/** @file
This library will parse the coreboot table in memory and extract those required
information.
Copyright (c) 2014 - 2016, Intel Corporation. All rights reserved.
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include
#include
#include
#include
#include
#include
#include
#include
#include "Coreboot.h"
/**
Convert a packed value from cbuint64 to a UINT64 value.
@param val The pointer to packed data.
@return the UNIT64 value after convertion.
**/
UINT64
cb_unpack64 (
IN struct cbuint64 val
)
{
return LShiftU64 (val.hi, 32) | val.lo;
}
/**
Returns the sum of all elements in a buffer of 16-bit values. During
calculation, the carry bits are also been added.
@param Buffer The pointer to the buffer to carry out the sum operation.
@param Length The size, in bytes, of Buffer.
@return Sum The sum of Buffer with carry bits included during additions.
**/
UINT16
CbCheckSum16 (
IN UINT16 *Buffer,
IN UINTN Length
)
{
UINT32 Sum, TmpValue;
UINTN Idx;
UINT8 *TmpPtr;
Sum = 0;
TmpPtr = (UINT8 *)Buffer;
for(Idx = 0; Idx < Length; Idx++) {
TmpValue = TmpPtr[Idx];
if (Idx % 2 == 1) {
TmpValue <<= 8;
}
Sum += TmpValue;
// Wrap
if (Sum >= 0x10000) {
Sum = (Sum + (Sum >> 16)) & 0xFFFF;
}
}
return (UINT16)((~Sum) & 0xFFFF);
}
/**
Find coreboot record with given Tag from the memory Start in 4096
bytes range.
@param Start The start memory to be searched in
@param Tag The tag id to be found
@retval NULL The Tag is not found.
@retval Others The poiter to the record found.
**/
VOID *
EFIAPI
FindCbTag (
IN VOID *Start,
IN UINT32 Tag
)
{
struct cb_header *Header;
struct cb_record *Record;
UINT8 *TmpPtr;
UINT8 *TagPtr;
UINTN Idx;
UINT16 CheckSum;
Header = NULL;
TmpPtr = (UINT8 *)Start;
for (Idx = 0; Idx < 4096; Idx += 16, TmpPtr += 16) {
Header = (struct cb_header *)TmpPtr;
if (Header->signature == CB_HEADER_SIGNATURE) {
break;
}
}
if (Idx >= 4096) {
return NULL;
}
if ((Header == NULL) || (Header->table_bytes == 0)) {
return NULL;
}
//
// Check the checksum of the coreboot table header
//
CheckSum = CbCheckSum16 ((UINT16 *)Header, sizeof (*Header));
if (CheckSum != 0) {
DEBUG ((EFI_D_ERROR, "Invalid coreboot table header checksum\n"));
return NULL;
}
CheckSum = CbCheckSum16 ((UINT16 *)(TmpPtr + sizeof (*Header)), Header->table_bytes);
if (CheckSum != Header->table_checksum) {
DEBUG ((EFI_D_ERROR, "Incorrect checksum of all the coreboot table entries\n"));
return NULL;
}
TagPtr = NULL;
TmpPtr += Header->header_bytes;
for (Idx = 0; Idx < Header->table_entries; Idx++) {
Record = (struct cb_record *)TmpPtr;
if (Record->tag == CB_TAG_FORWARD) {
TmpPtr = (VOID *)(UINTN)((struct cb_forward *)(UINTN)Record)->forward;
if (Tag == CB_TAG_FORWARD) {
return TmpPtr;
} else {
return FindCbTag (TmpPtr, Tag);
}
}
if (Record->tag == Tag) {
TagPtr = TmpPtr;
break;
}
TmpPtr += Record->size;
}
return TagPtr;
}
/**
Find the given table with TableId from the given coreboot memory Root.
@param Root The coreboot memory table to be searched in
@param TableId Table id to be found
@param pMemTable To save the base address of the memory table found
@param pMemTableSize To save the size of memory table found
@retval RETURN_SUCCESS Successfully find out the memory table.
@retval RETURN_INVALID_PARAMETER Invalid input parameters.
@retval RETURN_NOT_FOUND Failed to find the memory table.
