/**@file Last PEIM. Responsibility of this module is to load the DXE Core from a Firmware Volume. Copyright (c) 2006 - 2007 Intel Corporation All rights reserved. This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "DxeIpl.h" #include #include EFI_STATUS CustomGuidedSectionExtract ( IN CONST EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI *This, IN CONST VOID *InputSection, OUT VOID **OutputBuffer, OUT UINTN *OutputSize, OUT UINT32 *AuthenticationStatus ); STATIC EFI_STATUS EFIAPI Decompress ( IN CONST EFI_PEI_DECOMPRESS_PPI *This, IN CONST EFI_COMPRESSION_SECTION *InputSection, OUT VOID **OutputBuffer, OUT UINTN *OutputSize ); BOOLEAN gInMemory = FALSE; // // Module Globals used in the DXE to PEI handoff // These must be module globals, so the stack can be switched // static EFI_DXE_IPL_PPI mDxeIplPpi = { DxeLoadCore }; STATIC EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI mCustomGuidedSectionExtractionPpi = { CustomGuidedSectionExtract }; STATIC EFI_PEI_DECOMPRESS_PPI mDecompressPpi = { Decompress }; static EFI_PEI_PPI_DESCRIPTOR mPpiList[] = { { EFI_PEI_PPI_DESCRIPTOR_PPI, &gEfiDxeIplPpiGuid, &mDxeIplPpi }, { (EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST), &gEfiPeiDecompressPpiGuid, &mDecompressPpi } }; static EFI_PEI_PPI_DESCRIPTOR mPpiSignal = { (EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST), &gEfiEndOfPeiSignalPpiGuid, NULL }; /** Initializes the Dxe Ipl PPI @param FfsHandle The handle of FFS file. @param PeiServices General purpose services available to every PEIM. @return EFI_SUCESS */ EFI_STATUS EFIAPI PeimInitializeDxeIpl ( IN EFI_PEI_FILE_HANDLE FfsHandle, IN EFI_PEI_SERVICES **PeiServices ) { EFI_STATUS Status; EFI_BOOT_MODE BootMode; EFI_GUID *ExtractHandlerGuidTable; UINTN ExtractHandlerNumber; EFI_PEI_PPI_DESCRIPTOR *GuidPpi; Status = PeiServicesGetBootMode (&BootMode); ASSERT_EFI_ERROR (Status); if (BootMode != BOOT_ON_S3_RESUME) { Status = PeiServicesRegisterForShadow (FfsHandle); if (Status == EFI_SUCCESS) { // // EFI_SUCESS means the first time call register for shadow // return Status; } else if (Status == EFI_ALREADY_STARTED) { gInMemory = TRUE; // // Get custom extract guided section method guid list // ExtractHandlerNumber = ExtractGuidedSectionGetGuidList (&ExtractHandlerGuidTable); // // Install custom extraction guid ppi // if (ExtractHandlerNumber > 0) { GuidPpi = NULL; GuidPpi = (EFI_PEI_PPI_DESCRIPTOR *) AllocatePool (ExtractHandlerNumber * sizeof (EFI_PEI_PPI_DESCRIPTOR)); ASSERT (GuidPpi != NULL); while (ExtractHandlerNumber-- > 0) { GuidPpi->Flags = EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST; GuidPpi->Ppi = &mCustomGuidedSectionExtractionPpi; GuidPpi->Guid = &(ExtractHandlerGuidTable [ExtractHandlerNumber]); Status = PeiServicesInstallPpi (GuidPpi++); ASSERT_EFI_ERROR(Status); } } } else { ASSERT (FALSE); } } // // Install FvFileLoader and DxeIpl PPIs. // Status = PeiServicesInstallPpi (mPpiList); ASSERT_EFI_ERROR(Status); return Status; } /** Main entry point to last PEIM @param This Entry point for DXE IPL PPI @param PeiServices General purpose services available