/** @file Implement all four UEFI Runtime Variable services for the nonvolatile and volatile storage space and install variable architecture protocol. Copyright (C) 2013, Red Hat, Inc. Copyright (c) 2006 - 2015, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "Variable.h" extern VARIABLE_STORE_HEADER *mNvVariableCache; extern VARIABLE_INFO_ENTRY *gVariableInfo; EFI_HANDLE mHandle = NULL; EFI_EVENT mVirtualAddressChangeEvent = NULL; EFI_EVENT mFtwRegistration = NULL; extern LIST_ENTRY mLockedVariableList; extern LIST_ENTRY mVarCheckVariableList; extern UINT32 mNumberOfHandler; extern VAR_CHECK_SET_VARIABLE_CHECK_HANDLER *mHandlerTable; extern BOOLEAN mEndOfDxe; EDKII_VARIABLE_LOCK_PROTOCOL mVariableLock = { VariableLockRequestToLock }; EDKII_VAR_CHECK_PROTOCOL mVarCheck = { VarCheckRegisterSetVariableCheckHandler, VarCheckVariablePropertySet, VarCheckVariablePropertyGet }; /** Return TRUE if ExitBootServices () has been called. @retval TRUE If ExitBootServices () has been called. **/ BOOLEAN AtRuntime ( VOID ) { return EfiAtRuntime (); } /** Initializes a basic mutual exclusion lock. This function initializes a basic mutual exclusion lock to the released state and returns the lock. Each lock provides mutual exclusion access at its task priority level. Since there is no preemption or multiprocessor support in EFI, acquiring the lock only consists of raising to the locks TPL. If Lock is NULL, then ASSERT(). If Priority is not a valid TPL value, then ASSERT(). @param Lock A pointer to the lock data structure to initialize. @param Priority EFI TPL is associated with the lock. @return The lock. **/ EFI_LOCK * InitializeLock ( IN OUT EFI_LOCK *Lock, IN EFI_TPL Priority ) { return EfiInitializeLock (Lock, Priority); } /** Acquires lock only at boot time. Simply returns at runtime. This is a temperary function that will be removed when EfiAcquireLock() in UefiLib can handle the call in UEFI Runtimer driver in RT phase. It calls EfiAcquireLock() at boot time, and simply returns at runtime. @param Lock A pointer to the lock to acquire. **/ VOID AcquireLockOnlyAtBootTime ( IN EFI_LOCK *Lock ) { if (!AtRuntime ()) { EfiAcquireLock (Lock); } } /** Releases lock only at boot time. Simply returns at runtime. This is a temperary function which will be removed when EfiReleaseLock() in UefiLib can handle the call in UEFI Runtimer driver in RT phase. It calls EfiReleaseLock() at boot time and simply returns at runtime. @param Lock A pointer to the lock to release. **/ VOID ReleaseLockOnlyAtBootTime ( IN EFI_LOCK *Lock ) { if (!AtRuntime ()) { EfiReleaseLock (Lock); } } /** Retrive the Fault Tolerent Write protocol interface. @param[out] FtwProtocol The interface of Ftw protocol @retval EFI_SUCCESS The FTW protocol instance was found and returned in FtwProtocol. @retval EFI_NOT_FOUND The FTW protocol instance was not found. @retval EFI_INVALID_PARAMETER SarProtocol is NULL. **/ EFI_STATUS GetFtwProtocol ( OUT VOID **FtwProtocol ) { EFI_STATUS Status; // // Locate Fault Tolerent Write protocol // Status = gBS->LocateProtocol ( &gEfiFaultTolerantWriteProtocolGuid, NULL, FtwProtocol ); return Status; } /** Retrive the FVB protocol interface by HANDLE. @param[in] FvBlockHandle The handle of FVB protocol that provides services for reading, writing, and erasing the target block. @param[out] FvBlock The interface of FVB protocol @retval EFI_SUCCESS The interface information for the specified protocol was returned. @retval EFI_UNSUPPORTED The device does not support the FVB protocol. @retval EFI_INVALID_PARAMETER FvBlockHandle is not a valid EFI_HANDLE or FvBlock is NULL. **/ EFI_STATUS GetFvbByHandle ( IN EFI_HANDLE FvBlockHandle, OUT EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL **FvBlock ) { // // To get the FVB protocol interface on the handle // return gBS->HandleProtocol ( FvBlockHandle, &gEfiFirmwareVolumeBlockProtocolGuid, (VOID **) FvBlock ); } /** Function returns an array of handles that support the FVB protocol in a buffer allocated from pool. @param[out] NumberHandles The number of handles returned in Buffer. @param[out] Buffer A pointer to the buffer to return the requested array of handles that support FVB protocol. @retval EFI_SUCCESS The array of handles was returned in Buffer, and the number of handles in Buffer was returned in NumberHandles. @retval EFI_NOT_FOUND No FVB handle was found. @retval EFI_OUT_OF_RESOURCES There is not enough pool memory to store the matching results. @retval EFI_INVALID_PARAMETER