**/
RETURN_STATUS
EFIAPI
FindCbMemTable (
IN struct cbmem_root *Root,
IN UINT32 TableId,
OUT VOID **pMemTable,
OUT UINT32 *pMemTableSize
)
{
UINTN Idx;
BOOLEAN IsImdEntry;
struct cbmem_entry *Entries;
if ((Root == NULL) || (pMemTable == NULL)) {
return RETURN_INVALID_PARAMETER;
}
//
// Check if the entry is CBMEM or IMD
// and handle them separately
//
Entries = Root->entries;
if (Entries[0].magic == CBMEM_ENTRY_MAGIC) {
IsImdEntry = FALSE;
} else {
Entries = (struct cbmem_entry *)((struct imd_root *)Root)->entries;
if (Entries[0].magic == IMD_ENTRY_MAGIC) {
IsImdEntry = TRUE;
} else {
return RETURN_NOT_FOUND;
}
}
for (Idx = 0; Idx < Root->num_entries; Idx++) {
if (Entries[Idx].id == TableId) {
if (IsImdEntry) {
*pMemTable = (VOID *) ((UINTN)Entries[Idx].start + (UINTN)Root);
} else {
*pMemTable = (VOID *) (UINTN)Entries[Idx].start;
}
if (pMemTableSize != NULL) {
*pMemTableSize = Entries[Idx].size;
}
DEBUG ((EFI_D_INFO, "Find CbMemTable Id 0x%x, base %p, size 0x%x\n",
TableId, *pMemTable, Entries[Idx].size));
return RETURN_SUCCESS;
}
}
return RETURN_NOT_FOUND;
}
/**
Acquire the memory information from the coreboot table in memory.
@param MemInfoCallback The callback routine
@param pParam Pointer to the callback routine parameter
@retval RETURN_SUCCESS Successfully find out the memory information.
@retval RETURN_NOT_FOUND Failed to find the memory information.
**/
RETURN_STATUS
EFIAPI
CbParseMemoryInfo (
IN CB_MEM_INFO_CALLBACK MemInfoCallback,
IN VOID *pParam
)
{
struct cb_memory *rec;
struct cb_memory_range *Range;
UINT64 Start;
UINT64 Size;
UINTN Index;
//
// Get the coreboot memory table
//
rec = (struct cb_memory *)FindCbTag (0, CB_TAG_MEMORY);
if (rec == NULL) {
rec = (struct cb_memory *)FindCbTag ((VOID *)(UINTN)PcdGet32 (PcdCbHeaderPointer), CB_TAG_MEMORY);
}
if (rec == NULL) {
return RETURN_NOT_FOUND;
}
for (Index = 0; Index < MEM_RANGE_COUNT(rec); Index++) {
Range = MEM_RANGE_PTR(rec, Index);
Start = cb_unpack64(Range->start);
Size = cb_unpack64(Range->size);
DEBUG ((EFI_D_INFO, "%d. %016lx - %016lx [%02x]\n",
Index, Start, Start + Size - 1, Range->type));
MemInfoCallback (Start, Size, Range->type, pParam);
}
return RETURN_SUCCESS;
}
/**
Acquire the coreboot memory table with the given table id
@param TableId Table id to be searched
@param pMemTable Pointer to the base address of the memory table
@param pMemTableSize Pointer to the size of the memory table
@retval RETURN_SUCCESS Successfully find out the memory table.
@retval RETURN_INVALID_PARAMETER Invalid input parameters.
@retval RETURN_NOT_FOUND Failed to find the memory table.
