/** @file * * Copyright (c) 2011-2018, ARM Limited. All rights reserved. * * SPDX-License-Identifier: BSD-2-Clause-Patent * **/ #include #include "ArmGicDxe.h" #define ARM_GIC_DEFAULT_PRIORITY 0x80 extern EFI_HARDWARE_INTERRUPT_PROTOCOL gHardwareInterruptV3Protocol; extern EFI_HARDWARE_INTERRUPT2_PROTOCOL gHardwareInterrupt2V3Protocol; STATIC UINTN mGicDistributorBase; STATIC UINTN mGicRedistributorsBase; /** Enable interrupt source Source. @param This Instance pointer for this protocol @param Source Hardware source of the interrupt @retval EFI_SUCCESS Source interrupt enabled. @retval EFI_DEVICE_ERROR Hardware could not be programmed. **/ STATIC EFI_STATUS EFIAPI GicV3EnableInterruptSource ( IN EFI_HARDWARE_INTERRUPT_PROTOCOL *This, IN HARDWARE_INTERRUPT_SOURCE Source ) { if (Source >= mGicNumInterrupts) { ASSERT(FALSE); return EFI_UNSUPPORTED; } ArmGicEnableInterrupt (mGicDistributorBase, mGicRedistributorsBase, Source); return EFI_SUCCESS; } /** Disable interrupt source Source. @param This Instance pointer for this protocol @param Source Hardware source of the interrupt @retval EFI_SUCCESS Source interrupt disabled. @retval EFI_DEVICE_ERROR Hardware could not be programmed. **/ STATIC EFI_STATUS EFIAPI GicV3DisableInterruptSource ( IN EFI_HARDWARE_INTERRUPT_PROTOCOL *This, IN HARDWARE_INTERRUPT_SOURCE Source ) { if (Source >= mGicNumInterrupts) { ASSERT(FALSE); return EFI_UNSUPPORTED; } ArmGicDisableInterrupt (mGicDistributorBase, mGicRedistributorsBase, Source); return EFI_SUCCESS; } /** Return current state of interrupt source Source. @param This Instance pointer for this protocol @param Source Hardware source of the interrupt @param InterruptState TRUE: source enabled, FALSE: source disabled. @retval EFI_SUCCESS InterruptState is valid @retval EFI_DEVICE_ERROR InterruptState is not valid **/ STATIC EFI_STATUS EFIAPI GicV3GetInterruptSourceState ( IN EFI_HARDWARE_INTERRUPT_PROTOCOL *This, IN HARDWARE_INTERRUPT_SOURCE Source, IN BOOLEAN *InterruptState ) { if (Source >= mGicNumInterrupts) { ASSERT(FALSE); return EFI_UNSUPPORTED; } *InterruptState = ArmGicIsInterruptEnabled ( mGicDistributorBase, mGicRedistributorsBase, Source ); return EFI_SUCCESS; } /** Signal to the hardware that the End Of Interrupt state has been reached. @param This Instance pointer for this protocol @param Source Hardware source of the interrupt @retval EFI_SUCCESS Source interrupt EOI'ed. @retval EFI_DEVICE_ERROR Hardware could not be programmed. **/ STATIC EFI_STATUS EFIAPI GicV3EndOfInterrupt ( IN EFI_HARDWARE_INTERRUPT_PROTOCOL *This, IN HARDWARE_INTERRUPT_SOURCE Source ) { if (Source >= mGicNumInterrupts) { ASSERT(FALSE); return EFI_UNSUPPORTED; } ArmGicV3EndOfInterrupt (Source); return EFI_SUCCESS; } /** EFI_CPU_INTERRUPT_HANDLER that is called when a processor interrupt occurs. @param InterruptType Defines the type of interrupt or exception that occurred on the processor. This parameter is processor architecture specific. @param SystemContext A pointer to the processor context when the interrupt occurred on the processor. @return None **/ STATIC VOID EFIAPI GicV3IrqInterruptHandler ( IN EFI_EXCEPTION_TYPE InterruptType, IN EFI_SYSTEM_CONTEXT SystemContext ) { UINT32 GicInterrupt; HARDWARE_INTERRUPT_HANDLER InterruptHandler; GicInterrupt = ArmGicV3AcknowledgeInterrupt (); // Special Interrupts (ID1020-ID1023) have an Interrupt ID greater than the // number of interrupt (ie: Spurious interrupt). if ((GicInterrupt & ARM_GIC_ICCIAR_ACKINTID) >= mGicNumInterrupts) { // The special interrupt do not need to be acknowledge return; } InterruptHandler = gRegisteredInterruptHandlers[GicInterrupt]; if (InterruptHandler != NULL) { // Call the registered interrupt handler. InterruptHandler (GicInterrupt, SystemContext); } else { DEBUG ((DEBUG_ERROR, "Spurious GIC interrupt: 0x%x\n", GicInterrupt)); GicV3EndOfInterrupt (&gHardwareInterruptV3Protocol, GicInterrupt); } } // The