do { Status = FvPpi->FindFileByType (FvPpi, PEI_CORE_INTERNAL_FFS_FILE_DISPATCH_TYPE, CoreFileHandle->FvHandle, &FileHandle); if (!EFI_ERROR (Status)) { if (PeimCount >= Private->TempPeimCount) { // // Run out of room, grow the buffer. // TempFileHandles = AllocatePool ( sizeof (EFI_PEI_FILE_HANDLE) * (Private->TempPeimCount + TEMP_FILE_GROWTH_STEP) ); ASSERT (TempFileHandles != NULL); CopyMem ( TempFileHandles, Private->TempFileHandles, sizeof (EFI_PEI_FILE_HANDLE) * Private->TempPeimCount ); Private->TempFileHandles = TempFileHandles; TempFileGuid = AllocatePool ( sizeof (EFI_GUID) * (Private->TempPeimCount + TEMP_FILE_GROWTH_STEP) ); ASSERT (TempFileGuid != NULL); CopyMem ( TempFileGuid, Private->TempFileGuid, sizeof (EFI_GUID) * Private->TempPeimCount ); Private->TempFileGuid = TempFileGuid; Private->TempPeimCount = Private->TempPeimCount + TEMP_FILE_GROWTH_STEP; } TempFileHandles[PeimCount++] = FileHandle; } } while (!EFI_ERROR (Status)); DEBUG (( DEBUG_INFO, "%a(): Found 0x%x PEI FFS files in the %dth FV\n", __FUNCTION__, PeimCount, Private->CurrentPeimFvCount )); if (PeimCount == 0) { // // No PEIM FFS file is found, set ScanFv flag and return. // CoreFileHandle->ScanFv = TRUE; return; } // // Record PeimCount, allocate buffer for PeimState and FvFileHandles. // CoreFileHandle->PeimCount = PeimCount; CoreFileHandle->PeimState = AllocateZeroPool (sizeof (UINT8) * PeimCount); ASSERT (CoreFileHandle->PeimState != NULL); CoreFileHandle->FvFileHandles = AllocateZeroPool (sizeof (EFI_PEI_FILE_HANDLE) * PeimCount); ASSERT (CoreFileHandle->FvFileHandles != NULL); // // Get Apriori File handle // Private->AprioriCount = 0; Status = FvPpi->FindFileByName (FvPpi, &gPeiAprioriFileNameGuid, &CoreFileHandle->FvHandle, &AprioriFileHandle); if (!EFI_ERROR (Status) && (AprioriFileHandle != NULL)) { // // Read the Apriori file // Status = FvPpi->FindSectionByType (FvPpi, EFI_SECTION_RAW, AprioriFileHandle, (VOID **)&Apriori); if (!EFI_ERROR (Status)) { // // Calculate the number of PEIMs in the Apriori file // Status = FvPpi->GetFileInfo (FvPpi, AprioriFileHandle, &FileInfo); ASSERT_EFI_ERROR (Status); Private->AprioriCount = FileInfo.BufferSize; if (IS_SECTION2 (FileInfo.Buffer)) { Private->AprioriCount -= sizeof (EFI_COMMON_SECTION_HEADER2); } else { Private->AprioriCount -= sizeof (EFI_COMMON_SECTION_HEADER); } Private->AprioriCount /= sizeof (EFI_GUID); for (Index = 0; Index < PeimCount; Index++) { // // Make an array of file name GUIDs that matches the FileHandle array so we can convert // quickly from file name to file handle // Status = FvPpi->GetFileInfo (FvPpi, TempFileHandles[Index], &FileInfo); ASSERT_EFI_ERROR (Status); CopyMem (&TempFileGuid[Index], &FileInfo.FileName, sizeof (EFI_GUID)); } // // Walk through TempFileGuid array to find out who is invalid PEIM GUID in Apriori file. // Add available PEIMs in Apriori file into FvFileHandles array. // Index = 0; for (Index2 = 0; Index2 < Private->AprioriCount; Index2++) { Guid = ScanGuid (TempFileGuid, PeimCount * sizeof (EFI_GUID), &Apriori[Index2]); if (Guid != NULL) { PeimIndex = ((UINTN)Guid - (UINTN)&TempFileGuid[0])/sizeof (EFI_GUID); CoreFileHandle->FvFileHandles[Index++] = TempFileHandles[PeimIndex]; // // Since we have copied the file handle we can remove it from this list. // TempFileHandles[PeimIndex] = NULL; } } // // Update valid AprioriCount // Private->AprioriCount = Index; // // Add in any PEIMs not in the Apriori file // for (Index2 = 0; Index2 < PeimCount; Index2++) { if (TempFileHandles[Index2] != NULL) { CoreFileHandle->FvFileHandles[Index++] = TempFileHandles[Index2]; TempFileHandles[Index2] = NULL; } } ASSERT (Index == PeimCount); } } else { CopyMem (CoreFileHandle->FvFileHandles, TempFileHandles, sizeof (EFI_PEI_FILE_HANDLE) * PeimCount); } // // The current FV File Handles have been cached. So that we don't have to scan the FV again. // Instead, we can retrieve the file handles within this FV from cached records. // CoreFileHandle->ScanFv = TRUE; Private->CurrentFvFileHandles = CoreFileHandle->FvFileHandles; } // // This is the minimum memory required by DxeCore initialization. When LMFA feature enabled, // This part of memory still need reserved on the very top of memory so that the DXE Core could // use these memory for data initialization. This macro should be sync with the same marco // defined in DXE Core. // #define MINIMUM_INITIAL_MEMORY_SIZE 0x10000 /** This function is to test if the memory range described in resource HOB is available or not. This function should only be invoked when Loading Module at Fixed Address(LMFA) feature is enabled. Some platform may allocate the memory before PeiLoadFixAddressHook in invoked. so this function is to test if the memory range described by the input resource HOB is available or not. @param PrivateData Pointer to the private data passed in from caller @param ResourceHob Pointer to a resource HOB which described the memory range described by the input resource HOB **/ BOOLEAN PeiLoadFixAddressIsMemoryRangeAvailable ( IN PEI_CORE_INSTANCE *PrivateData, IN EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob ) { EFI_HOB_MEMORY_ALLOCATION *MemoryHob; BOOLEAN IsAvailable; EFI_PEI_HOB_POINTERS Hob; IsAvailable = TRUE; if ((PrivateData == NULL) || (ResourceHob == NULL)) { return FALSE; } // // test if the memory range describe in the HOB is already allocated. // for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST (Hob); Hob.Raw = GET_NEXT_HOB (Hob)) { // // See if this is a memory allocation HOB // if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_MEMORY_ALLOCATION) { MemoryHob = Hob.MemoryAllocation; if ((MemoryHob->AllocDescriptor.MemoryBaseAddress == ResourceHob->PhysicalStart) && (MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength == ResourceHob->PhysicalStart + ResourceHob->ResourceLength)) { IsAvailable = FALSE; break; } } } return IsAvailable; } /** Hook function for Loading Module at Fixed Address feature This function should only be invoked when Loading Module at Fixed Address(LMFA) feature is enabled. When feature is configured as Load Modules at Fix Absolute Address, this function is to validate the top address assigned by user. When feature is configured as Load Modules at Fixed Offset, the function is to find the top address which is TOLM-TSEG in general. And also the function will re-install PEI memory. @param PrivateData Pointer to the private data passed in from caller **/ VOID PeiLoadFixAddressHook ( IN PEI_CORE_INSTANCE *PrivateData ) { EFI_PHYSICAL_ADDRESS TopLoadingAddress; UINT64 PeiMemorySize; UINT64 TotalReservedMemorySize; UINT64 MemoryRangeEnd; EFI_PHYSICAL_ADDRESS HighAddress; EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob; EFI_HOB_RESOURCE_DESCRIPTOR *NextResourceHob; EFI_HOB_RESOURCE_DESCRIPTOR *CurrentResourceHob; EFI_PEI_HOB_POINTERS CurrentHob; EFI_PEI_HOB_POINTERS Hob; EFI_PEI_HOB_POINTERS NextHob; EFI_HOB_MEMORY_ALLOCATION *MemoryHob; // // Initialize Local Variables // CurrentResourceHob = NULL; ResourceHob = NULL; NextResourceHob = NULL; HighAddress = 0; TopLoadingAddress = 0; MemoryRangeEnd = 0; CurrentHob.Raw = PrivateData->HobList.Raw; PeiMemorySize = PrivateData->PhysicalMemoryLength; // // The top reserved memory include 3 parts: the topest range is for DXE core initialization with the size MINIMUM_INITIAL_MEMORY_SIZE // then RuntimeCodePage range and Boot time code range. // TotalReservedMemorySize = MINIMUM_INITIAL_MEMORY_SIZE + EFI_PAGES_TO_SIZE (PcdGet32 (PcdLoadFixAddressRuntimeCodePageNumber)); TotalReservedMemorySize += EFI_PAGES_TO_SIZE (PcdGet32 (PcdLoadFixAddressBootTimeCodePageNumber)); // // PEI memory range lies below the top reserved memory // TotalReservedMemorySize += PeiMemorySize; DEBUG ((DEBUG_INFO, "LOADING MODULE FIXED INFO: PcdLoadFixAddressRuntimeCodePageNumber= 0x%x.\n", PcdGet32 (PcdLoadFixAddressRuntimeCodePageNumber))); DEBUG ((DEBUG_INFO, "LOADING MODULE FIXED INFO: PcdLoadFixAddressBootTimeCodePageNumber= 0x%x.\n", PcdGet32 (PcdLoadFixAddressBootTimeCodePageNumber))); DEBUG ((DEBUG_INFO, "LOADING MODULE FIXED INFO: PcdLoadFixAddressPeiCodePageNumber= 0x%x.\n", PcdGet32 (PcdLoadFixAddressPeiCodePageNumber))); DEBUG ((DEBUG_INFO, "LOADING MODULE FIXED INFO: Total Reserved Memory Size = 0x%lx.\n", TotalReservedMemorySize)); // // Loop through the system memory typed HOB to merge the adjacent memory range // for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST (Hob); Hob.Raw = GET_NEXT_HOB (Hob)) { // // See if this is a resource descriptor HOB // if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) { ResourceHob = Hob.ResourceDescriptor; // // If range described in this HOB is not system memory or higher than MAX_ADDRESS, ignored. // if ((ResourceHob->ResourceType != EFI_RESOURCE_SYSTEM_MEMORY) || (ResourceHob->PhysicalStart + ResourceHob->ResourceLength > MAX_ADDRESS)) { continue; } for (NextHob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST (NextHob); NextHob.Raw = GET_NEXT_HOB (NextHob)) { if (NextHob.Raw == Hob.Raw) { continue; } // // See if this is a resource descriptor HOB // if (GET_HOB_TYPE (NextHob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) { NextResourceHob = NextHob.ResourceDescriptor; // // test if range described in this NextResourceHob is system memory and have the same attribute. // Note: Here is a assumption that system memory should always be healthy even without test. // if ((NextResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY) && (((NextResourceHob->ResourceAttribute^ResourceHob->ResourceAttribute)&(~EFI_RESOURCE_ATTRIBUTE_TESTED)) == 0)) { // // See if the memory range described in ResourceHob and NextResourceHob is adjacent // if (((ResourceHob->PhysicalStart <= NextResourceHob->PhysicalStart) && (ResourceHob->PhysicalStart + ResourceHob->ResourceLength >= NextResourceHob->PhysicalStart)) || ((ResourceHob->PhysicalStart >= NextResourceHob->PhysicalStart) && (ResourceHob->PhysicalStart <= NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength))) { MemoryRangeEnd = ((ResourceHob->PhysicalStart + ResourceHob->ResourceLength) > (NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength)) ? (ResourceHob->PhysicalStart + ResourceHob->ResourceLength) : (NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength); ResourceHob->PhysicalStart = (ResourceHob->PhysicalStart < NextResourceHob->PhysicalStart) ? ResourceHob->PhysicalStart : NextResourceHob->PhysicalStart; ResourceHob->ResourceLength = (MemoryRangeEnd - ResourceHob->PhysicalStart); ResourceHob->ResourceAttribute = ResourceHob->ResourceAttribute & (~EFI_RESOURCE_ATTRIBUTE_TESTED); // // Delete the NextResourceHob by marking it as unused. // GET_HOB_TYPE (NextHob) = EFI_HOB_TYPE_UNUSED; } } } } } } // // Some platform is already allocated pages before the HOB re-org. Here to build dedicated resource HOB to describe // the allocated memory range // for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST (Hob); Hob.Raw = GET_NEXT_HOB (Hob)) { // // See if this is a memory allocation HOB // if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_MEMORY_ALLOCATION) { MemoryHob = Hob.MemoryAllocation; for (NextHob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST (NextHob); NextHob.Raw = GET_NEXT_HOB (NextHob)) { // // See if this is a resource descriptor HOB // if (GET_HOB_TYPE (NextHob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) { NextResourceHob = NextHob.ResourceDescriptor; // // If range described in this HOB is not system memory or higher than MAX_ADDRESS, ignored. // if ((NextResourceHob->ResourceType != EFI_RESOURCE_SYSTEM_MEMORY) || (NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength > MAX_ADDRESS)) { continue; } // // If the range describe in memory allocation HOB belongs to the memory range described by the resource HOB // if ((MemoryHob->AllocDescriptor.MemoryBaseAddress >= NextResourceHob->PhysicalStart) && (MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength <= NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength)) { // // Build separate resource HOB for this allocated range // if (MemoryHob->AllocDescriptor.MemoryBaseAddress > NextResourceHob->PhysicalStart) { BuildResourceDescriptorHob ( EFI_RESOURCE_SYSTEM_MEMORY, NextResourceHob->ResourceAttribute, NextResourceHob->PhysicalStart, (MemoryHob->AllocDescriptor.MemoryBaseAddress - NextResourceHob->PhysicalStart) ); } if (MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength < NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength) { BuildResourceDescriptorHob ( EFI_RESOURCE_SYSTEM_MEMORY, NextResourceHob->ResourceAttribute, MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength, (NextResourceHob->PhysicalStart + NextResourceHob->ResourceLength -(MemoryHob->AllocDescriptor.MemoryBaseAddress + MemoryHob->AllocDescriptor.MemoryLength)) ); } NextResourceHob->PhysicalStart = MemoryHob->AllocDescriptor.MemoryBaseAddress; NextResourceHob->ResourceLength = MemoryHob->AllocDescriptor.MemoryLength; break; } } } } } // // Try to find and validate the TOP address. // if ((INT64)PcdGet64 (PcdLoadModuleAtFixAddressEnable) > 0 ) { // // The LMFA feature is enabled as load module at fixed absolute address. // TopLoadingAddress = (EFI_PHYSICAL_ADDRESS)PcdGet64 (PcdLoadModuleAtFixAddressEnable); DEBUG ((DEBUG_INFO, "LOADING MODULE FIXED INFO: Loading module at fixed absolute address.