**/
RETURN_STATUS
EFIAPI
CbParseCbMemTable (
IN UINT32 TableId,
OUT VOID **pMemTable,
OUT UINT32 *pMemTableSize
)
{
struct cb_memory *rec;
struct cb_memory_range *Range;
UINT64 Start;
UINT64 Size;
UINTN Index;
if (pMemTable == NULL) {
return RETURN_INVALID_PARAMETER;
}
*pMemTable = NULL;
//
// Get the coreboot memory table
//
rec = (struct cb_memory *)FindCbTag (0, CB_TAG_MEMORY);
if (rec == NULL) {
rec = (struct cb_memory *)FindCbTag ((VOID *)(UINTN)PcdGet32 (PcdCbHeaderPointer), CB_TAG_MEMORY);
}
if (rec == NULL) {
return RETURN_NOT_FOUND;
}
for (Index = 0; Index < MEM_RANGE_COUNT(rec); Index++) {
Range = MEM_RANGE_PTR(rec, Index);
Start = cb_unpack64(Range->start);
Size = cb_unpack64(Range->size);
if ((Range->type == CB_MEM_TABLE) && (Start > 0x1000)) {
if (FindCbMemTable ((struct cbmem_root *)(UINTN)(Start + Size - DYN_CBMEM_ALIGN_SIZE), TableId, pMemTable, pMemTableSize) == RETURN_SUCCESS)
return RETURN_SUCCESS;
}
}
return RETURN_NOT_FOUND;
}
/**
Acquire the acpi table from coreboot
@param pMemTable Pointer to the base address of the memory table
@param pMemTableSize Pointer to the size of the memory table
@retval RETURN_SUCCESS Successfully find out the memory table.
@retval RETURN_INVALID_PARAMETER Invalid input parameters.
@retval RETURN_NOT_FOUND Failed to find the memory table.
**/
RETURN_STATUS
EFIAPI
CbParseAcpiTable (
OUT VOID **pMemTable,
OUT UINT32 *pMemTableSize
)
{
return CbParseCbMemTable (SIGNATURE_32 ('I', 'P', 'C', 'A'), pMemTable, pMemTableSize);
}
/**
Acquire the smbios table from coreboot
@param pMemTable Pointer to the base address of the memory table
@param pMemTableSize Pointer to the size of the memory table
@retval RETURN_SUCCESS Successfully find out the memory table.
@retval RETURN_INVALID_PARAMETER Invalid input parameters.
@retval RETURN_NOT_FOUND Failed to find the memory table.
**/
RETURN_STATUS
EFIAPI
CbParseSmbiosTable (
OUT VOID **pMemTable,
OUT UINT32 *pMemTableSize
)
{
return CbParseCbMemTable (SIGNATURE_32 ('T', 'B', 'M', 'S'), pMemTable, pMemTableSize);
}
/**
Find the required fadt information
@param pPmCtrlReg Pointer to the address of power management control register
@param pPmTimerReg Pointer to the address of power management timer register
@param pResetReg Pointer to the address of system reset register
@param pResetValue Pointer to the value to be writen to the system reset register
@param pPmEvtReg Pointer to the address of power management event register
@param pPmGpeEnReg Pointer to the address of power management GPE enable register
@retval RETURN_SUCCESS Successfully find out all the required fadt information.
@retval RETURN_NOT_FOUND Failed to find the fadt table.
**/
RETURN_STATUS
EFIAPI
CbParseFadtInfo (
OUT UINTN *pPmCtrlReg,
OUT UINTN *pPmTimerReg,
OUT UINTN *pResetReg,
OUT UINTN *pResetValue,
OUT UINTN *pPmEvtReg,
OUT UINTN *pPmGpeEnReg
