/** @file Firmware File System driver that produce Firmware Volume protocol. Layers on top of Firmware Block protocol to produce a file abstraction of FV based files. Copyright (c) 2006 - 2017, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "DxeMain.h" #include "FwVolDriver.h" // // Protocol notify related globals // VOID *gEfiFwVolBlockNotifyReg; EFI_EVENT gEfiFwVolBlockEvent; FV_DEVICE mFvDevice = { FV2_DEVICE_SIGNATURE, NULL, NULL, { FvGetVolumeAttributes, FvSetVolumeAttributes, FvReadFile, FvReadFileSection, FvWriteFile, FvGetNextFile, sizeof (UINTN), NULL, FvGetVolumeInfo, FvSetVolumeInfo }, NULL, NULL, NULL, NULL, { NULL, NULL }, 0, 0, FALSE, FALSE }; // // FFS helper functions // /** Read data from Firmware Block by FVB protocol Read. The data may cross the multi block ranges. @param Fvb The FW_VOL_BLOCK_PROTOCOL instance from which to read data. @param StartLba Pointer to StartLba. On input, the start logical block index from which to read. On output,the end logical block index after reading. @param Offset Pointer to Offset On input, offset into the block at which to begin reading. On output, offset into the end block after reading. @param DataSize Size of data to be read. @param Data Pointer to Buffer that the data will be read into. @retval EFI_SUCCESS Successfully read data from firmware block. @retval others **/ EFI_STATUS ReadFvbData ( IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb, IN OUT EFI_LBA *StartLba, IN OUT UINTN *Offset, IN UINTN DataSize, OUT UINT8 *Data ) { UINTN BlockSize; UINTN NumberOfBlocks; UINTN BlockIndex; UINTN ReadDataSize; EFI_STATUS Status; // // Try read data in current block // BlockIndex = 0; ReadDataSize = DataSize; Status = Fvb->Read (Fvb, *StartLba, *Offset, &ReadDataSize, Data); if (Status == EFI_SUCCESS) { *Offset += DataSize; return EFI_SUCCESS; } else if (Status != EFI_BAD_BUFFER_SIZE) { // // other error will direct return // return Status; } // // Data crosses the blocks, read data from next block // DataSize -= ReadDataSize; Data += ReadDataSize; *StartLba = *StartLba + 1; while (DataSize > 0) { Status = Fvb->GetBlockSize (Fvb, *StartLba, &BlockSize, &NumberOfBlocks); if (EFI_ERROR (Status)) { return Status; } // // Read data from the crossing blocks // BlockIndex = 0; while (BlockIndex < NumberOfBlocks && DataSize >= BlockSize) { Status = Fvb->Read (Fvb, *StartLba + BlockIndex, 0, &BlockSize, Data); if (EFI_ERROR (Status)) { return Status; } Data += BlockSize; DataSize -= BlockSize; BlockIndex ++; } // // Data doesn't exceed the current block range. // if (DataSize < BlockSize) { break; } // // Data must be got from the next block range. // *StartLba += NumberOfBlocks; } // // read the remaining data // if (DataSize > 0) { Status = Fvb->Read (Fvb, *StartLba + BlockIndex, 0, &DataSize, Data); if (EFI_ERROR (Status)) { return Status; } } // // Update Lba and Offset used by the following read. // *StartLba += BlockIndex; *Offset = DataSize; return EFI_SUCCESS; } /** Given the supplied FW_VOL_BLOCK_PROTOCOL, allocate a buffer for output and copy the real length volume header into it. @param Fvb The FW_VOL_BLOCK_PROTOCOL instance from which to read the volume header @param FwVolHeader Pointer to pointer to allocated buffer in which the volume header is returned. @retval EFI_OUT_OF_RESOURCES No enough buffer could be allocated. @retval EFI_SUCCESS