to every PEIM. @param HobList Address to the Pei HOB list @return EFI_SUCCESS DXE core was successfully loaded. @return EFI_OUT_OF_RESOURCES There are not enough resources to load DXE core. **/ EFI_STATUS EFIAPI DxeLoadCore ( IN EFI_DXE_IPL_PPI *This, IN EFI_PEI_SERVICES **PeiServices, IN EFI_PEI_HOB_POINTERS HobList ) { EFI_STATUS Status; EFI_GUID DxeCoreFileName; EFI_PHYSICAL_ADDRESS DxeCoreAddress; UINT64 DxeCoreSize; EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint; EFI_BOOT_MODE BootMode; EFI_PEI_FV_HANDLE VolumeHandle; EFI_PEI_FILE_HANDLE FileHandle; UINTN Instance; // // if in S3 Resume, restore configure // Status = PeiServicesGetBootMode (&BootMode); ASSERT_EFI_ERROR(Status); if (BootMode == BOOT_ON_S3_RESUME) { Status = AcpiS3ResumeOs(); ASSERT_EFI_ERROR (Status); } else if (BootMode == BOOT_IN_RECOVERY_MODE) { Status = PeiRecoverFirmware (); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "Load Recovery Capsule Failed.(Status = %r)\n", Status)); CpuDeadLoop (); } // // Now should have a HOB with the DXE core w/ the old HOB destroyed // } // // If any FV contains an encapsulated FV extract that FV // DxeIplAddEncapsulatedFirmwareVolumes (); // // Look in all the FVs present in PEI and find the DXE Core // Instance = 0; Status = DxeIplFindFirmwareVolumeInstance (&Instance, EFI_FV_FILETYPE_DXE_CORE, &VolumeHandle, &FileHandle); ASSERT_EFI_ERROR (Status); CopyMem(&DxeCoreFileName, &(((EFI_FFS_FILE_HEADER*)FileHandle)->Name), sizeof (EFI_GUID)); // // Load the DXE Core from a Firmware Volume, may use LoadFile ppi to do this for save code size. // Status = PeiLoadFile ( FileHandle, &DxeCoreAddress, &DxeCoreSize, &DxeCoreEntryPoint ); ASSERT_EFI_ERROR (Status); // // Add HOB for the DXE Core // BuildModuleHob ( &DxeCoreFileName, DxeCoreAddress, EFI_SIZE_TO_PAGES ((UINT32) DxeCoreSize) * EFI_PAGE_SIZE, DxeCoreEntryPoint ); // // Report Status Code EFI_SW_PEI_PC_HANDOFF_TO_NEXT // REPORT_STATUS_CODE ( EFI_PROGRESS_CODE, EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_CORE_PC_HANDOFF_TO_NEXT ); DEBUG_CODE_BEGIN (); EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION PtrPeImage; PtrPeImage.Pe32 = (EFI_IMAGE_NT_HEADERS32 *) ((UINTN) DxeCoreAddress + ((EFI_IMAGE_DOS_HEADER *) (UINTN) DxeCoreAddress)->e_lfanew); if (PtrPeImage.Pe32->FileHeader.Machine != IMAGE_FILE_MACHINE_IA64) { DEBUG ((EFI_D_INFO | EFI_D_LOAD, "Loading DXE CORE at 0x%10p EntryPoint=0x%10p\n", (VOID *)(UINTN)DxeCoreAddress, (VOID *)(UINTN)DxeCoreEntryPoint)); } else { // // For IPF Image, the real entry point should be print. // DEBUG ((EFI_D_INFO | EFI_D_LOAD, "Loading DXE CORE at 0x%10p EntryPoint=0x%10p\n", (VOID *)(UINTN)DxeCoreAddress, (VOID *)(UINTN)(*(UINT64 *)(UINTN)DxeCoreEntryPoint))); } DEBUG_CODE_END (); // // Transfer control to the DXE Core // The handoff state is simply a pointer to the HOB list // HandOffToDxeCore (DxeCoreEntryPoint, HobList, &mPpiSignal); // // If we get here, then the DXE Core returned. This is an error // Dxe Core should not return. // ASSERT (FALSE); CpuDeadLoop (); return EFI_OUT_OF_RESOURCES; } STATIC EFI_STATUS GetFvAlignment ( IN EFI_FIRMWARE_VOLUME_HEADER *FvHeader, OUT UINT32 *FvAlignment ) { // // Because FvLength in FvHeader is UINT64 type, // so FvHeader must meed at least 8 bytes alignment. // Get the appropriate alignment requirement. // if ((FvHeader->Attributes & EFI_FVB2_ALIGNMENT) < EFI_FVB2_ALIGNMENT_8) { return EFI_UNSUPPORTED; } *FvAlignment = 1 << ((FvHeader->Attributes & EFI_FVB2_ALIGNMENT) >> 16); return EFI_SUCCESS; } /** Search EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE image and expand as memory FV @return EFI_OUT_OF_RESOURCES There are no memory space to exstract FV @return EFI_SUCESS Sucess to find the FV **/ EFI_STATUS DxeIplAddEncapsulatedFirmwareVolumes ( VOID ) { EFI_STATUS Status; EFI_STATUS VolumeStatus; UINTN Index; EFI_FV_INFO VolumeInfo; EFI_PEI_FV_HANDLE VolumeHandle; EFI_PEI_FILE_HANDLE FileHandle; UINT32 SectionLength; EFI_FIRMWARE_VOLUME_HEADER *FvHeader; EFI_FIRMWARE_VOLUME_IMAGE_SECTION *SectionHeader; VOID *DstBuffer; UINT32 FvAlignment; Status = EFI_NOT_FOUND; Index = 0; do { VolumeStatus = DxeIplFindFirmwareVolumeInstance ( &Index, EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE, &VolumeHandle, &FileHandle ); if (!EFI_ERROR (VolumeStatus)) { Status = PeiServicesFfsFindSectionData ( EFI_SECTION_FIRMWARE_VOLUME_IMAGE, (EFI_FFS_FILE_HEADER *)FileHandle, (VOID **)&FvHeader ); if (!EFI_ERROR (Status)) { if (FvHeader->Signature == EFI_FVH_SIGNATURE) { // // Because FvLength in FvHeader is UINT64 type, // so FvHeader must meed at least 8 bytes alignment. // If current FvImage base address doesn't meet its alignment, // we need to reload this FvImage to another correct memory address. // Status = GetFvAlignment(FvHeader, &FvAlignment); if (EFI_ERROR(Status)) { return Status; } if (((UINTN) FvHeader % FvAlignment) != 0) { SectionHeader = (EFI_FIRMWARE_VOLUME_IMAGE_SECTION*)((UINTN)FvHeader - sizeof(EFI_FIRMWARE_VOLUME_IMAGE_SECTION)); SectionLength = *(UINT32 *)SectionHeader->Size & 0x00FFFFFF; DstBuffer = AllocateAlignedPages (EFI_SIZE_TO_PAGES ((UINTN) SectionLength - sizeof (EFI_COMMON_SECTION_HEADER)), FvAlignment); if (DstBuffer == NULL) { return EFI_OUT_OF_RESOURCES; } CopyMem (DstBuffer, FvHeader, (UINTN) SectionLength - sizeof (EFI_COMMON_SECTION_HEADER)); FvHeader = (EFI_FIRMWARE_VOLUME_HEADER *) DstBuffer; } // // This new Firmware Volume comes from a firmware file within a firmware volume. // Record the original Firmware Volume Name. // PeiServicesFfsGetVolumeInfo (&VolumeHandle, &VolumeInfo); PiLibInstallFvInfoPpi ( NULL, FvHeader, (UINT32) FvHeader->FvLength, &(VolumeInfo.FvName), &(((EFI_FFS_FILE_HEADER*)FileHandle)->Name) ); // // Inform HOB consumer phase, i.e. DXE core, the existance of this FV // BuildFvHob ( (EFI_PHYSICAL_ADDRESS) (UINTN) FvHeader, FvHeader->FvLength ); ASSERT_EFI_ERROR (Status); // // Makes the encapsulated volume show up in DXE phase to skip processing of // encapsulated file again. // BuildFv2Hob ( (EFI_PHYSICAL_ADDRESS)(UINTN)FvHeader, FvHeader->FvLength, &VolumeInfo.FvName, &(((EFI_FFS_FILE_HEADER *)FileHandle)->Name) ); return Status; } } } } while (!EFI_ERROR (VolumeStatus)); return