)
{
EFI_ACPI_3_0_ROOT_SYSTEM_DESCRIPTION_POINTER *Rsdp;
EFI_ACPI_DESCRIPTION_HEADER *Rsdt;
UINT32 *Entry32;
UINTN Entry32Num;
EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE *Fadt;
EFI_ACPI_DESCRIPTION_HEADER *Xsdt;
UINT64 *Entry64;
UINTN Entry64Num;
UINTN Idx;
RETURN_STATUS Status;
Rsdp = NULL;
Status = RETURN_SUCCESS;
Status = CbParseAcpiTable ((VOID **)&Rsdp, NULL);
if (RETURN_ERROR(Status)) {
return Status;
}
if (Rsdp == NULL) {
return RETURN_NOT_FOUND;
}
DEBUG ((EFI_D_INFO, "Find Rsdp at %p\n", Rsdp));
DEBUG ((EFI_D_INFO, "Find Rsdt 0x%x, Xsdt 0x%lx\n", Rsdp->RsdtAddress, Rsdp->XsdtAddress));
//
// Search Rsdt First
//
Rsdt = (EFI_ACPI_DESCRIPTION_HEADER *)(UINTN)(Rsdp->RsdtAddress);
if (Rsdt != NULL) {
Entry32 = (UINT32 *)(Rsdt + 1);
Entry32Num = (Rsdt->Length - sizeof(EFI_ACPI_DESCRIPTION_HEADER)) >> 2;
for (Idx = 0; Idx < Entry32Num; Idx++) {
if (*(UINT32 *)(UINTN)(Entry32[Idx]) == EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE_SIGNATURE) {
Fadt = (EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE *)(UINTN)(Entry32[Idx]);
if (pPmCtrlReg != NULL) {
*pPmCtrlReg = Fadt->Pm1aCntBlk;
}
DEBUG ((EFI_D_INFO, "PmCtrl Reg 0x%x\n", Fadt->Pm1aCntBlk));
if (pPmTimerReg != NULL) {
*pPmTimerReg = Fadt->PmTmrBlk;
}
DEBUG ((EFI_D_INFO, "PmTimer Reg 0x%x\n", Fadt->PmTmrBlk));
if (pResetReg != NULL) {
*pResetReg = (UINTN)Fadt->ResetReg.Address;
}
DEBUG ((EFI_D_INFO, "Reset Reg 0x%lx\n", Fadt->ResetReg.Address));
if (pResetValue != NULL) {
*pResetValue = Fadt->ResetValue;
}
DEBUG ((EFI_D_INFO, "Reset Value 0x%x\n", Fadt->ResetValue));
if (pPmEvtReg != NULL) {
*pPmEvtReg = Fadt->Pm1aEvtBlk;
DEBUG ((EFI_D_INFO, "PmEvt Reg 0x%x\n", Fadt->Pm1aEvtBlk));
}
if (pPmGpeEnReg != NULL) {
*pPmGpeEnReg = Fadt->Gpe0Blk + Fadt->Gpe0BlkLen / 2;
DEBUG ((EFI_D_INFO, "PmGpeEn Reg 0x%x\n", *pPmGpeEnReg));
}
//
// Verify values for proper operation
//
ASSERT(Fadt->Pm1aCntBlk != 0);
ASSERT(Fadt->PmTmrBlk != 0);
ASSERT(Fadt->ResetReg.Address != 0);
ASSERT(Fadt->Pm1aEvtBlk != 0);
ASSERT(Fadt->Gpe0Blk != 0);
DEBUG_CODE_BEGIN ();
BOOLEAN SciEnabled;
//
// Check the consistency of SCI enabling
//
//
// Get SCI_EN value
//
if (Fadt->Pm1CntLen == 4) {
SciEnabled = (IoRead32 (Fadt->Pm1aCntBlk) & BIT0)? TRUE : FALSE;
} else {
//
// if (Pm1CntLen == 2), use 16 bit IO read;
// if (Pm1CntLen != 2 && Pm1CntLen != 4), use 16 bit IO read as a fallback
//
SciEnabled = (IoRead16 (Fadt->Pm1aCntBlk) & BIT0)? TRUE : FALSE;
}
if (!(Fadt->Flags & EFI_ACPI_5_0_HW_REDUCED_ACPI) &&
(Fadt->SmiCmd == 0) &&
!SciEnabled) {
//
// The ACPI enabling status is inconsistent: SCI is not enabled but ACPI
// table does not provide a means to enable it through FADT->SmiCmd
//
DEBUG ((DEBUG_ERROR, "ERROR: The ACPI enabling status is inconsistent: SCI is not"
" enabled but the ACPI table does not provide a means to enable it through FADT->SmiCmd."