\n")); // // validate the Address. Loop the resource descriptor HOB to make sure the address is in valid memory range // if ((TopLoadingAddress & EFI_PAGE_MASK) != 0) { DEBUG ((DEBUG_INFO, "LOADING MODULE FIXED ERROR:Top Address 0x%lx is invalid since top address should be page align. \n", TopLoadingAddress)); ASSERT (FALSE); } // // Search for a memory region that is below MAX_ADDRESS and in which TopLoadingAddress lies // for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST (Hob); Hob.Raw = GET_NEXT_HOB (Hob)) { // // See if this is a resource descriptor HOB // if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) { ResourceHob = Hob.ResourceDescriptor; // // See if this resource descriptor HOB describes tested system memory below MAX_ADDRESS // if ((ResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY) && (ResourceHob->PhysicalStart + ResourceHob->ResourceLength <= MAX_ADDRESS)) { // // See if Top address specified by user is valid. // if ((ResourceHob->PhysicalStart + TotalReservedMemorySize < TopLoadingAddress) && ((ResourceHob->PhysicalStart + ResourceHob->ResourceLength - MINIMUM_INITIAL_MEMORY_SIZE) >= TopLoadingAddress) && PeiLoadFixAddressIsMemoryRangeAvailable (PrivateData, ResourceHob)) { CurrentResourceHob = ResourceHob; CurrentHob = Hob; break; } } } } if (CurrentResourceHob != NULL) { DEBUG ((DEBUG_INFO, "LOADING MODULE FIXED INFO:Top Address 0x%lx is valid \n", TopLoadingAddress)); TopLoadingAddress += MINIMUM_INITIAL_MEMORY_SIZE; } else { DEBUG ((DEBUG_INFO, "LOADING MODULE FIXED ERROR:Top Address 0x%lx is invalid \n", TopLoadingAddress)); DEBUG ((DEBUG_INFO, "LOADING MODULE FIXED ERROR:The recommended Top Address for the platform is: \n")); // // Print the recommended Top address range. // for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST (Hob); Hob.Raw = GET_NEXT_HOB (Hob)) { // // See if this is a resource descriptor HOB // if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) { ResourceHob = Hob.ResourceDescriptor; // // See if this resource descriptor HOB describes tested system memory below MAX_ADDRESS // if ((ResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY) && (ResourceHob->PhysicalStart + ResourceHob->ResourceLength <= MAX_ADDRESS)) { // // See if Top address specified by user is valid. // if ((ResourceHob->ResourceLength > TotalReservedMemorySize) && PeiLoadFixAddressIsMemoryRangeAvailable (PrivateData, ResourceHob)) { DEBUG (( DEBUG_INFO, "(0x%lx, 0x%lx)\n", (ResourceHob->PhysicalStart + TotalReservedMemorySize -MINIMUM_INITIAL_MEMORY_SIZE), (ResourceHob->PhysicalStart + ResourceHob->ResourceLength -MINIMUM_INITIAL_MEMORY_SIZE) )); } } } } // // Assert here // ASSERT (FALSE); return; } } else { // // The LMFA feature is enabled as load module at fixed offset relative to TOLM // Parse the Hob list to find the topest available memory. Generally it is (TOLM - TSEG) // // // Search for a tested memory region that is below MAX_ADDRESS // for (Hob.Raw = PrivateData->HobList.Raw; !END_OF_HOB_LIST (Hob); Hob.Raw = GET_NEXT_HOB (Hob)) { // // See if this is a resource descriptor HOB // if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) { ResourceHob = Hob.ResourceDescriptor; // // See if this resource descriptor HOB describes tested system memory below MAX_ADDRESS // if ((ResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY) && (ResourceHob->PhysicalStart + ResourceHob->ResourceLength <= MAX_ADDRESS) && (ResourceHob->ResourceLength > TotalReservedMemorySize) && PeiLoadFixAddressIsMemoryRangeAvailable (PrivateData, ResourceHob)) { // // See if this is the highest largest system memory region below MaxAddress // if (ResourceHob->PhysicalStart > HighAddress) { CurrentResourceHob = ResourceHob; CurrentHob = Hob; HighAddress = CurrentResourceHob->PhysicalStart; } } } } if (CurrentResourceHob == NULL) { DEBUG ((DEBUG_INFO, "LOADING MODULE FIXED ERROR:The System Memory is too small\n")); // // Assert here // ASSERT (FALSE); return; } else { TopLoadingAddress = CurrentResourceHob->PhysicalStart + CurrentResourceHob->ResourceLength; } } if (CurrentResourceHob != NULL) { // // rebuild resource HOB for PEI memory and reserved memory // BuildResourceDescriptorHob ( EFI_RESOURCE_SYSTEM_MEMORY, ( EFI_RESOURCE_ATTRIBUTE_PRESENT | EFI_RESOURCE_ATTRIBUTE_INITIALIZED | EFI_RESOURCE_ATTRIBUTE_TESTED | EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE | EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE | EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE | EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE ), (TopLoadingAddress - TotalReservedMemorySize), TotalReservedMemorySize ); // // rebuild resource for the remain memory if necessary // if (CurrentResourceHob->PhysicalStart < TopLoadingAddress - TotalReservedMemorySize) { BuildResourceDescriptorHob ( EFI_RESOURCE_SYSTEM_MEMORY, ( EFI_RESOURCE_ATTRIBUTE_PRESENT | EFI_RESOURCE_ATTRIBUTE_INITIALIZED | EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE | EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE | EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE | EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE ), CurrentResourceHob->PhysicalStart, (TopLoadingAddress - TotalReservedMemorySize - CurrentResourceHob->PhysicalStart) ); } if (CurrentResourceHob->PhysicalStart + CurrentResourceHob->ResourceLength > TopLoadingAddress ) { BuildResourceDescriptorHob ( EFI_RESOURCE_SYSTEM_MEMORY, ( EFI_RESOURCE_ATTRIBUTE_PRESENT | EFI_RESOURCE_ATTRIBUTE_INITIALIZED | EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE | EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE | EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE | EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE ), TopLoadingAddress, (CurrentResourceHob->PhysicalStart + CurrentResourceHob->ResourceLength - TopLoadingAddress) ); } // // Delete CurrentHob by marking it as unused since the memory range described by is rebuilt. // GET_HOB_TYPE (CurrentHob) = EFI_HOB_TYPE_UNUSED; } // // Cache the top address for Loading Module at Fixed Address feature // PrivateData->LoadModuleAtFixAddressTopAddress = TopLoadingAddress - MINIMUM_INITIAL_MEMORY_SIZE; DEBUG ((DEBUG_INFO, "LOADING MODULE FIXED INFO: Top address = 0x%lx\n", PrivateData->LoadModuleAtFixAddressTopAddress)); // // reinstall the PEI memory relative to TopLoadingAddress // PrivateData->PhysicalMemoryBegin = TopLoadingAddress - TotalReservedMemorySize; PrivateData->FreePhysicalMemoryTop = PrivateData->PhysicalMemoryBegin + PeiMemorySize; } /** This routine is invoked in switch stack as PeiCore Entry. @param SecCoreData Points to a data structure containing information about the PEI core's operating environment, such as the size and location of temporary RAM, the stack location and the