Status; } /** Find the First Volume that contains the first FileType. @param Instance The Fv instance. @param SeachType The type of file to search. @param VolumeHandle Pointer to Fv which contains the file to search. @param FileHandle Pointer to FFS file to search. @return EFI_SUCESS Success to find the FFS in specificed FV @return others Fail to find the FFS in specificed FV */ EFI_STATUS DxeIplFindFirmwareVolumeInstance ( IN OUT UINTN *Instance, IN EFI_FV_FILETYPE SeachType, OUT EFI_PEI_FV_HANDLE *VolumeHandle, OUT EFI_PEI_FILE_HANDLE *FileHandle ) { EFI_STATUS Status; EFI_STATUS VolumeStatus; do { VolumeStatus = PeiServicesFfsFindNextVolume (*Instance, VolumeHandle); if (!EFI_ERROR (VolumeStatus)) { *FileHandle = NULL; Status = PeiServicesFfsFindNextFile (SeachType, *VolumeHandle, FileHandle); if (!EFI_ERROR (Status)) { return Status; } } *Instance += 1; } while (!EFI_ERROR (VolumeStatus)); return VolumeStatus; } /** Loads and relocates a PE/COFF image into memory. @param FileHandle The image file handle @param ImageAddress The base address of the relocated PE/COFF image @param ImageSize The size of the relocated PE/COFF image @param EntryPoint The entry point of the relocated PE/COFF image @return EFI_SUCCESS The file was loaded and relocated @return EFI_OUT_OF_RESOURCES There was not enough memory to load and relocate the PE/COFF file **/ EFI_STATUS PeiLoadFile ( IN EFI_PEI_FILE_HANDLE FileHandle, OUT EFI_PHYSICAL_ADDRESS *ImageAddress, OUT UINT64 *ImageSize, OUT EFI_PHYSICAL_ADDRESS *EntryPoint ) { EFI_STATUS Status; PE_COFF_LOADER_IMAGE_CONTEXT ImageContext; VOID *Pe32Data; // // First try to find the PE32 section in this ffs file. // Status = PeiServicesFfsFindSectionData ( EFI_SECTION_PE32, FileHandle, &Pe32Data ); if (EFI_ERROR (Status)) { // // NO image types we support so exit. // return Status; } ZeroMem (&ImageContext, sizeof (ImageContext)); ImageContext.Handle = Pe32Data; Status = GetImageReadFunction (&ImageContext); ASSERT_EFI_ERROR (Status); Status = PeCoffLoaderGetImageInfo (&ImageContext); if (EFI_ERROR (Status)) { return Status; } // // Allocate Memory for the image // ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)(UINTN) AllocatePages (EFI_SIZE_TO_PAGES ((UINT32) ImageContext.ImageSize)); ASSERT (ImageContext.ImageAddress != 0); // // Load the image to our new buffer // Status = PeCoffLoaderLoadImage (&ImageContext); if (EFI_ERROR (Status)) { return Status; } // // Relocate the image in our new buffer // Status = PeCoffLoaderRelocateImage (&ImageContext); if (EFI_ERROR (Status)) { return Status; } // // Flush the instruction cache so the image data is written before we execute it // InvalidateInstructionCacheRange ((VOID *)(UINTN)ImageContext.ImageAddress, (UINTN)ImageContext.ImageSize); *ImageAddress = ImageContext.ImageAddress; *ImageSize = ImageContext.ImageSize; *EntryPoint = ImageContext.EntryPoint; return EFI_SUCCESS; } /** The ExtractSection() function processes the input section and returns a pointer to the section contents. If the section being extracted does not require processing (if the section GuidedSectionHeader.Attributes