" This may cause issues in OS.\n"));
ASSERT (FALSE);
}
DEBUG_CODE_END ();
return RETURN_SUCCESS;
}
}
}
//
// Search Xsdt Second
//
Xsdt = (EFI_ACPI_DESCRIPTION_HEADER *)(UINTN)(Rsdp->XsdtAddress);
if (Xsdt != NULL) {
Entry64 = (UINT64 *)(Xsdt + 1);
Entry64Num = (Xsdt->Length - sizeof(EFI_ACPI_DESCRIPTION_HEADER)) >> 3;
for (Idx = 0; Idx < Entry64Num; Idx++) {
if (*(UINT32 *)(UINTN)(Entry64[Idx]) == EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE_SIGNATURE) {
Fadt = (EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE *)(UINTN)(Entry64[Idx]);
if (pPmCtrlReg)
*pPmCtrlReg = Fadt->Pm1aCntBlk;
DEBUG ((EFI_D_ERROR, "PmCtrl Reg 0x%x\n", Fadt->Pm1aCntBlk));
if (pPmTimerReg)
*pPmTimerReg = Fadt->PmTmrBlk;
DEBUG ((EFI_D_ERROR, "PmTimer Reg 0x%x\n", Fadt->PmTmrBlk));
if (pResetReg)
*pResetReg = (UINTN)Fadt->ResetReg.Address;
DEBUG ((EFI_D_ERROR, "Reset Reg 0x%lx\n", Fadt->ResetReg.Address));
if (pResetValue)
*pResetValue = Fadt->ResetValue;
DEBUG ((EFI_D_ERROR, "Reset Value 0x%x\n", Fadt->ResetValue));
if (pPmEvtReg != NULL) {
*pPmEvtReg = Fadt->Pm1aEvtBlk;
DEBUG ((EFI_D_INFO, "PmEvt Reg 0x%x\n", Fadt->Pm1aEvtBlk));
}
if (pPmGpeEnReg != NULL) {
*pPmGpeEnReg = Fadt->Gpe0Blk + Fadt->Gpe0BlkLen / 2;
DEBUG ((EFI_D_INFO, "PmGpeEn Reg 0x%x\n", *pPmGpeEnReg));
}
return RETURN_SUCCESS;
}
}
}
return RETURN_NOT_FOUND;
}
/**
Find the serial port information
@param pRegBase Pointer to the base address of serial port registers
@param pRegAccessType Pointer to the access type of serial port registers
@param pRegWidth Pointer to the register width in bytes
@param pBaudrate Pointer to the serial port baudrate
@param pInputHertz Pointer to the input clock frequency
@param pUartPciAddr Pointer to the UART PCI bus, dev and func address
@retval RETURN_SUCCESS Successfully find the serial port information.
@retval RETURN_NOT_FOUND Failed to find the serial port information .
**/
RETURN_STATUS
EFIAPI
CbParseSerialInfo (
OUT UINT32 *pRegBase,
OUT UINT32 *pRegAccessType,
OUT UINT32 *pRegWidth,
OUT UINT32 *pBaudrate,
OUT UINT32 *pInputHertz,
OUT UINT32 *pUartPciAddr
)
{
struct cb_serial *CbSerial;
CbSerial = FindCbTag (0, CB_TAG_SERIAL);
if (CbSerial == NULL) {
CbSerial = FindCbTag ((VOID *)(UINTN)PcdGet32 (PcdCbHeaderPointer), CB_TAG_SERIAL);
}
if (CbSerial == NULL) {
return RETURN_NOT_FOUND;
}
if (pRegBase != NULL) {
*pRegBase = CbSerial->baseaddr;
}
if (pRegWidth != NULL) {
*pRegWidth = CbSerial->regwidth;
}
if (pRegAccessType != NULL) {
*pRegAccessType = CbSerial->type;
}
if (pBaudrate != NULL) {
*pBaudrate = CbSerial->baud;
}
if (pInputHertz != NULL) {
*pInputHertz = CbSerial->input_hertz;
}
if (pUartPciAddr != NULL) {
*pUartPciAddr = CbSerial->uart_pci_addr;
}
return RETURN_SUCCESS;
}
/**
Search for the coreboot table header
@param Level Level of the search depth
@param HeaderPtr Pointer to the pointer of coreboot table header
@retval RETURN_SUCCESS Successfully find the coreboot table header .
@retval RETURN_NOT_FOUND Failed to find the coreboot table header .