protocol instance produced by this driver EFI_HARDWARE_INTERRUPT_PROTOCOL gHardwareInterruptV3Protocol = { RegisterInterruptSource, GicV3EnableInterruptSource, GicV3DisableInterruptSource, GicV3GetInterruptSourceState, GicV3EndOfInterrupt }; /** Get interrupt trigger type of an interrupt @param This Instance pointer for this protocol @param Source Hardware source of the interrupt. @param TriggerType Returns interrupt trigger type. @retval EFI_SUCCESS Source interrupt supported. @retval EFI_UNSUPPORTED Source interrupt is not supported. **/ STATIC EFI_STATUS EFIAPI GicV3GetTriggerType ( IN EFI_HARDWARE_INTERRUPT2_PROTOCOL *This, IN HARDWARE_INTERRUPT_SOURCE Source, OUT EFI_HARDWARE_INTERRUPT2_TRIGGER_TYPE *TriggerType ) { UINTN RegAddress; UINTN Config1Bit; EFI_STATUS Status; Status = GicGetDistributorIcfgBaseAndBit ( Source, &RegAddress, &Config1Bit ); if (EFI_ERROR (Status)) { return Status; } if ((MmioRead32 (RegAddress) & (1 << Config1Bit)) == 0) { *TriggerType = EFI_HARDWARE_INTERRUPT2_TRIGGER_LEVEL_HIGH; } else { *TriggerType = EFI_HARDWARE_INTERRUPT2_TRIGGER_EDGE_RISING; } return EFI_SUCCESS; } /** Set interrupt trigger type of an interrupt @param This Instance pointer for this protocol @param Source Hardware source of the interrupt. @param TriggerType Interrupt trigger type. @retval EFI_SUCCESS Source interrupt supported. @retval EFI_UNSUPPORTED Source interrupt is not supported. **/ STATIC EFI_STATUS EFIAPI GicV3SetTriggerType ( IN EFI_HARDWARE_INTERRUPT2_PROTOCOL *This, IN HARDWARE_INTERRUPT_SOURCE Source, IN EFI_HARDWARE_INTERRUPT2_TRIGGER_TYPE TriggerType ) { UINTN RegAddress; UINTN Config1Bit; UINT32 Value; EFI_STATUS Status; BOOLEAN SourceEnabled; if ( (TriggerType != EFI_HARDWARE_INTERRUPT2_TRIGGER_EDGE_RISING) && (TriggerType != EFI_HARDWARE_INTERRUPT2_TRIGGER_LEVEL_HIGH)) { DEBUG ((DEBUG_ERROR, "Invalid interrupt trigger type: %d\n", \ TriggerType)); ASSERT (FALSE); return EFI_UNSUPPORTED; } Status = GicGetDistributorIcfgBaseAndBit ( Source, &RegAddress, &Config1Bit ); if (EFI_ERROR (Status)) { return Status; } Status = GicV3GetInterruptSourceState ( (EFI_HARDWARE_INTERRUPT_PROTOCOL*)This, Source, &SourceEnabled ); if (EFI_ERROR (Status)) { return Status; } Value = (TriggerType == EFI_HARDWARE_INTERRUPT2_TRIGGER_EDGE_RISING) ? ARM_GIC_ICDICFR_EDGE_TRIGGERED : ARM_GIC_ICDICFR_LEVEL_TRIGGERED; // Before changing the value, we must disable the interrupt, // otherwise GIC behavior is UNPREDICTABLE. if (SourceEnabled) { GicV3DisableInterruptSource ( (EFI_HARDWARE_INTERRUPT_PROTOCOL*)This, Source ); } MmioAndThenOr32 ( RegAddress, ~(0x1 << Config1Bit), Value << Config1Bit ); // Restore interrupt state if (SourceEnabled) { GicV3EnableInterruptSource ( (EFI_HARDWARE_INTERRUPT_PROTOCOL*)This, Source ); } return EFI_SUCCESS; } EFI_HARDWARE_INTERRUPT2_PROTOCOL gHardwareInterrupt2V3Protocol = { (HARDWARE_INTERRUPT2_REGISTER)RegisterInterruptSource, (HARDWARE_INTERRUPT2_ENABLE)GicV3EnableInterruptSource, (HARDWARE_INTERRUPT2_DISABLE)GicV3DisableInterruptSource, (HARDWARE_INTERRUPT2_INTERRUPT_STATE)GicV3GetInterruptSourceState, (HARDWARE_INTERRUPT2_END_OF_INTERRUPT)GicV3EndOfInterrupt, GicV3GetTriggerType, GicV3SetTriggerType }; /** Shutdown our hardware DXE Core will disable interrupts and turn off the timer and disable interrupts after all the event handlers have run. @param[in] Event The Event that is being processed @param[in] Context Event Context **/ VOID EFIAPI GicV3ExitBootServicesEvent ( IN EFI_EVENT Event, IN VOID *Context ) { UINTN Index; // Acknowledge all pending interrupts for (Index = 0; Index < mGicNumInterrupts; Index++) { GicV3DisableInterruptSource (&gHardwareInterruptV3Protocol, Index); } for (Index = 0; Index < mGicNumInterrupts; Index++) { GicV3EndOfInterrupt (&gHardwareInterruptV3Protocol, Index); } // Disable Gic Interface ArmGicV3DisableInterruptInterface (); // Disable Gic Distributor ArmGicDisableDistributor (mGicDistributorBase); } /** Initialize the state information for the CPU Architectural Protocol @param ImageHandle of the loaded driver @param SystemTable Pointer to the System Table @retval EFI_SUCCESS Protocol registered @retval EFI_OUT_OF_RESOURCES Cannot allocate protocol data structure @retval EFI_DEVICE_ERROR Hardware problems **/ EFI_STATUS GicV3DxeInitialize ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { EFI_STATUS Status; UINTN Index; UINT32 RegOffset; UINTN RegShift; UINT64 CpuTarget; UINT64 MpId; // Make sure the Interrupt Controller Protocol is not already installed in // the system. ASSERT_PROTOCOL_ALREADY_INSTALLED (NULL, &gHardwareInterruptProtocolGuid); mGicDistributorBase = PcdGet64 (PcdGicDistributorBase); mGicRedistributorsBase = PcdGet64 (PcdGicRedistributorsBase); mGicNumInterrupts = ArmGicGetMaxNumInterrupts (mGicDistributorBase); // We will be driving this GIC in native v3 mode, i.e., with Affinity // Routing enabled. So ensure that the ARE bit is set. if (!FeaturePcdGet (PcdArmGicV3WithV2Legacy)) { MmioOr32 (mGicDistributorBase + ARM_GIC_ICDDCR, ARM_GIC_ICDDCR_ARE); } for (Index = 0; Index < mGicNumInterrupts; Index++) { GicV3DisableInterruptSource (&gHardwareInterruptV3Protocol, Index); // Set Priority RegOffset = Index / 4; RegShift = (Index % 4) * 8; MmioAndThenOr32 ( mGicDistributorBase + ARM_GIC_ICDIPR + (4 * RegOffset), ~(0xff << RegShift), ARM_GIC_DEFAULT_PRIORITY << RegShift ); } // Targets the interrupts to the Primary Cpu if (FeaturePcdGet (PcdArmGicV3WithV2Legacy)) { // Only Primary CPU will run this code. We can identify our GIC CPU ID by // reading the GIC Distributor Target register. The 8 first // GICD_ITARGETSRn are banked to each connected CPU. These 8 registers // hold the CPU targets fields for interrupts 0-31. More Info in the GIC // Specification about "Interrupt Processor Targets Registers" // Read the first Interrupt Processor Targets Register (that corresponds // to the 4 first SGIs) CpuTarget = MmioRead32 (mGicDistributorBase + ARM_GIC_ICDIPTR); // The CPU target is a bit field mapping each CPU to a GIC CPU Interface. // This value is 0 when we run on a uniprocessor platform. if (CpuTarget != 0) { // The 8 first Interrupt Processor Targets Registers are read-only for (Index = 8; Index < (mGicNumInterrupts / 4); Index++) { MmioWrite32 ( mGicDistributorBase + ARM_GIC_ICDIPTR + (Index * 4), CpuTarget ); } } } else { MpId = ArmReadMpidr (); CpuTarget = MpId & (ARM_CORE_AFF0 | ARM_CORE_AFF1 | ARM_CORE_AFF2 | ARM_CORE_AFF3); if ((MmioRead32 ( mGicDistributorBase + ARM_GIC_ICDDCR ) & ARM_GIC_ICDDCR_DS) != 0) { // If the Disable Security (DS) control bit is set, we are dealing with a // GIC that has only one security state. In this case, let's assume we are // executing in non-secure state (which is appropriate for DXE modules) // and that no other firmware has performed any configuration on the GIC. // This means we need to reconfigure all interrupts to non-secure Group 1 // first. MmioWrite32 ( mGicRedistributorsBase + ARM_GICR_CTLR_FRAME_SIZE + ARM_GIC_ICDISR, 0xffffffff ); for (Index = 32; Index < mGicNumInterrupts; Index += 32) { MmioWrite32 ( mGicDistributorBase + ARM_GIC_ICDISR + Index / 8, 0xffffffff ); } } // Route the SPIs to the primary CPU. SPIs start at the INTID 32 for (Index = 0; Index < (mGicNumInterrupts - 32); Index++) { MmioWrite64 ( mGicDistributorBase + ARM_GICD_IROUTER + (Index * 8), CpuTarget ); } } // Set binary point reg to 0x7 (no preemption) ArmGicV3SetBinaryPointer (0x7); // Set priority mask reg to 0xff to allow all priorities through ArmGicV3SetPriorityMask (0xff); // Enable gic cpu interface ArmGicV3EnableInterruptInterface (); // Enable gic distributor ArmGicEnableDistributor (mGicDistributorBase); Status = InstallAndRegisterInterruptService ( &gHardwareInterruptV3Protocol, &gHardwareInterrupt2V3Protocol, GicV3IrqInterruptHandler, GicV3ExitBootServicesEvent ); return Status; }