BFV location. @param Private Pointer to old core data that is used to initialize the core's data areas. **/ VOID EFIAPI PeiCoreEntry ( IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData, IN PEI_CORE_INSTANCE *Private ) { // // Entry PEI Phase 2 // PeiCore (SecCoreData, NULL, Private); } /** Check SwitchStackSignal and switch stack if SwitchStackSignal is TRUE. @param[in] SecCoreData Points to a data structure containing information about the PEI core's operating environment, such as the size and location of temporary RAM, the stack location and the BFV location. @param[in] Private Pointer to the private data passed in from caller. **/ VOID PeiCheckAndSwitchStack ( IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData, IN PEI_CORE_INSTANCE *Private ) { VOID *LoadFixPeiCodeBegin; EFI_STATUS Status; CONST EFI_PEI_SERVICES **PeiServices; UINT64 NewStackSize; EFI_PHYSICAL_ADDRESS TopOfOldStack; EFI_PHYSICAL_ADDRESS TopOfNewStack; UINTN StackOffset; BOOLEAN StackOffsetPositive; EFI_PHYSICAL_ADDRESS TemporaryRamBase; UINTN TemporaryRamSize; UINTN TemporaryStackSize; VOID *TemporaryStackBase; UINTN PeiTemporaryRamSize; VOID *PeiTemporaryRamBase; EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI *TemporaryRamSupportPpi; EFI_PHYSICAL_ADDRESS BaseOfNewHeap; EFI_PHYSICAL_ADDRESS HoleMemBase; UINTN HoleMemSize; UINTN HeapTemporaryRamSize; EFI_PHYSICAL_ADDRESS TempBase1; UINTN TempSize1; EFI_PHYSICAL_ADDRESS TempBase2; UINTN TempSize2; UINTN Index; PeiServices = (CONST EFI_PEI_SERVICES **)&Private->Ps; if (Private->SwitchStackSignal) { // // Before switch stack from temporary memory to permanent memory, calculate the heap and stack // usage in temporary memory for debugging. // DEBUG_CODE_BEGIN (); UINT32 *StackPointer; EFI_PEI_HOB_POINTERS Hob; for ( StackPointer = (UINT32 *)SecCoreData->StackBase; (StackPointer < (UINT32 *)((UINTN)SecCoreData->StackBase + SecCoreData->StackSize)) \ && (*StackPointer == PcdGet32 (PcdInitValueInTempStack)); StackPointer++) { } DEBUG ((DEBUG_INFO, "Temp Stack : BaseAddress=0x%p Length=0x%X\n", SecCoreData->StackBase, (UINT32)SecCoreData->StackSize)); DEBUG ((DEBUG_INFO, "Temp Heap : BaseAddress=0x%p Length=0x%X\n", SecCoreData->PeiTemporaryRamBase, (UINT32)SecCoreData->PeiTemporaryRamSize)); DEBUG ((DEBUG_INFO, "Total temporary memory: %d bytes.\n", (UINT32)SecCoreData->TemporaryRamSize)); DEBUG (( DEBUG_INFO, " temporary memory stack ever used: %d bytes.\n", (UINT32)(SecCoreData->StackSize - ((UINTN)StackPointer - (UINTN)SecCoreData->StackBase)) )); DEBUG (( DEBUG_INFO, " temporary memory heap used for HobList: %d bytes.\n", (UINT32)((UINTN)Private->HobList.HandoffInformationTable->EfiFreeMemoryBottom - (UINTN)Private->HobList.Raw) )); DEBUG (( DEBUG_INFO, " temporary memory heap occupied by memory pages: %d bytes.\n", (UINT32)(UINTN)(Private->HobList.HandoffInformationTable->EfiMemoryTop - Private->HobList.HandoffInformationTable->EfiFreeMemoryTop) )); for (Hob.Raw = Private->HobList.Raw; !END_OF_HOB_LIST (Hob); Hob.Raw = GET_NEXT_HOB (Hob)) { if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_MEMORY_ALLOCATION) { DEBUG (( DEBUG_INFO, "Memory Allocation 0x%08x 0x%0lx - 0x%0lx\n", \ Hob.MemoryAllocation->AllocDescriptor.MemoryType, \ Hob.MemoryAllocation->AllocDescriptor.MemoryBaseAddress, \ Hob.MemoryAllocation->AllocDescriptor.MemoryBaseAddress + Hob.MemoryAllocation->AllocDescriptor.MemoryLength - 1 )); } } DEBUG_CODE_END (); if ((PcdGet64 (PcdLoadModuleAtFixAddressEnable) != 0) && (Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME)) { // // Loading Module at Fixed Address is enabled // PeiLoadFixAddressHook (Private); // // If Loading Module at Fixed Address is enabled, Allocating memory range for Pei code range. // LoadFixPeiCodeBegin = AllocatePages ((UINTN)PcdGet32 (PcdLoadFixAddressPeiCodePageNumber)); DEBUG ((DEBUG_INFO, "LOADING MODULE FIXED INFO: PeiCodeBegin = 0x%lX, PeiCodeTop= 0x%lX\n", (UINT64)(UINTN)LoadFixPeiCodeBegin, (UINT64)((UINTN)LoadFixPeiCodeBegin + PcdGet32 (PcdLoadFixAddressPeiCodePageNumber) * EFI_PAGE_SIZE))); } // // Reserve the size of new stack at bottom of physical memory // // The size of new stack in permanent memory must be the same size // or larger than the size of old stack in temporary memory. // But if new stack is smaller than the size of old stack, we also reserve // the size of old stack at bottom of permanent memory. // NewStackSize = RShiftU64 (Private->PhysicalMemoryLength, 1); NewStackSize = ALIGN_VALUE (NewStackSize, EFI_PAGE_SIZE); NewStackSize = MIN (PcdGet32 (PcdPeiCoreMaxPeiStackSize), NewStackSize); DEBUG ((DEBUG_INFO, "Old Stack size %d, New stack size %d\n", (UINT32)SecCoreData->StackSize, (UINT32)NewStackSize)); ASSERT (NewStackSize >= SecCoreData->StackSize); // // Calculate stack offset and heap offset between temporary memory and new permanent // memory separately. // TopOfOldStack = (UINTN)SecCoreData->StackBase + SecCoreData->StackSize; TopOfNewStack = Private->PhysicalMemoryBegin + NewStackSize; if (TopOfNewStack >= TopOfOldStack) { StackOffsetPositive = TRUE; StackOffset = (UINTN)(TopOfNewStack - TopOfOldStack); } else { StackOffsetPositive = FALSE; StackOffset = (UINTN)(TopOfOldStack - TopOfNewStack); } Private->StackOffsetPositive = StackOffsetPositive; Private->StackOffset = StackOffset; // // Build Stack HOB that describes the permanent memory stack // DEBUG ((DEBUG_INFO, "Stack Hob: BaseAddress=0x%lX Length=0x%lX\n", TopOfNewStack - NewStackSize, NewStackSize)); BuildStackHob (TopOfNewStack - NewStackSize, NewStackSize); // // Cache information from SecCoreData into locals before SecCoreData is converted to a permanent memory address // TemporaryRamBase = (EFI_PHYSICAL_ADDRESS)(UINTN)SecCoreData->TemporaryRamBase; TemporaryRamSize = SecCoreData->TemporaryRamSize; TemporaryStackSize = SecCoreData->StackSize; TemporaryStackBase = SecCoreData->StackBase; PeiTemporaryRamSize = SecCoreData->PeiTemporaryRamSize; PeiTemporaryRamBase = SecCoreData->PeiTemporaryRamBase; // // TemporaryRamSupportPpi is produced by platform's SEC // Status = PeiServicesLocatePpi ( &gEfiTemporaryRamSupportPpiGuid, 0, NULL, (VOID **)&TemporaryRamSupportPpi ); if (!EFI_ERROR (Status)) { // // Heap Offset // BaseOfNewHeap = TopOfNewStack; if (BaseOfNewHeap >= (UINTN)SecCoreData->PeiTemporaryRamBase) { Private->HeapOffsetPositive = TRUE; Private->HeapOffset = (UINTN)(BaseOfNewHeap - (UINTN)SecCoreData->PeiTemporaryRamBase); } else { Private->HeapOffsetPositive = FALSE; Private->HeapOffset = (UINTN)((UINTN)SecCoreData->PeiTemporaryRamBase - BaseOfNewHeap); } DEBUG ((DEBUG_INFO, "Heap Offset = 0x%lX Stack Offset = 0x%lX\n", (UINT64)Private->HeapOffset, (UINT64)Private->StackOffset)); // // Calculate new