has the EFI_GUIDED_SECTION_PROCESSING_REQUIRED field cleared), then OutputBuffer is just updated to point to the start of the section's contents. Otherwise, *Buffer must be allocated from PEI permanent memory. @param This Indicates the EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI instance. Buffer containing the input GUIDed section to be processed. OutputBuffer OutputBuffer is allocated from PEI permanent memory and contains the new section stream. @param OutputSize A pointer to a caller-allocated UINTN in which the size of *OutputBuffer allocation is stored. If the function returns anything other than EFI_SUCCESS, the value of OutputSize is undefined. @param AuthenticationStatus A pointer to a caller-allocated UINT32 that indicates the authentication status of the output buffer. If the input section's GuidedSectionHeader. Attributes field has the EFI_GUIDED_SECTION_AUTH_STATUS_VALID bit as clear, AuthenticationStatus must return zero. These bits reflect the status of the extraction operation. If the function returns anything other than EFI_SUCCESS, the value of AuthenticationStatus is undefined. @retval EFI_SUCCESS The InputSection was successfully processed and the section contents were returned. @retval EFI_OUT_OF_RESOURCES The system has insufficient resources to process the request. @reteval EFI_INVALID_PARAMETER The GUID in InputSection does not match this instance of the GUIDed Section Extraction PPI. **/ EFI_STATUS CustomGuidedSectionExtract ( IN CONST EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI *This, IN CONST VOID *InputSection, OUT VOID **OutputBuffer, OUT UINTN *OutputSize, OUT UINT32 *AuthenticationStatus ) { EFI_STATUS Status; UINT8 *ScratchBuffer; UINT32 ScratchBufferSize; UINT32 OutputBufferSize; UINT16 SectionAttribute; // // Init local variable // ScratchBuffer = NULL; // // Call GetInfo to get the size and attribute of input guided section data. // Status = ExtractGuidedSectionGetInfo ( InputSection, &OutputBufferSize, &ScratchBufferSize, &SectionAttribute ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "GetInfo from guided section Failed - %r\n", Status)); return Status; } if (ScratchBufferSize != 0) { // // Allocate scratch buffer // ScratchBuffer = AllocatePages (EFI_SIZE_TO_PAGES (ScratchBufferSize)); if (ScratchBuffer == NULL) { return EFI_OUT_OF_RESOURCES; } } if ((SectionAttribute & EFI_GUIDED_SECTION_PROCESSING_REQUIRED) && OutputBufferSize > 0) { // // Allocate output buffer // *OutputBuffer = AllocatePages (EFI_SIZE_TO_PAGES (OutputBufferSize)); if (*OutputBuffer == NULL) { return EFI_OUT_OF_RESOURCES; } } Status = ExtractGuidedSectionDecode ( InputSection, OutputBuffer, ScratchBuffer, AuthenticationStatus ); if (EFI_ERROR (Status)) { // // Decode failed // DEBUG ((EFI_D_ERROR, "Extract guided section Failed - %r\n", Status)); return Status; } *OutputSize = (UINTN) OutputBufferSize; return EFI_SUCCESS; } STATIC EFI_STATUS EFIAPI Decompress ( IN CONST EFI_PEI_DECOMPRESS_PPI *This, IN CONST EFI_COMPRESSION_SECTION *CompressionSection, OUT VOID **OutputBuffer, OUT UINTN *OutputSize ) { EFI_STATUS