**/
RETURN_STATUS
EFIAPI
CbParseGetCbHeader (
IN UINTN Level,
OUT VOID **HeaderPtr
)
{
UINTN Index;
VOID *TempPtr;
if (HeaderPtr == NULL) {
return RETURN_NOT_FOUND;
}
TempPtr = NULL;
for (Index = 0; Index < Level; Index++) {
TempPtr = FindCbTag (TempPtr, CB_TAG_FORWARD);
if (TempPtr == NULL) {
break;
}
}
if ((Index >= Level) && (TempPtr != NULL)) {
*HeaderPtr = TempPtr;
return RETURN_SUCCESS;
}
return RETURN_NOT_FOUND;
}
/**
Find the video frame buffer information
@param pFbInfo Pointer to the FRAME_BUFFER_INFO structure
@retval RETURN_SUCCESS Successfully find the video frame buffer information.
@retval RETURN_NOT_FOUND Failed to find the video frame buffer information .
**/
RETURN_STATUS
EFIAPI
CbParseFbInfo (
OUT FRAME_BUFFER_INFO *pFbInfo
)
{
struct cb_framebuffer *CbFbRec;
if (pFbInfo == NULL) {
return RETURN_INVALID_PARAMETER;
}
CbFbRec = FindCbTag (0, CB_TAG_FRAMEBUFFER);
if (CbFbRec == NULL) {
CbFbRec = FindCbTag ((VOID *)(UINTN)PcdGet32 (PcdCbHeaderPointer), CB_TAG_FRAMEBUFFER);
}
if (CbFbRec == NULL) {
return RETURN_NOT_FOUND;
}
DEBUG ((EFI_D_INFO, "Found coreboot video frame buffer information\n"));
DEBUG ((EFI_D_INFO, "physical_address: 0x%lx\n", CbFbRec->physical_address));
DEBUG ((EFI_D_INFO, "x_resolution: 0x%x\n", CbFbRec->x_resolution));
DEBUG ((EFI_D_INFO, "y_resolution: 0x%x\n", CbFbRec->y_resolution));
DEBUG ((EFI_D_INFO, "bits_per_pixel: 0x%x\n", CbFbRec->bits_per_pixel));
DEBUG ((EFI_D_INFO, "bytes_per_line: 0x%x\n", CbFbRec->bytes_per_line));
DEBUG ((EFI_D_INFO, "red_mask_size: 0x%x\n", CbFbRec->red_mask_size));
DEBUG ((EFI_D_INFO, "red_mask_pos: 0x%x\n", CbFbRec->red_mask_pos));
DEBUG ((EFI_D_INFO, "green_mask_size: 0x%x\n", CbFbRec->green_mask_size));
DEBUG ((EFI_D_INFO, "green_mask_pos: 0x%x\n", CbFbRec->green_mask_pos));
DEBUG ((EFI_D_INFO, "blue_mask_size: 0x%x\n", CbFbRec->blue_mask_size));
DEBUG ((EFI_D_INFO, "blue_mask_pos: 0x%x\n", CbFbRec->blue_mask_pos));
DEBUG ((EFI_D_INFO, "reserved_mask_size: 0x%x\n", CbFbRec->reserved_mask_size));
DEBUG ((EFI_D_INFO, "reserved_mask_pos: 0x%x\n", CbFbRec->reserved_mask_pos));
pFbInfo->LinearFrameBuffer = CbFbRec->physical_address;
pFbInfo->HorizontalResolution = CbFbRec->x_resolution;
pFbInfo->VerticalResolution = CbFbRec->y_resolution;
pFbInfo->BitsPerPixel = CbFbRec->bits_per_pixel;
pFbInfo->BytesPerScanLine = (UINT16)CbFbRec->bytes_per_line;
pFbInfo->Red.Mask = (1 << CbFbRec->red_mask_size) - 1;
pFbInfo->Red.Position = CbFbRec->red_mask_pos;
pFbInfo->Green.Mask = (1 << CbFbRec->green_mask_size) - 1;
pFbInfo->Green.Position = CbFbRec->green_mask_pos;
pFbInfo->Blue.Mask = (1 << CbFbRec->blue_mask_size) - 1;
pFbInfo->Blue.Position = CbFbRec->blue_mask_pos;
pFbInfo->Reserved.Mask = (1 << CbFbRec->reserved_mask_size) - 1;
pFbInfo->Reserved.Position = CbFbRec->reserved_mask_pos;
return RETURN_SUCCESS;
}