HandOffTable and PrivateData address in permanent memory's stack // if (StackOffsetPositive) { SecCoreData = (CONST EFI_SEC_PEI_HAND_OFF *)((UINTN)(VOID *)SecCoreData + StackOffset); Private = (PEI_CORE_INSTANCE *)((UINTN)(VOID *)Private + StackOffset); } else { SecCoreData = (CONST EFI_SEC_PEI_HAND_OFF *)((UINTN)(VOID *)SecCoreData - StackOffset); Private = (PEI_CORE_INSTANCE *)((UINTN)(VOID *)Private - StackOffset); } // // Temporary Ram Support PPI is provided by platform, it will copy // temporary memory to permanent memory and do stack switching. // After invoking Temporary Ram Support PPI, the following code's // stack is in permanent memory. // TemporaryRamSupportPpi->TemporaryRamMigration ( PeiServices, TemporaryRamBase, (EFI_PHYSICAL_ADDRESS)(UINTN)(TopOfNewStack - TemporaryStackSize), TemporaryRamSize ); // // Migrate memory pages allocated in pre-memory phase. // It could not be called before calling TemporaryRamSupportPpi->TemporaryRamMigration() // as the migrated memory pages may be overridden by TemporaryRamSupportPpi->TemporaryRamMigration(). // MigrateMemoryPages (Private, TRUE); // // Entry PEI Phase 2 // PeiCore (SecCoreData, NULL, Private); } else { // // Migrate memory pages allocated in pre-memory phase. // MigrateMemoryPages (Private, FALSE); // // Migrate the PEI Services Table pointer from temporary RAM to permanent RAM. // MigratePeiServicesTablePointer (); // // Heap Offset // BaseOfNewHeap = TopOfNewStack; HoleMemBase = TopOfNewStack; HoleMemSize = TemporaryRamSize - PeiTemporaryRamSize - TemporaryStackSize; if (HoleMemSize != 0) { // // Make sure HOB List start address is 8 byte alignment. // BaseOfNewHeap = ALIGN_VALUE (BaseOfNewHeap + HoleMemSize, 8); } if (BaseOfNewHeap >= (UINTN)SecCoreData->PeiTemporaryRamBase) { Private->HeapOffsetPositive = TRUE; Private->HeapOffset = (UINTN)(BaseOfNewHeap - (UINTN)SecCoreData->PeiTemporaryRamBase); } else { Private->HeapOffsetPositive = FALSE; Private->HeapOffset = (UINTN)((UINTN)SecCoreData->PeiTemporaryRamBase - BaseOfNewHeap); } DEBUG ((DEBUG_INFO, "Heap Offset = 0x%lX Stack Offset = 0x%lX\n", (UINT64)Private->HeapOffset, (UINT64)Private->StackOffset)); // // Migrate Heap // HeapTemporaryRamSize = (UINTN)(Private->HobList.HandoffInformationTable->EfiFreeMemoryBottom - Private->HobList.HandoffInformationTable->EfiMemoryBottom); ASSERT (BaseOfNewHeap + HeapTemporaryRamSize <= Private->FreePhysicalMemoryTop); CopyMem ((UINT8 *)(UINTN)BaseOfNewHeap, PeiTemporaryRamBase, HeapTemporaryRamSize); // // Migrate Stack // CopyMem ((UINT8 *)(UINTN)(TopOfNewStack - TemporaryStackSize), TemporaryStackBase, TemporaryStackSize); // // Copy Hole Range Data // if (HoleMemSize != 0) { // // Prepare Hole // if (PeiTemporaryRamBase < TemporaryStackBase) { TempBase1 = (EFI_PHYSICAL_ADDRESS)(UINTN)PeiTemporaryRamBase; TempSize1 = PeiTemporaryRamSize; TempBase2 = (EFI_PHYSICAL_ADDRESS)(UINTN)TemporaryStackBase; TempSize2 = TemporaryStackSize; } else { TempBase1 = (EFI_PHYSICAL_ADDRESS)(UINTN)TemporaryStackBase; TempSize1 = TemporaryStackSize; TempBase2 = (EFI_PHYSICAL_ADDRESS)(UINTN)PeiTemporaryRamBase; TempSize2 = PeiTemporaryRamSize; } if (TemporaryRamBase < TempBase1) { Private->HoleData[0].Base = TemporaryRamBase; Private->HoleData[0].Size = (UINTN)(TempBase1 - TemporaryRamBase); } if (TempBase1 + TempSize1 < TempBase2) { Private->HoleData[1].Base = TempBase1 + TempSize1; Private->HoleData[1].Size = (UINTN)(TempBase2 - TempBase1 - TempSize1); } if (TempBase2 + TempSize2 < TemporaryRamBase + TemporaryRamSize) { Private->HoleData[2].Base = TempBase2 + TempSize2; Private->HoleData[2].Size = (UINTN)(TemporaryRamBase + TemporaryRamSize - TempBase2 - TempSize2); } // // Copy Hole Range data. // for (Index = 0; Index < HOLE_MAX_NUMBER; Index++) { if (Private->HoleData[Index].Size > 0) { if (HoleMemBase > Private->HoleData[Index].Base) { Private->HoleData[Index].OffsetPositive = TRUE; Private->HoleData[Index].Offset = (UINTN)(HoleMemBase - Private->HoleData[Index].Base); } else { Private->HoleData[Index].OffsetPositive = FALSE; Private->HoleData[Index].Offset = (UINTN)(Private->HoleData[Index].Base - HoleMemBase); } CopyMem ((VOID *)(UINTN)HoleMemBase, (VOID *)(UINTN)Private->HoleData[Index].Base, Private->HoleData[Index].Size); HoleMemBase = HoleMemBase + Private->HoleData[Index].Size; } } } // // Switch new stack // SwitchStack ( (SWITCH_STACK_ENTRY_POINT)(UINTN)PeiCoreEntry, (VOID *)SecCoreData, (VOID *)Private, (VOID *)(UINTN)TopOfNewStack ); } // // Code should not come here // ASSERT (FALSE); } } /** Migrate a PEIM from temporary RAM to permanent memory. @param PeimFileHandle Pointer to the FFS file header of the image. @param MigratedFileHandle Pointer to the FFS file header of the migrated image. @retval EFI_SUCCESS Successfully migrated the PEIM to permanent memory. **/ EFI_STATUS EFIAPI MigratePeim ( IN EFI_PEI_FILE_HANDLE FileHandle, IN EFI_PEI_FILE_HANDLE MigratedFileHandle ) { EFI_STATUS Status; EFI_FFS_FILE_HEADER *FileHeader; VOID *Pe32Data; VOID *ImageAddress; CHAR8 *AsciiString; UINTN Index; Status = EFI_SUCCESS; FileHeader = (EFI_FFS_FILE_HEADER *)FileHandle; ASSERT (!IS_FFS_FILE2 (FileHeader)); ImageAddress = NULL; PeiGetPe32Data (MigratedFileHandle, &ImageAddress); if (ImageAddress != NULL) { DEBUG_CODE_BEGIN (); AsciiString = PeCoffLoaderGetPdbPointer (ImageAddress); for (Index = 0; AsciiString[Index] != 0; Index++) { if ((AsciiString[Index] == '\\') || (AsciiString[Index] == '/')) { AsciiString = AsciiString + Index + 1; Index = 0; } else if (AsciiString[Index] == '.') { AsciiString[Index] = 0; } } DEBUG ((DEBUG_VERBOSE, "%a", AsciiString)); DEBUG_CODE_END (); Pe32Data = (VOID *)((UINTN)ImageAddress - (UINTN)MigratedFileHandle + (UINTN)FileHandle); Status = LoadAndRelocatePeCoffImageInPlace (Pe32Data, ImageAddress); ASSERT_EFI_ERROR (Status); } return Status; } /** Migrate Status Code Callback function pointers inside an FV from temporary memory to permanent memory. @param OrgFvHandle Address of FV handle in temporary memory. @param FvHandle Address of FV handle in permanent memory. @param FvSize Size of the FV. **/ VOID ConvertStatusCodeCallbacks ( IN UINTN OrgFvHandle, IN UINTN FvHandle, IN UINTN FvSize ) { EFI_PEI_HOB_POINTERS Hob; UINTN *NumberOfEntries; UINTN *CallbackEntry; UINTN Index; Hob.Raw = GetFirstGuidHob (&gStatusCodeCallbackGuid); while (Hob.Raw != NULL) { NumberOfEntries = GET_GUID_HOB_DATA (Hob); CallbackEntry = NumberOfEntries + 1; for (Index = 0; Index < *NumberOfEntries; Index++) { if (((VOID *)CallbackEntry[Index]) != NULL) { if ((CallbackEntry[Index] >= OrgFvHandle) && (CallbackEntry[Index] < (OrgFvHandle + FvSize))) { DEBUG (( DEBUG_INFO, "Migrating CallbackEntry[%Lu] from 0x%0*Lx to ", (UINT64)Index, (sizeof