/** @file * Main file supporting the SEC Phase for Versatile Express * * Copyright (c) 2011-2014, ARM Limited. All rights reserved. * * This program and the accompanying materials * are licensed and made available under the terms and conditions of the BSD License * which accompanies this distribution. The full text of the license may be found at * http://opensource.org/licenses/bsd-license.php * * THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, * WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. * **/ #include #include #include #include #include #include #include #include #include #include #include #define GET_OCCUPIED_SIZE(ActualSize, Alignment) \ (ActualSize) + (((Alignment) - ((ActualSize) & ((Alignment) - 1))) & ((Alignment) - 1)) // Vector Table for Sec Phase VOID DebugAgentVectorTable ( VOID ); /** Returns the highest bit set of the State field @param ErasePolarity Erase Polarity as defined by EFI_FVB2_ERASE_POLARITY in the Attributes field. @param FfsHeader Pointer to FFS File Header @retval the highest bit in the State field **/ STATIC EFI_FFS_FILE_STATE GetFileState ( IN UINT8 ErasePolarity, IN EFI_FFS_FILE_HEADER *FfsHeader ) { EFI_FFS_FILE_STATE FileState; EFI_FFS_FILE_STATE HighestBit; FileState = FfsHeader->State; if (ErasePolarity != 0) { FileState = (EFI_FFS_FILE_STATE)~FileState; } HighestBit = 0x80; while (HighestBit != 0 && (HighestBit & FileState) == 0) { HighestBit >>= 1; } return HighestBit; } /** Calculates the checksum of the header of a file. The header is a zero byte checksum, so zero means header is good @param FfsHeader Pointer to FFS File Header @retval Checksum of the header **/ STATIC UINT8 CalculateHeaderChecksum ( IN EFI_FFS_FILE_HEADER *FileHeader ) { UINT8 Sum; // Calculate the sum of the header Sum = CalculateSum8 ((CONST VOID*)FileHeader,sizeof(EFI_FFS_FILE_HEADER)); // State field (since this indicates the different state of file). Sum = (UINT8)(Sum - FileHeader->State); // Checksum field of the file is not part of the header checksum. Sum = (UINT8)(Sum - FileHeader->IntegrityCheck.Checksum.File); return Sum; } EFI_STATUS GetFfsFile ( IN EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader, IN EFI_FV_FILETYPE FileType, OUT EFI_FFS_FILE_HEADER **FileHeader ) { UINT64 FvLength; UINTN FileOffset; EFI_FFS_FILE_HEADER *FfsFileHeader; UINT8 ErasePolarity; UINT8 FileState; UINT32 FileLength; UINT32 FileOccupiedSize; ASSERT (FwVolHeader->Signature == EFI_FVH_SIGNATURE); FvLength = FwVolHeader->FvLength; FfsFileHeader = (EFI_FFS_FILE_HEADER *)((UINT8 *)FwVolHeader + FwVolHeader->HeaderLength); FileOffset = FwVolHeader->HeaderLength; if (FwVolHeader->Attributes & EFI_FVB2_ERASE_POLARITY) { ErasePolarity = 1; } else { ErasePolarity = 0; } while (FileOffset < (FvLength - sizeof (EFI_FFS_FILE_HEADER))) { // Get FileState which is the highest bit of the State FileState = GetFileState (ErasePolarity, FfsFileHeader); switch (FileState) { case EFI_FILE_HEADER_INVALID: FileOffset += sizeof(EFI_FFS_FILE_HEADER); FfsFileHeader = (EFI_FFS_FILE_HEADER *)((UINT8 *)FfsFileHeader + sizeof(EFI_FFS_FILE_HEADER)); break; case EFI_FILE_DATA_VALID: case EFI_FILE_MARKED_FOR_UPDATE: if (CalculateHeaderChecksum (FfsFileHeader) != 0) { ASSERT (FALSE); return EFI_NOT_FOUND; } if (FfsFileHeader->Type == FileType) { *FileHeader = FfsFileHeader; return EFI_SUCCESS; } FileLength = *(UINT32 *)(FfsFileHeader->Size) & 0x00FFFFFF; FileOccupiedSize = GET_OCCUPIED_SIZE(FileLength, 8); FileOffset += FileOccupiedSize; FfsFileHeader = (EFI_FFS_FILE_HEADER *)((UINT8 *)FfsFileHeader + FileOccupiedSize); break; case EFI_FILE_DELETED: FileLength = *(UINT32 *)(FfsFileHeader->Size) & 0x00FFFFFF; FileOccupiedSize = GET_OCCUPIED_SIZE(FileLength, 8); FileOffset += FileOccupiedSize; FfsFileHeader = (EFI_FFS_FILE_HEADER *)((UINT8 *)FfsFileHeader + FileOccupiedSize); break; default: return EFI_NOT_FOUND; } } return EFI_NOT_FOUND; } EFI_STATUS GetImageContext ( IN EFI_FFS_FILE_HEADER *FfsHeader, OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ) { EFI_STATUS Status; UINTN ParsedLength; UINTN SectionSize; UINTN SectionLength; EFI_COMMON_SECTION_HEADER *Section; VOID *EfiImage; UINTN ImageAddress; EFI_IMAGE_DEBUG_DIRECTORY_ENTRY *DebugEntry; VOID *CodeViewEntryPointer; Section = (EFI_COMMON_SECTION_HEADER *)(FfsHeader + 1); SectionSize = *(UINT32 *)(FfsHeader->Size) & 0x00FFFFFF; SectionSize -= sizeof (EFI_FFS_FILE_HEADER); ParsedLength = 0; EfiImage = NULL; while (ParsedLength < SectionSize) { if ((Section->Type == EFI_SECTION_PE32) || (Section->Type == EFI_SECTION_TE)) { EfiImage = (EFI_IMAGE_OPTIONAL_HEADER_UNION*)(Section + 1); break; } // // Size is 24 bits wide so mask upper 8 bits. // SectionLength is adjusted it is 4 byte aligned. // Go to the next section // SectionLength = *(UINT32 *)Section->Size & 0x00FFFFFF; SectionLength = GET_OCCUPIED_SIZE (SectionLength, 4); ASSERT (SectionLength != 0); ParsedLength += SectionLength; Section = (EFI_COMMON_SECTION_HEADER *)((UINT8 *)Section + SectionLength); } if (EfiImage == NULL) { return EFI_NOT_FOUND; } // Initialize the Image Context ZeroMem (ImageContext, sizeof (PE_COFF_LOADER_IMAGE_CONTEXT)); ImageContext->Handle = EfiImage; ImageContext->ImageRead = PeCoffLoaderImageReadFromMemory; Status = PeCoffLoaderGetImageInfo (ImageContext); if (!EFI_ERROR(Status) && ((VOID*)(UINTN)ImageContext->DebugDirectoryEntryRva != NULL)) { ImageAddress = ImageContext->ImageAddress; if (ImageContext->IsTeImage) { ImageAddress += sizeof (EFI_TE_IMAGE_HEADER) - ((EFI_TE_IMAGE_HEADER*)EfiImage)->StrippedSize; } DebugEntry = (EFI_IMAGE_DEBUG_DIRECTORY_ENTRY*)(ImageAddress + ImageContext->DebugDirectoryEntryRva); if (DebugEntry->Type == EFI_IMAGE_DEBUG_TYPE_CODEVIEW) { CodeViewEntryPointer = (VOID *) (ImageAddress + (UINTN) DebugEntry->RVA); switch (* (UINT32 *) CodeViewEntryPointer) { case CODEVIEW_SIGNATURE_NB10: ImageContext->PdbPointer = (CHAR8 *)CodeViewEntryPointer + sizeof (EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY); break; case CODEVIEW_SIGNATURE_RSDS: ImageContext->PdbPointer = (CHAR8 *)CodeViewEntryPointer + sizeof (EFI_IMAGE_DEBUG_CODEVIEW_RSDS_ENTRY); break; case CODEVIEW_SIGNATURE_MTOC: ImageContext->PdbPointer = (CHAR8 *)CodeViewEntryPointer + sizeof (EFI_IMAGE_DEBUG_CODEVIEW_MTOC_ENTRY); break; default: break; } } } return Status; } /** Initialize debug agent. This function is used to set up debug