Status; UINT8 *DstBuffer; UINT8 *ScratchBuffer; UINTN DstBufferSize; UINT32 ScratchBufferSize; EFI_COMMON_SECTION_HEADER *Section; UINTN SectionLength; if (CompressionSection->CommonHeader.Type != EFI_SECTION_COMPRESSION) { ASSERT (FALSE); return EFI_INVALID_PARAMETER; } Section = (EFI_COMMON_SECTION_HEADER *) CompressionSection; SectionLength = *(UINT32 *) (Section->Size) & 0x00ffffff; // // This is a compression set, expand it // switch (CompressionSection->CompressionType) { case EFI_STANDARD_COMPRESSION: // // Load EFI standard compression. // For compressed data, decompress them to dstbuffer. // Status = UefiDecompressGetInfo ( (UINT8 *) ((EFI_COMPRESSION_SECTION *) Section + 1), (UINT32) SectionLength - sizeof (EFI_COMPRESSION_SECTION), (UINT32 *) &DstBufferSize, &ScratchBufferSize ); if (EFI_ERROR (Status)) { // // GetInfo failed // DEBUG ((EFI_D_ERROR, "Decompress GetInfo Failed - %r\n", Status)); return EFI_NOT_FOUND; } // // Allocate scratch buffer // ScratchBuffer = AllocatePages (EFI_SIZE_TO_PAGES (ScratchBufferSize)); if (ScratchBuffer == NULL) { return EFI_OUT_OF_RESOURCES; } // // Allocate destination buffer // DstBuffer = AllocatePages (EFI_SIZE_TO_PAGES (DstBufferSize)); if (DstBuffer == NULL) { return EFI_OUT_OF_RESOURCES; } // // Call decompress function // Status = UefiDecompress ( (CHAR8 *) ((EFI_COMPRESSION_SECTION *) Section + 1), DstBuffer, ScratchBuffer ); if (EFI_ERROR (Status)) { // // Decompress failed // DEBUG ((EFI_D_ERROR, "Decompress Failed - %r\n", Status)); return EFI_NOT_FOUND; } break; // porting note the original branch for customized compress is removed, it should be change to use GUID compress case EFI_NOT_COMPRESSED: // // Allocate destination buffer // DstBufferSize = CompressionSection->UncompressedLength; DstBuffer = AllocatePages (EFI_SIZE_TO_PAGES (DstBufferSize)); if (DstBuffer == NULL) { return EFI_OUT_OF_RESOURCES; } // // stream is not actually compressed, just encapsulated. So just copy it. // CopyMem (DstBuffer, CompressionSection + 1, DstBufferSize); break; default: // // Don't support other unknown compression type. // ASSERT (FALSE); return EFI_NOT_FOUND; } *OutputSize = DstBufferSize; *OutputBuffer = DstBuffer; return EFI_SUCCESS; } VOID UpdateStackHob ( IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length ) { EFI_PEI_HOB_POINTERS Hob; Hob.Raw = GetHobList (); while ((Hob.Raw = GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, Hob.Raw)) != NULL) { if (CompareGuid (&gEfiHobMemoryAllocStackGuid, &(Hob.MemoryAllocationStack->AllocDescriptor.Name))) { // // Build a new memory allocation HOB with old stack info with EfiConventionalMemory type // to be reclaimed by DXE core. // BuildMemoryAllocationHob ( Hob.MemoryAllocationStack->AllocDescriptor.MemoryBaseAddress, Hob.MemoryAllocationStack->AllocDescriptor.MemoryLength, EfiConventionalMemory ); // // Update the BSP Stack Hob to reflect the new stack info. // Hob.MemoryAllocationStack->AllocDescriptor.MemoryBaseAddress = BaseAddress; Hob.MemoryAllocationStack->AllocDescriptor.MemoryLength = Length; break; } Hob.Raw = GET_NEXT_HOB (Hob); } }