CallbackEntry[Index]) * 2, (UINT64)CallbackEntry[Index] )); if (OrgFvHandle > FvHandle) { CallbackEntry[Index] = CallbackEntry[Index] - (OrgFvHandle - FvHandle); } else { CallbackEntry[Index] = CallbackEntry[Index] + (FvHandle - OrgFvHandle); } DEBUG (( DEBUG_INFO, "0x%0*Lx\n", (sizeof CallbackEntry[Index]) * 2, (UINT64)CallbackEntry[Index] )); } } } Hob.Raw = GET_NEXT_HOB (Hob); Hob.Raw = GetNextGuidHob (&gStatusCodeCallbackGuid, Hob.Raw); } } /** Migrates PEIMs in the given firmware volume. @param Private Pointer to the PeiCore's private data structure. @param FvIndex The firmware volume index to migrate. @param OrgFvHandle The handle to the firmware volume in temporary memory. @param FvHandle The handle to the firmware volume in permanent memory. @retval EFI_SUCCESS The PEIMs in the FV were migrated successfully @retval EFI_INVALID_PARAMETER The Private pointer is NULL or FvCount is invalid. **/ EFI_STATUS EFIAPI MigratePeimsInFv ( IN PEI_CORE_INSTANCE *Private, IN UINTN FvIndex, IN UINTN OrgFvHandle, IN UINTN FvHandle ) { EFI_STATUS Status; volatile UINTN FileIndex; EFI_PEI_FILE_HANDLE MigratedFileHandle; EFI_PEI_FILE_HANDLE FileHandle; if ((Private == NULL) || (FvIndex >= Private->FvCount)) { return EFI_INVALID_PARAMETER; } if (Private->Fv[FvIndex].ScanFv) { for (FileIndex = 0; FileIndex < Private->Fv[FvIndex].PeimCount; FileIndex++) { if (Private->Fv[FvIndex].FvFileHandles[FileIndex] != NULL) { FileHandle = Private->Fv[FvIndex].FvFileHandles[FileIndex]; MigratedFileHandle = (EFI_PEI_FILE_HANDLE)((UINTN)FileHandle - OrgFvHandle + FvHandle); DEBUG ((DEBUG_VERBOSE, " Migrating FileHandle %2d ", FileIndex)); Status = MigratePeim (FileHandle, MigratedFileHandle); DEBUG ((DEBUG_VERBOSE, "\n")); ASSERT_EFI_ERROR (Status); if (!EFI_ERROR (Status)) { Private->Fv[FvIndex].FvFileHandles[FileIndex] = MigratedFileHandle; if (FvIndex == Private->CurrentPeimFvCount) { Private->CurrentFvFileHandles[FileIndex] = MigratedFileHandle; } } } } } return EFI_SUCCESS; } /** Migrate FVs out of temporary RAM before the cache is flushed. @param Private PeiCore's private data structure @param SecCoreData Points to a data structure containing information about the PEI core's operating environment, such as the size and location of temporary RAM, the stack location and the BFV location. @retval EFI_SUCCESS Successfully migrated installed FVs from temporary RAM to permanent memory. @retval EFI_OUT_OF_RESOURCES Insufficient memory exists to allocate needed pages. **/ EFI_STATUS EFIAPI EvacuateTempRam ( IN PEI_CORE_INSTANCE *Private, IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData ) { EFI_STATUS Status; volatile UINTN FvIndex; volatile UINTN FvChildIndex; UINTN ChildFvOffset; EFI_PHYSICAL_ADDRESS FvHeaderAddress; EFI_FIRMWARE_VOLUME_HEADER *FvHeader; EFI_FIRMWARE_VOLUME_HEADER *ChildFvHeader; EFI_FIRMWARE_VOLUME_HEADER *MigratedFvHeader; EFI_FIRMWARE_VOLUME_HEADER *RawDataFvHeader; EFI_FIRMWARE_VOLUME_HEADER *MigratedChildFvHeader; PEI_CORE_FV_HANDLE PeiCoreFvHandle; EFI_PEI_CORE_FV_LOCATION_PPI *PeiCoreFvLocationPpi; EDKII_MIGRATED_FV_INFO MigratedFvInfo; ASSERT (Private->PeiMemoryInstalled); DEBUG ((DEBUG_VERBOSE, "Beginning evacuation of content in temporary RAM.\n")); // // Migrate PPI Pointers of PEI_CORE from temporary memory to newly loaded PEI_CORE in permanent memory. // Status = PeiLocatePpi ((CONST EFI_PEI_SERVICES **)&Private->Ps, &gEfiPeiCoreFvLocationPpiGuid, 0, NULL, (VOID **)&PeiCoreFvLocationPpi); if (!EFI_ERROR (Status) && (PeiCoreFvLocationPpi->PeiCoreFvLocation != NULL)) { PeiCoreFvHandle.FvHandle = (EFI_PEI_FV_HANDLE)PeiCoreFvLocationPpi->PeiCoreFvLocation; } else { PeiCoreFvHandle.FvHandle = (EFI_PEI_FV_HANDLE)SecCoreData->BootFirmwareVolumeBase; } for (FvIndex = 0; FvIndex < Private->FvCount; FvIndex++) { if (Private->Fv[FvIndex].FvHandle == PeiCoreFvHandle.FvHandle) { CopyMem (&PeiCoreFvHandle, &Private->Fv[FvIndex], sizeof (PEI_CORE_FV_HANDLE)); break; } } Status = EFI_SUCCESS; ConvertPeiCorePpiPointers (Private, &PeiCoreFvHandle); for (FvIndex = 0; FvIndex < Private->FvCount; FvIndex++) { FvHeader = Private->Fv[FvIndex].FvHeader; ASSERT (FvHeader != NULL); ASSERT (FvIndex < Private->FvCount); DEBUG ((DEBUG_VERBOSE, "FV[%02d] at 0x%x.\n", FvIndex, (UINTN)FvHeader)); if ( !( ((EFI_PHYSICAL_ADDRESS)(UINTN)FvHeader >= Private->PhysicalMemoryBegin) && (((EFI_PHYSICAL_ADDRESS)(UINTN)FvHeader + (FvHeader->FvLength - 1)) < Private->FreePhysicalMemoryTop) ) ) { // // Allocate page to save the rebased PEIMs, the PEIMs will get dispatched later. // Status = PeiServicesAllocatePages ( EfiBootServicesCode, EFI_SIZE_TO_PAGES ((UINTN)FvHeader->FvLength), &FvHeaderAddress ); ASSERT_EFI_ERROR (Status); MigratedFvHeader = (EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)FvHeaderAddress; // // Allocate pool to save the raw PEIMs, which is used to keep consistent context across // multiple boot and PCR0 will keep the same no matter if the address of allocated page is changed. // Status = PeiServicesAllocatePages ( EfiBootServicesCode, EFI_SIZE_TO_PAGES ((UINTN)FvHeader->FvLength), &FvHeaderAddress ); ASSERT_EFI_ERROR (Status); RawDataFvHeader = (EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)FvHeaderAddress; DEBUG (( DEBUG_VERBOSE, " Migrating FV[%d] from 0x%08X to 0x%08X\n", FvIndex, (UINTN)FvHeader, (UINTN)MigratedFvHeader )); // // Copy the context to the rebased pages and raw pages, and create hob to save the // information. The MigratedFvInfo HOB will never be produced when // PcdMigrateTemporaryRamFirmwareVolumes is FALSE, because the PCD control the // feature. // CopyMem (MigratedFvHeader, FvHeader, (UINTN)FvHeader->FvLength); CopyMem (RawDataFvHeader, MigratedFvHeader, (UINTN)FvHeader->FvLength); MigratedFvInfo.FvOrgBase = (UINT32)(UINTN)FvHeader; MigratedFvInfo.FvNewBase = (UINT32)(UINTN)MigratedFvHeader; MigratedFvInfo.FvDataBase = (UINT32)(UINTN)RawDataFvHeader; MigratedFvInfo.FvLength = (UINT32)(UINTN)FvHeader->FvLength; BuildGuidDataHob (&gEdkiiMigratedFvInfoGuid, &MigratedFvInfo, sizeof (MigratedFvInfo)); // // Migrate any children for this FV now // for (FvChildIndex = FvIndex; FvChildIndex < Private->FvCount; FvChildIndex++) { ChildFvHeader = Private->Fv[FvChildIndex].FvHeader; if ( ((UINTN)ChildFvHeader > (UINTN)FvHeader) && (((UINTN)ChildFvHeader + ChildFvHeader->FvLength) < ((UINTN)FvHeader) + FvHeader->FvLength) ) { DEBUG ((DEBUG_VERBOSE, " Child FV[%02d] is being migrated.\n", FvChildIndex)); ChildFvOffset = (UINTN)ChildFvHeader - (UINTN)FvHeader; DEBUG ((DEBUG_VERBOSE, " Child FV offset = 0x%x.