environment to support source level debugging. If certain Debug Agent Library instance has to save some private data in the stack, this function must work on the mode that doesn't return to the caller, then the caller needs to wrap up all rest of logic after InitializeDebugAgent() into one function and pass it into InitializeDebugAgent(). InitializeDebugAgent() is responsible to invoke the passing-in function at the end of InitializeDebugAgent(). If the parameter Function is not NULL, Debug Agent Libary instance will invoke it by passing in the Context to be its parameter. If Function() is NULL, Debug Agent Library instance will return after setup debug environment. @param[in] InitFlag Init flag is used to decide the initialize process. @param[in] Context Context needed according to InitFlag; it was optional. @param[in] Function Continue function called by debug agent library; it was optional. **/ VOID EFIAPI InitializeDebugAgent ( IN UINT32 InitFlag, IN VOID *Context, OPTIONAL IN DEBUG_AGENT_CONTINUE Function OPTIONAL ) { EFI_STATUS Status; EFI_FFS_FILE_HEADER *FfsHeader; PE_COFF_LOADER_IMAGE_CONTEXT ImageContext; // Now we've got UART, check the Debug Agent Vector Table // Note: The AArch64 Vector table must be 2k-byte aligned - if this assertion fails ensure // 'Align=4K' is defined into your FDF for this module. ASSERT (((UINTN)DebugAgentVectorTable & ARM_VECTOR_TABLE_ALIGNMENT) == 0); ArmWriteVBar ((UINTN)DebugAgentVectorTable); // We use InitFlag to know if DebugAgent has been intialized from // Sec (DEBUG_AGENT_INIT_PREMEM_SEC) or PrePi (DEBUG_AGENT_INIT_POSTMEM_SEC) // modules if (InitFlag == DEBUG_AGENT_INIT_PREMEM_SEC) { // // Get the Sec or PrePeiCore module (defined as SEC type module) // Status = GetFfsFile ((EFI_FIRMWARE_VOLUME_HEADER*)(UINTN)PcdGet32(PcdSecureFvBaseAddress), EFI_FV_FILETYPE_SECURITY_CORE, &FfsHeader); if (!EFI_ERROR(Status)) { Status = GetImageContext (FfsHeader,&ImageContext); if (!EFI_ERROR(Status)) { PeCoffLoaderRelocateImageExtraAction (&ImageContext); } } } else if (InitFlag == DEBUG_AGENT_INIT_POSTMEM_SEC) { // // Get the PrePi or PrePeiCore module (defined as SEC type module) // Status = GetFfsFile ((EFI_FIRMWARE_VOLUME_HEADER*)(UINTN)PcdGet32(PcdFvBaseAddress), EFI_FV_FILETYPE_SECURITY_CORE, &FfsHeader); if (!EFI_ERROR(Status)) { Status = GetImageContext (FfsHeader,&ImageContext); if (!EFI_ERROR(Status)) { PeCoffLoaderRelocateImageExtraAction (&ImageContext); } } // // Get the PeiCore module (defined as PEI_CORE type module) // Status = GetFfsFile ((EFI_FIRMWARE_VOLUME_HEADER*)(UINTN)PcdGet32(PcdFvBaseAddress), EFI_FV_FILETYPE_PEI_CORE, &FfsHeader); if (!EFI_ERROR(Status)) { Status = GetImageContext (FfsHeader,&ImageContext); if (!EFI_ERROR(Status)) { PeCoffLoaderRelocateImageExtraAction (&ImageContext); } } } } /** Enable/Disable the interrupt of debug timer and return the interrupt state prior to the operation. If EnableStatus is TRUE, enable the interrupt of debug timer. If EnableStatus is FALSE, disable the interrupt of debug timer. @param[in] EnableStatus Enable/Disable. @return FALSE always. **/ BOOLEAN EFIAPI SaveAndSetDebugTimerInterrupt ( IN BOOLEAN EnableStatus ) { return FALSE; }