Successfully read volume header to the allocated buffer. @retval EFI_INVALID_PARAMETER The FV Header signature is not as expected or the file system could not be understood. **/ EFI_STATUS GetFwVolHeader ( IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb, OUT EFI_FIRMWARE_VOLUME_HEADER **FwVolHeader ) { EFI_STATUS Status; EFI_FIRMWARE_VOLUME_HEADER TempFvh; UINTN FvhLength; EFI_LBA StartLba; UINTN Offset; UINT8 *Buffer; // // Read the standard FV header // StartLba = 0; Offset = 0; FvhLength = sizeof (EFI_FIRMWARE_VOLUME_HEADER); Status = ReadFvbData (Fvb, &StartLba, &Offset, FvhLength, (UINT8 *)&TempFvh); if (EFI_ERROR (Status)) { return Status; } // // Validate FV Header signature, if not as expected, continue. // if (TempFvh.Signature != EFI_FVH_SIGNATURE) { return EFI_INVALID_PARAMETER; } // // Check to see that the file system is indeed formatted in a way we can // understand it... // if ((!CompareGuid (&TempFvh.FileSystemGuid, &gEfiFirmwareFileSystem2Guid)) && (!CompareGuid (&TempFvh.FileSystemGuid, &gEfiFirmwareFileSystem3Guid))) { return EFI_INVALID_PARAMETER; } // // Allocate a buffer for the caller // *FwVolHeader = AllocatePool (TempFvh.HeaderLength); if (*FwVolHeader == NULL) { return EFI_OUT_OF_RESOURCES; } // // Copy the standard header into the buffer // CopyMem (*FwVolHeader, &TempFvh, sizeof (EFI_FIRMWARE_VOLUME_HEADER)); // // Read the rest of the header // FvhLength = TempFvh.HeaderLength - sizeof (EFI_FIRMWARE_VOLUME_HEADER); Buffer = (UINT8 *)*FwVolHeader + sizeof (EFI_FIRMWARE_VOLUME_HEADER); Status = ReadFvbData (Fvb, &StartLba, &Offset, FvhLength, Buffer); if (EFI_ERROR (Status)) { // // Read failed so free buffer // CoreFreePool (*FwVolHeader); } return Status; } /** Free FvDevice resource when error happens @param FvDevice pointer to the FvDevice to be freed. **/ VOID FreeFvDeviceResource ( IN FV_DEVICE *FvDevice ) { FFS_FILE_LIST_ENTRY *FfsFileEntry; LIST_ENTRY *NextEntry; // // Free File List Entry // FfsFileEntry = (FFS_FILE_LIST_ENTRY *)FvDevice->FfsFileListHeader.ForwardLink; while (&FfsFileEntry->Link != &FvDevice->FfsFileListHeader) { NextEntry = (&FfsFileEntry->Link)->ForwardLink; if (FfsFileEntry->StreamHandle != 0) { // // Close stream and free resources from SEP // CloseSectionStream (FfsFileEntry->StreamHandle, FALSE); } if (FfsFileEntry->FileCached) { // // Free the cached file buffer. // CoreFreePool (FfsFileEntry->FfsHeader); } CoreFreePool (FfsFileEntry); FfsFileEntry = (FFS_FILE_LIST_ENTRY *) NextEntry; } if (!FvDevice->IsMemoryMapped) { // // Free the cached FV buffer. // CoreFreePool (FvDevice->CachedFv); } // // Free Volume Header // CoreFreePool (FvDevice->FwVolHeader); return; } /** Check if an FV is consistent and allocate cache for it. @param FvDevice A pointer to the FvDevice to be checked. @retval EFI_OUT_OF_RESOURCES No enough buffer could be allocated. @retval EFI_SUCCESS FV is consistent and cache is allocated. @retval EFI_VOLUME_CORRUPTED File system is corrupted. **/ EFI_STATUS FvCheck ( IN OUT FV_DEVICE *FvDevice ) { EFI_STATUS Status; EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb; EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader; EFI_FIRMWARE_VOLUME_EXT_HEADER *FwVolExtHeader; EFI_FVB_ATTRIBUTES_2 FvbAttributes; EFI_FV_BLOCK_MAP_ENTRY *BlockMap; FFS_FILE_LIST_ENTRY *FfsFileEntry; EFI_FFS_FILE_HEADER *FfsHeader; UINT8 *CacheLocation; UINTN LbaOffset; UINTN HeaderSize; UINTN Index; EFI_LBA LbaIndex; UINTN Size; EFI_FFS_FILE_STATE FileState; UINT8 *TopFvAddress; UINTN TestLength; EFI_PHYSICAL_ADDRESS PhysicalAddress; BOOLEAN FileCached; UINTN WholeFileSize; EFI_FFS_FILE_HEADER *CacheFfsHeader; FileCached = FALSE; CacheFfsHeader = NULL; Fvb = FvDevice->Fvb; FwVolHeader = FvDevice->FwVolHeader; Status = Fvb->GetAttributes (Fvb, &FvbAttributes); if (EFI_ERROR (Status)) { return Status; } // // Size is the size of the FV minus the head. We have already allocated // the header to check to make sure the volume is valid // Size = (UINTN)(FwVolHeader->FvLength - FwVolHeader->HeaderLength); if ((FvbAttributes & EFI_FVB2_MEMORY_MAPPED) != 0) { FvDevice->IsMemoryMapped = TRUE; Status = Fvb->GetPhysicalAddress (Fvb, &PhysicalAddress); if (EFI_ERROR (Status)) { return Status; } // // Don't cache memory mapped FV really. // FvDevice->CachedFv = (UINT8 *) (UINTN) (PhysicalAddress + FwVolHeader->HeaderLength); } else { FvDevice->IsMemoryMapped = FALSE; FvDevice->CachedFv = AllocatePool (Size); if (FvDevice->CachedFv == NULL) { return EFI_OUT_OF_RESOURCES; } } // // Remember a pointer to the end fo the CachedFv // FvDevice->EndOfCachedFv = FvDevice->CachedFv + Size; if (!FvDevice->IsMemoryMapped) { // // Copy FV minus header into memory using the block map we have all ready // read into memory. // BlockMap = FwVolHeader->BlockMap; CacheLocation = FvDevice->CachedFv; LbaIndex = 0; LbaOffset = 0; HeaderSize = FwVolHeader->HeaderLength; while ((BlockMap->NumBlocks != 0) || (BlockMap->Length != 0)) { Index = 0; Size = BlockMap->Length; if (HeaderSize > 0) { // // Skip header size // for (; Index < BlockMap->NumBlocks && HeaderSize >= BlockMap->Length; Index ++) { HeaderSize -= BlockMap->Length; LbaIndex ++; } // // Check whether FvHeader is crossing the multi block range. // if (Index >= BlockMap->NumBlocks) { BlockMap++; continue; } else if (HeaderSize > 0) { LbaOffset = HeaderSize; Size = BlockMap->Length - HeaderSize; HeaderSize = 0; } } // // read the FV data // for (; Index < BlockMap->NumBlocks; Index ++) { Status = Fvb->Read (Fvb, LbaIndex, LbaOffset, &Size, CacheLocation ); // // Not check EFI_BAD_BUFFER_SIZE, for Size = BlockMap->Length // if (EFI_ERROR (Status)) { goto Done; } LbaIndex++; CacheLocation += Size; // // After we skip Fv Header always read from start of block // LbaOffset = 0; Size = BlockMap->Length; } BlockMap++; } } // // Scan to check the free space & File list // if ((FvbAttributes & EFI_FVB2_ERASE_POLARITY) != 0) { FvDevice->ErasePolarity = 1; } else { FvDevice->ErasePolarity = 0; } // // go through the whole FV cache, check the consistence of the FV. // Make a linked list of all the Ffs file headers // Status = EFI_SUCCESS; InitializeListHead (&FvDevice->FfsFileListHeader); // // Build FFS list // if (FwVolHeader->ExtHeaderOffset != 0) { // // Searching for files starts on an 8 byte aligned boundary after the end of the Extended Header if it exists. // FwVolExtHeader = (EFI_FIRMWARE_VOLUME_EXT_HEADER *) (FvDevice->CachedFv + (FwVolHeader->ExtHeaderOffset - FwVolHeader->HeaderLength)); FfsHeader = (EFI_FFS_FILE_HEADER *) ((UINT8 *) FwVolExtHeader + FwVolExtHeader->ExtHeaderSize); FfsHeader = (EFI_FFS_FILE_HEADER *) ALIGN_POINTER (FfsHeader, 8); } else { FfsHeader = (EFI_FFS_FILE_HEADER *) (FvDevice->CachedFv); } TopFvAddress = FvDevice->EndOfCachedFv; while (((UINTN) FfsHeader >= (UINTN) FvDevice->CachedFv) && ((UINTN) FfsHeader <= (UINTN) ((UINTN) TopFvAddress - sizeof (EFI_FFS_FILE_HEADER)))) { if (FileCached) { CoreFreePool (CacheFfsHeader); FileCached = FALSE; } TestLength = TopFvAddress - ((UINT8 *) FfsHeader); if (TestLength > sizeof (EFI_FFS_FILE_HEADER)) { TestLength = sizeof (EFI_FFS_FILE_HEADER); } if (IsBufferErased (FvDevice->ErasePolarity, FfsHeader, TestLength)) { // // We have found the free space so we are done! // goto Done; } if (!IsValidFfsHeader (FvDevice->ErasePolarity, FfsHeader, &FileState)) { if ((FileState == EFI_FILE_HEADER_INVALID) || (FileState == EFI_FILE_HEADER_CONSTRUCTION)) { if (IS_FFS_FILE2 (FfsHeader)) { if (!FvDevice->IsFfs3Fv) { DEBUG ((EFI_D_ERROR, "Found a FFS3 formatted file: %g in a non-FFS3 formatted FV.\n", &FfsHeader->Name)); } FfsHeader = (EFI_FFS_FILE_HEADER *) ((UINT8 *) FfsHeader + sizeof (EFI_FFS_FILE_HEADER2)); } else { FfsHeader = (EFI_FFS_FILE_HEADER *) ((UINT8 *) FfsHeader + sizeof (EFI_FFS_FILE_HEADER)); } continue; } else { // // File system is corrputed // Status = EFI_VOLUME_CORRUPTED; goto Done; } } CacheFfsHeader = FfsHeader; if ((CacheFfsHeader->Attributes & FFS_ATTRIB_CHECKSUM) == FFS_ATTRIB_CHECKSUM) { if (FvDevice->IsMemoryMapped) { // // Memory mapped FV has not been cached. // Here is to cache FFS file to memory buffer for following checksum calculating. // And then, the cached file buffer can be also used for FvReadFile. // WholeFileSize = IS_FFS_FILE2 (CacheFfsHeader) ? FFS_FILE2_SIZE (CacheFfsHeader): FFS_FILE_SIZE (CacheFfsHeader); CacheFfsHeader = AllocateCopyPool (WholeFileSize, CacheFfsHeader); if (CacheFfsHeader == NULL) { Status = EFI_OUT_OF_RESOURCES; goto Done; } FileCached = TRUE; } } if (!IsValidFfsFile (FvDevice->ErasePolarity, CacheFfsHeader)) { // // File system is corrupted // Status = EFI_VOLUME_CORRUPTED; goto Done; } if (IS_FFS_FILE2 (CacheFfsHeader)) { ASSERT (FFS_FILE2_SIZE (CacheFfsHeader) > 0x00FFFFFF); if (!FvDevice->IsFfs3Fv) { DEBUG ((EFI_D_ERROR, "Found a FFS3 formatted file: %g in a non-FFS3 formatted FV.\n", &CacheFfsHeader->Name)); FfsHeader = (EFI_FFS_FILE_HEADER *) ((UINT8 *) FfsHeader + FFS_FILE2_SIZE (CacheFfsHeader)); // // Adjust pointer to the next 8-byte aligned boundary. // FfsHeader = (EFI_FFS_FILE_HEADER *) (((UINTN) FfsHeader + 7) & ~0x07); continue; } } FileState = GetFileState (FvDevice->ErasePolarity, CacheFfsHeader); // // check for non-deleted file // if (FileState != EFI_FILE_DELETED) { // // Create a FFS list entry for each non-deleted file // FfsFileEntry = AllocateZeroPool (sizeof (FFS_FILE_LIST_ENTRY)); if (FfsFileEntry == NULL) { Status = EFI_OUT_OF_RESOURCES; goto Done; } FfsFileEntry->FfsHeader = CacheFfsHeader; FfsFileEntry->FileCached = FileCached; FileCached = FALSE; InsertTailList (&FvDevice->FfsFileListHeader, &FfsFileEntry->Link); } if (IS_FFS_FILE2 (CacheFfsHeader)) { FfsHeader = (EFI_FFS_FILE_HEADER *) ((UINT8 *) FfsHeader + FFS_FILE2_SIZE (CacheFfsHeader)); } else { FfsHeader = (EFI_FFS_FILE_HEADER *) ((UINT8 *) FfsHeader + FFS_FILE_SIZE (CacheFfsHeader)); } // // Adjust pointer to the next 8-byte aligned boundary. // FfsHeader = (EFI_FFS_FILE_HEADER *)(((UINTN)FfsHeader + 7) & ~0x07); } Done: if (EFI_ERROR (Status)) { if (FileCached) { CoreFreePool (CacheFfsHeader); FileCached = FALSE; } FreeFvDeviceResource (FvDevice); } return Status; } /** This notification function is invoked when an instance of the EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL is produced. It layers an instance of the EFI_FIRMWARE_VOLUME2_PROTOCOL on the same handle. This is the function where the actual initialization of the EFI_FIRMWARE_VOLUME2_PROTOCOL is done. @param Event The event that occured @param Context For EFI compatiblity. Not used. **/ VOID EFIAPI NotifyFwVolBlock ( IN EFI_EVENT Event, IN VOID *Context ) { EFI_HANDLE Handle; EFI_STATUS Status; UINTN BufferSize; EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb; EFI_FIRMWARE_VOLUME2_PROTOCOL *Fv; FV_DEVICE *FvDevice; EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader; // // Examine all new handles // for (;;) { // // Get the next handle // BufferSize = sizeof (Handle); Status = CoreLocateHandle ( ByRegisterNotify, NULL, gEfiFwVolBlockNotifyReg, &BufferSize, &Handle ); // // If not found, we're done // if (EFI_NOT_FOUND == Status) { break; } if (EFI_ERROR (Status)) { continue; } // // Get the FirmwareVolumeBlock protocol on that handle // Status = CoreHandleProtocol (Handle, &gEfiFirmwareVolumeBlockProtocolGuid, (VOID **)&Fvb); ASSERT_EFI_ERROR (Status); ASSERT (Fvb != NULL); // // Make sure the Fv Header is O.K. // Status = GetFwVolHeader (Fvb, &FwVolHeader); if (EFI_ERROR (Status)) { continue; } ASSERT (FwVolHeader != NULL); if (!VerifyFvHeaderChecksum (FwVolHeader)) { CoreFreePool (FwVolHeader); continue; } // // Check if there is an FV protocol already installed in that handle // Status = CoreHandleProtocol (Handle, &gEfiFirmwareVolume2ProtocolGuid, (VOID **)&Fv); if (!EFI_ERROR (Status)) { // // Update Fv to use a new Fvb // FvDevice = BASE_CR (Fv, FV_DEVICE, Fv); if (FvDevice->Signature == FV2_DEVICE_SIGNATURE) { // // Only write into our device structure if it's our device structure // FvDevice->Fvb = Fvb; } } else { // // No FwVol protocol on the handle so create a new one // FvDevice = AllocateCopyPool (sizeof (FV_DEVICE), &mFvDevice); if (FvDevice == NULL) { return; } FvDevice->Fvb = Fvb; FvDevice->Handle = Handle; FvDevice->FwVolHeader = FwVolHeader; FvDevice->IsFfs3Fv = CompareGuid (&FwVolHeader->FileSystemGuid, &gEfiFirmwareFileSystem3Guid); FvDevice->Fv.ParentHandle = Fvb->ParentHandle; // // Inherit the authentication status from FVB. // FvDevice->AuthenticationStatus = GetFvbAuthenticationStatus (Fvb); if (!EFI_ERROR (FvCheck (FvDevice))) { // // Install an New FV protocol on the existing handle // Status = CoreInstallProtocolInterface ( &Handle, &gEfiFirmwareVolume2ProtocolGuid, EFI_NATIVE_INTERFACE, &FvDevice->Fv ); ASSERT_EFI_ERROR (Status); } else { // // Free FvDevice Buffer for the corrupt FV image. // CoreFreePool (FvDevice); } } } return; } /** This routine is the driver initialization entry point. It registers a notification function. This notification function are responsible for building the FV stack dynamically. @param ImageHandle The image handle. @param SystemTable The system table. @retval EFI_SUCCESS Function successfully returned. **/ EFI_STATUS EFIAPI FwVolDriverInit ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { gEfiFwVolBlockEvent = EfiCreateProtocolNotifyEvent ( &gEfiFirmwareVolumeBlockProtocolGuid, TPL_CALLBACK, NotifyFwVolBlock, NULL, &gEfiFwVolBlockNotifyReg ); return EFI_SUCCESS; }