\n", ChildFvOffset)); MigratedChildFvHeader = (EFI_FIRMWARE_VOLUME_HEADER *)((UINTN)MigratedFvHeader + ChildFvOffset); Private->Fv[FvChildIndex].FvHeader = MigratedChildFvHeader; Private->Fv[FvChildIndex].FvHandle = (EFI_PEI_FV_HANDLE)MigratedChildFvHeader; DEBUG ((DEBUG_VERBOSE, " Child migrated FV header at 0x%x.\n", (UINTN)MigratedChildFvHeader)); Status = MigratePeimsInFv (Private, FvChildIndex, (UINTN)ChildFvHeader, (UINTN)MigratedChildFvHeader); ASSERT_EFI_ERROR (Status); ConvertPpiPointersFv ( Private, (UINTN)ChildFvHeader, (UINTN)MigratedChildFvHeader, (UINTN)ChildFvHeader->FvLength - 1 ); ConvertStatusCodeCallbacks ( (UINTN)ChildFvHeader, (UINTN)MigratedChildFvHeader, (UINTN)ChildFvHeader->FvLength - 1 ); ConvertFvHob (Private, (UINTN)ChildFvHeader, (UINTN)MigratedChildFvHeader); } } Private->Fv[FvIndex].FvHeader = MigratedFvHeader; Private->Fv[FvIndex].FvHandle = (EFI_PEI_FV_HANDLE)MigratedFvHeader; Status = MigratePeimsInFv (Private, FvIndex, (UINTN)FvHeader, (UINTN)MigratedFvHeader); ASSERT_EFI_ERROR (Status); ConvertPpiPointersFv ( Private, (UINTN)FvHeader, (UINTN)MigratedFvHeader, (UINTN)FvHeader->FvLength - 1 ); ConvertStatusCodeCallbacks ( (UINTN)FvHeader, (UINTN)MigratedFvHeader, (UINTN)FvHeader->FvLength - 1 ); ConvertFvHob (Private, (UINTN)FvHeader, (UINTN)MigratedFvHeader); } } RemoveFvHobsInTemporaryMemory (Private); return Status; } /** Conduct PEIM dispatch. @param SecCoreData Points to a data structure containing information about the PEI core's operating environment, such as the size and location of temporary RAM, the stack location and the BFV location. @param Private Pointer to the private data passed in from caller **/ VOID PeiDispatcher ( IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData, IN PEI_CORE_INSTANCE *Private ) { EFI_STATUS Status; UINT32 Index1; UINT32 Index2; CONST EFI_PEI_SERVICES **PeiServices; EFI_PEI_FILE_HANDLE PeimFileHandle; UINTN FvCount; UINTN PeimCount; UINT32 AuthenticationState; EFI_PHYSICAL_ADDRESS EntryPoint; EFI_PEIM_ENTRY_POINT2 PeimEntryPoint; UINTN SaveCurrentPeimCount; UINTN SaveCurrentFvCount; EFI_PEI_FILE_HANDLE SaveCurrentFileHandle; EFI_FV_FILE_INFO FvFileInfo; PEI_CORE_FV_HANDLE *CoreFvHandle; PeiServices = (CONST EFI_PEI_SERVICES **)&Private->Ps; PeimEntryPoint = NULL; PeimFileHandle = NULL; EntryPoint = 0; if ((Private->PeiMemoryInstalled) && (PcdGetBool (PcdMigrateTemporaryRamFirmwareVolumes) || (Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME) || PcdGetBool (PcdShadowPeimOnS3Boot)) ) { // // Once real memory is available, shadow the RegisterForShadow modules. And meanwhile // update the modules' status from PEIM_STATE_REGISTER_FOR_SHADOW to PEIM_STATE_DONE. // SaveCurrentPeimCount = Private->CurrentPeimCount; SaveCurrentFvCount = Private->CurrentPeimFvCount; SaveCurrentFileHandle = Private->CurrentFileHandle; for (Index1 = 0; Index1 < Private->FvCount; Index1++) { for (Index2 = 0; Index2 < Private->Fv[Index1].PeimCount; Index2++) { if (Private->Fv[Index1].PeimState[Index2] == PEIM_STATE_REGISTER_FOR_SHADOW) { PeimFileHandle = Private->Fv[Index1].FvFileHandles[Index2]; Private->CurrentFileHandle = PeimFileHandle; Private->CurrentPeimFvCount = Index1; Private->CurrentPeimCount = Index2; Status = PeiLoadImage ( (CONST EFI_PEI_SERVICES **)&Private->Ps, PeimFileHandle, PEIM_STATE_REGISTER_FOR_SHADOW, &EntryPoint, &AuthenticationState ); if (Status == EFI_SUCCESS) { // // PEIM_STATE_REGISTER_FOR_SHADOW move to PEIM_STATE_DONE // Private->Fv[Index1].PeimState[Index2]++; // // Call the PEIM entry point // PeimEntryPoint = (EFI_PEIM_ENTRY_POINT2)(UINTN)EntryPoint; PERF_START_IMAGE_BEGIN (PeimFileHandle); PeimEntryPoint (PeimFileHandle, (const EFI_PEI_SERVICES **)&Private->Ps); PERF_START_IMAGE_END (PeimFileHandle); } // // Process the Notify list and dispatch any notifies for // newly installed PPIs. // ProcessDispatchNotifyList (Private); } } } Private->CurrentFileHandle = SaveCurrentFileHandle; Private->CurrentPeimFvCount = SaveCurrentFvCount; Private->CurrentPeimCount = SaveCurrentPeimCount; } // // This is the main dispatch loop. It will search known FVs for PEIMs and // attempt to dispatch them. If any PEIM gets dispatched through a single // pass of the dispatcher, it will start over from the BFV again to see // if any new PEIMs dependencies got satisfied. With a well ordered // FV where PEIMs are found in the order their dependencies are also // satisfied, this dispatcher should run only once. // do { // // In case that reenter PeiCore happens, the last pass record is still available. // if (!Private->PeimDispatcherReenter) { Private->PeimNeedingDispatch = FALSE; Private->PeimDispatchOnThisPass = FALSE; } else { Private->PeimDispatcherReenter = FALSE; } for (FvCount = Private->CurrentPeimFvCount; FvCount < Private->FvCount; FvCount++) { CoreFvHandle = FindNextCoreFvHandle (Private, FvCount); ASSERT (CoreFvHandle != NULL); // // If the FV has corresponding EFI_PEI_FIRMWARE_VOLUME_PPI instance, then dispatch it. // if (CoreFvHandle->FvPpi == NULL) { continue; } Private->CurrentPeimFvCount = FvCount; if (Private->CurrentPeimCount == 0) { // // When going through each FV, at first, search Apriori file to // reorder all PEIMs to ensure the PEIMs in Apriori file to get // dispatch at first. // DiscoverPeimsAndOrderWithApriori (Private, CoreFvHandle); } // // Start to dispatch all modules within the current FV. // for (PeimCount = Private->CurrentPeimCount; PeimCount < Private->Fv[FvCount].PeimCount; PeimCount++) { Private->CurrentPeimCount = PeimCount; PeimFileHandle = Private->CurrentFileHandle = Private->CurrentFvFileHandles[PeimCount]; if (Private->Fv[FvCount].PeimState[PeimCount] == PEIM_STATE_NOT_DISPATCHED) { if (!DepexSatisfied (Private, PeimFileHandle, PeimCount)) { Private->PeimNeedingDispatch = TRUE; } else { Status = CoreFvHandle->FvPpi->GetFileInfo (CoreFvHandle->FvPpi, PeimFileHandle, &FvFileInfo); ASSERT_EFI_ERROR (Status); if (FvFileInfo.FileType == EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE) { // // For FV type file, Produce new FvInfo PPI and FV HOB // Status = ProcessFvFile (Private, &Private->Fv[FvCount], PeimFileHandle); if (Status == EFI_SUCCESS) { // // PEIM_STATE_NOT_DISPATCHED move to PEIM_STATE_DISPATCHED // Private->Fv[FvCount].PeimState[PeimCount]++; Private->PeimDispatchOnThisPass = TRUE; } else { // // The related GuidedSectionExtraction/Decompress PPI for the // encapsulated FV image section may be installed in the rest // of this do-while loop, so need to make another pass. // Private->PeimNeedingDispatch = TRUE; } } else { // // For PEIM driver, Load its entry point // Status = PeiLoadImage ( PeiServices, PeimFileHandle, PEIM_STATE_NOT_DISPATCHED, &EntryPoint, &AuthenticationState ); if (Status == EFI_SUCCESS) { // // The PEIM has its dependencies satisfied, and its entry point // has been found, so invoke it. // PERF_START_IMAGE_BEGIN (PeimFileHandle); REPORT_STATUS_CODE_WITH_EXTENDED_DATA ( EFI_PROGRESS_CODE, (EFI_SOFTWARE_PEI_CORE | EFI_SW_PC_INIT_BEGIN), (VOID *)(&PeimFileHandle), sizeof (PeimFileHandle) ); Status = VerifyPeim (Private, CoreFvHandle->FvHandle, PeimFileHandle, AuthenticationState); if (Status != EFI_SECURITY_VIOLATION) { // // PEIM_STATE_NOT_DISPATCHED move to PEIM_STATE_DISPATCHED // Private->Fv[FvCount].PeimState[PeimCount]++; // // Call the PEIM entry point for PEIM driver // PeimEntryPoint = (EFI_PEIM_ENTRY_POINT2)(UINTN)EntryPoint; PeimEntryPoint (PeimFileHandle, (const EFI_PEI_SERVICES **)PeiServices); Private->PeimDispatchOnThisPass = TRUE; } else { // // The related GuidedSectionExtraction PPI for the // signed PEIM image section may be installed in the rest // of this do-while loop, so need to make another pass. // Private->PeimNeedingDispatch = TRUE; } REPORT_STATUS_CODE_WITH_EXTENDED_DATA ( EFI_PROGRESS_CODE, (EFI_SOFTWARE_PEI_CORE | EFI_SW_PC_INIT_END), (VOID *)(&PeimFileHandle), sizeof (PeimFileHandle) ); PERF_START_IMAGE_END (PeimFileHandle); } } PeiCheckAndSwitchStack (SecCoreData, Private); // // Process the Notify list and dispatch any notifies for // newly installed PPIs. // ProcessDispatchNotifyList (Private); // // Recheck SwitchStackSignal after ProcessDispatchNotifyList() // in case PeiInstallPeiMemory() is done in a callback with // EFI_PEI_PPI_DESCRIPTOR_NOTIFY_DISPATCH. // PeiCheckAndSwitchStack (SecCoreData, Private); if ((Private->PeiMemoryInstalled) && (Private->Fv[FvCount].PeimState[PeimCount] == PEIM_STATE_REGISTER_FOR_SHADOW) && \ (PcdGetBool (PcdMigrateTemporaryRamFirmwareVolumes) || (Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME) || PcdGetBool (PcdShadowPeimOnS3Boot)) ) { // // If memory is available we shadow images by default for performance reasons. // We call the entry point a 2nd time so the module knows it's shadowed. // // PERF_START (PeiServices, L"PEIM", PeimFileHandle, 0); if ((Private->HobList.HandoffInformationTable->BootMode != BOOT_ON_S3_RESUME) && !PcdGetBool (PcdShadowPeimOnBoot) && !PcdGetBool (PcdMigrateTemporaryRamFirmwareVolumes)) { // // Load PEIM into Memory for Register for shadow PEIM. // Status = PeiLoadImage ( PeiServices, PeimFileHandle, PEIM_STATE_REGISTER_FOR_SHADOW, &EntryPoint, &AuthenticationState ); if (Status == EFI_SUCCESS) { PeimEntryPoint = (EFI_PEIM_ENTRY_POINT2)(UINTN)EntryPoint; } } ASSERT (PeimEntryPoint != NULL); PeimEntryPoint (PeimFileHandle, (const EFI_PEI_SERVICES **)PeiServices); // PERF_END (PeiServices, L"PEIM", PeimFileHandle, 0); // // PEIM_STATE_REGISTER_FOR_SHADOW move to PEIM_STATE_DONE // Private->Fv[FvCount].PeimState[PeimCount]++; // // Process the Notify list and dispatch any notifies for // newly installed PPIs. // ProcessDispatchNotifyList (Private); } } } } // // Before walking through the next FV, we should set them to NULL/0 to // start at the beginning of the next FV. // Private->CurrentFileHandle = NULL; Private->CurrentPeimCount = 0; Private->CurrentFvFileHandles = NULL; } // // Before making another pass, we should set it to 0 to // go through all the FVs. // Private->CurrentPeimFvCount = 0; // // PeimNeedingDispatch being TRUE means we found a PEIM/FV that did not get // dispatched. So we need to make another pass // // PeimDispatchOnThisPass being TRUE means we dispatched a PEIM/FV on this // pass. If we did not dispatch a PEIM/FV there is no point in trying again // as it will fail the next time too (nothing has changed). // } while (Private->PeimNeedingDispatch && Private->PeimDispatchOnThisPass); } /** Initialize the Dispatcher's data members @param PrivateData PeiCore's private data structure @param OldCoreData Old data from SecCore NULL if being run in non-permanent memory mode. @param SecCoreData Points to a data structure containing information about the PEI core's operating environment, such as the size and location of temporary RAM, the stack location and the BFV location. @return None. **/ VOID InitializeDispatcherData ( IN PEI_CORE_INSTANCE *PrivateData, IN PEI_CORE_INSTANCE *OldCoreData, IN CONST EFI_SEC_PEI_HAND_OFF *SecCoreData ) { if (OldCoreData == NULL) { PrivateData->PeimDispatcherReenter = FALSE; PeiInitializeFv (PrivateData, SecCoreData); } else { PeiReinitializeFv (PrivateData); } return; } /** This routine parses the Dependency Expression, if available, and decides if the module can be executed. @param Private PeiCore's private data structure @param FileHandle PEIM's file handle @param PeimCount Peim count in all dispatched PEIMs. @retval TRUE Can be dispatched @retval FALSE Cannot be dispatched **/ BOOLEAN DepexSatisfied ( IN PEI_CORE_INSTANCE *Private, IN EFI_PEI_FILE_HANDLE FileHandle, IN UINTN PeimCount ) { EFI_STATUS Status; VOID *DepexData; EFI_FV_FILE_INFO FileInfo; Status = PeiServicesFfsGetFileInfo (FileHandle, &FileInfo); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_DISPATCH, "Evaluate PEI DEPEX for FFS(Unknown)\n")); } else { DEBUG ((DEBUG_DISPATCH, "Evaluate PEI DEPEX for FFS(%g)\n", &FileInfo.FileName)); } if (PeimCount < Private->AprioriCount) { // // If it's in the Apriori file then we set DEPEX to TRUE // DEBUG ((DEBUG_DISPATCH, " RESULT = TRUE (Apriori)\n")); return TRUE; } // // Depex section not in the encapsulated section. // Status = PeiServicesFfsFindSectionData ( EFI_SECTION_PEI_DEPEX, FileHandle, (VOID **)&DepexData ); if (EFI_ERROR (Status)) { // // If there is no DEPEX, assume the module can be executed // DEBUG ((DEBUG_DISPATCH, " RESULT = TRUE (No DEPEX)\n")); return TRUE; } // // Evaluate a given DEPEX // return PeimDispatchReadiness (&Private->Ps, DepexData); } /** This routine enables a PEIM to register itself for shadow when the PEI Foundation discovers permanent memory. @param FileHandle File handle of a PEIM. @retval EFI_NOT_FOUND The file handle doesn't point to PEIM itself. @retval EFI_ALREADY_STARTED Indicate that the PEIM has been registered itself. @retval EFI_SUCCESS Successfully to register itself. **/ EFI_STATUS EFIAPI PeiRegisterForShadow ( IN EFI_PEI_FILE_HANDLE FileHandle ) { PEI_CORE_INSTANCE *Private; Private = PEI_CORE_INSTANCE_FROM_PS_THIS (GetPeiServicesTablePointer ()); if (Private->CurrentFileHandle != FileHandle) { // // The FileHandle must be for the current PEIM // return EFI_NOT_FOUND; } if (Private->Fv[Private->CurrentPeimFvCount].PeimState[Private->CurrentPeimCount] >= PEIM_STATE_REGISTER_FOR_SHADOW) { // // If the PEIM has already entered the PEIM_STATE_REGISTER_FOR_SHADOW or PEIM_STATE_DONE then it's already been started // return EFI_ALREADY_STARTED; } Private->Fv[Private->CurrentPeimFvCount].PeimState[Private->CurrentPeimCount] = PEIM_STATE_REGISTER_FOR_SHADOW; return EFI_SUCCESS; }