NumberHandles is NULL or Buffer is NULL. **/ EFI_STATUS GetFvbCountAndBuffer ( OUT UINTN *NumberHandles, OUT EFI_HANDLE **Buffer ) { EFI_STATUS Status; // // Locate all handles of Fvb protocol // Status = gBS->LocateHandleBuffer ( ByProtocol, &gEfiFirmwareVolumeBlockProtocolGuid, NULL, NumberHandles, Buffer ); return Status; } /** Notification function of EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE. This is a notification function registered on EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE event. It convers pointer to new virtual address. @param Event Event whose notification function is being invoked. @param Context Pointer to the notification function's context. **/ VOID EFIAPI VariableClassAddressChangeEvent ( IN EFI_EVENT Event, IN VOID *Context ) { EFI_STATUS Status; UINTN Index; EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->GetBlockSize); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->GetPhysicalAddress); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->GetAttributes); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->SetAttributes); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->Read); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->Write); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance->EraseBlocks); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->FvbInstance); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->PlatformLangCodes); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->LangCodes); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->PlatformLang); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->VariableGlobal.NonVolatileVariableBase); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->VariableGlobal.VolatileVariableBase); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal->VariableGlobal.HobVariableBase); EfiConvertPointer (0x0, (VOID **) &mVariableModuleGlobal); EfiConvertPointer (0x0, (VOID **) &mNvVariableCache); EfiConvertPointer (0x0, (VOID **) &mHandlerTable); for (Index = 0; Index < mNumberOfHandler; Index++) { EfiConvertPointer (0x0, (VOID **) &mHandlerTable[Index]); } Status = EfiConvertList (0x0, &mLockedVariableList); ASSERT_EFI_ERROR (Status); Status = EfiConvertList (0x0, &mVarCheckVariableList); ASSERT_EFI_ERROR (Status); if (mContextOut.AddressPointer != NULL) { for (Index = 0; Index < mContextOut.AddressPointerCount; Index++) { EfiConvertPointer (0x0, (VOID **) mContextOut.AddressPointer[Index]); } } } /** Notification function of EVT_GROUP_READY_TO_BOOT event group. This is a notification function registered on EVT_GROUP_READY_TO_BOOT event group. When the Boot Manager is about to load and execute a boot option, it reclaims variable storage if free size is below the threshold. @param Event Event whose notification function is being invoked. @param Context Pointer to the notification function's context. **/ VOID EFIAPI OnReadyToBoot ( EFI_EVENT Event, VOID *Context ) { // // Set the End Of DXE bit in case the EFI_END_OF_DXE_EVENT_GROUP_GUID event is not signaled. // mEndOfDxe = TRUE; // // The initialization for variable quota. // InitializeVariableQuota (); ReclaimForOS (); if (FeaturePcdGet (PcdVariableCollectStatistics)) { if (mVariableModuleGlobal->VariableGlobal.AuthFormat) { gBS->InstallConfigurationTable (&gEfiAuthenticatedVariableGuid, gVariableInfo); } else { gBS->InstallConfigurationTable (&gEfiVariableGuid, gVariableInfo); } } gBS->CloseEvent (Event); } /** Notification function of EFI_END_OF_DXE_EVENT_GROUP_GUID event group. This is a notification function registered on EFI_END_OF_DXE_EVENT_GROUP_GUID event group. @param Event Event whose notification function is being invoked. @param Context Pointer to the notification function's context. **/ VOID EFIAPI OnEndOfDxe ( EFI_EVENT Event, VOID *Context ) { mEndOfDxe = TRUE; // // The initialization for variable quota. // InitializeVariableQuota (); if (PcdGetBool (PcdReclaimVariableSpaceAtEndOfDxe)) { ReclaimForOS (); } gBS->CloseEvent (Event); } /** Fault Tolerant Write protocol notification event handler. Non-Volatile variable write may needs FTW protocol to reclaim when writting variable. @param[in] Event Event whose notification function is being invoked. @param[in] Context Pointer to the notification function's context. **/ VOID EFIAPI FtwNotificationEvent ( IN EFI_EVENT Event, IN VOID *Context ) { EFI_STATUS Status; EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *FvbProtocol; EFI_FAULT_TOLERANT_WRITE_PROTOCOL *FtwProtocol; EFI_PHYSICAL_ADDRESS NvStorageVariableBase; EFI_GCD_MEMORY_SPACE_DESCRIPTOR GcdDescriptor; EFI_PHYSICAL_ADDRESS BaseAddress; UINT64 Length; EFI_PHYSICAL_ADDRESS VariableStoreBase; UINT64 VariableStoreLength; UINTN FtwMaxBlockSize; // // Ensure FTW protocol is installed. // Status = GetFtwProtocol ((VOID**) &FtwProtocol); if (EFI_ERROR (Status)) { return ; } Status = FtwProtocol->GetMaxBlockSize (FtwProtocol, &FtwMaxBlockSize); if (!EFI_ERROR (Status)) { ASSERT (PcdGet32 (PcdFlashNvStorageVariableSize) <= FtwMaxBlockSize); } // // Find the proper FVB protocol for variable. // NvStorageVariableBase = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageVariableBase64); if (NvStorageVariableBase == 0) { NvStorageVariableBase = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageVariableBase); } Status = GetFvbInfoByAddress (NvStorageVariableBase, NULL, &FvbProtocol); if (EFI_ERROR (Status)) { return ; } mVariableModuleGlobal->FvbInstance = FvbProtocol; // // Mark the variable storage region of the FLASH as RUNTIME. // VariableStoreBase = NvStorageVariableBase + (((EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)(NvStorageVariableBase))->HeaderLength); VariableStoreLength = ((VARIABLE_STORE_HEADER *)(UINTN)VariableStoreBase)->Size; BaseAddress = VariableStoreBase & (~EFI_PAGE_MASK); Length = VariableStoreLength + (VariableStoreBase - BaseAddress); Length = (Length + EFI_PAGE_SIZE - 1) & (~EFI_PAGE_MASK); Status = gDS->GetMemorySpaceDescriptor (BaseAddress, &GcdDescriptor); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_WARN, "Variable driver failed to get flash memory attribute.\n")); } else { Status = gDS->SetMemorySpaceAttributes ( BaseAddress, Length, GcdDescriptor.Attributes | EFI_MEMORY_RUNTIME ); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_WARN, "Variable driver failed to add EFI_MEMORY_RUNTIME attribute to Flash.\n")); } } Status = VariableWriteServiceInitialize (); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_ERROR, "Variable write service initialization failed. Status = %r\n", Status)); } // // Install the Variable Write Architectural protocol. // Status = gBS->InstallProtocolInterface ( &mHandle, &gEfiVariableWriteArchProtocolGuid, EFI_NATIVE_INTERFACE, NULL ); ASSERT_EFI_ERROR (Status); // // Close the notify event to avoid install gEfiVariableWriteArchProtocolGuid again. // gBS->CloseEvent (Event); } /** Variable Driver main entry point. The Variable driver places the 4 EFI runtime services in the EFI System Table and installs arch protocols for variable read and write services being available. It also registers a notification function for an EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE event. @param[in] ImageHandle The firmware allocated handle for the EFI image. @param[in] SystemTable A pointer to the EFI System Table. @retval EFI_SUCCESS Variable service successfully initialized. **/ EFI_STATUS EFIAPI VariableServiceInitialize ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { EFI_STATUS Status; EFI_EVENT ReadyToBootEvent; EFI_EVENT EndOfDxeEvent; Status = VariableCommonInitialize (); ASSERT_EFI_ERROR (Status); Status = gBS->InstallMultipleProtocolInterfaces ( &mHandle, &gEdkiiVariableLockProtocolGuid, &mVariableLock, NULL ); ASSERT_EFI_ERROR (Status); Status = gBS->InstallMultipleProtocolInterfaces ( &mHandle, &gEdkiiVarCheckProtocolGuid, &mVarCheck, NULL ); ASSERT_EFI_ERROR (Status); SystemTable->RuntimeServices->GetVariable = VariableServiceGetVariable; SystemTable->RuntimeServices->GetNextVariableName = VariableServiceGetNextVariableName; SystemTable->RuntimeServices->SetVariable = VariableServiceSetVariable; SystemTable->RuntimeServices->QueryVariableInfo = VariableServiceQueryVariableInfo; // // Now install the Variable Runtime Architectural protocol on a new handle. // Status = gBS->InstallProtocolInterface ( &mHandle, &gEfiVariableArchProtocolGuid, EFI_NATIVE_INTERFACE, NULL ); ASSERT_EFI_ERROR (Status); // // Register FtwNotificationEvent () notify function. // EfiCreateProtocolNotifyEvent ( &gEfiFaultTolerantWriteProtocolGuid, TPL_CALLBACK, FtwNotificationEvent, (VOID *)SystemTable, &mFtwRegistration ); Status = gBS->CreateEventEx ( EVT_NOTIFY_SIGNAL, TPL_NOTIFY, VariableClassAddressChangeEvent, NULL, &gEfiEventVirtualAddressChangeGuid, &mVirtualAddressChangeEvent ); ASSERT_EFI_ERROR (Status); // // Register the event handling function to reclaim variable for OS usage. // Status = EfiCreateEventReadyToBootEx ( TPL_NOTIFY, OnReadyToBoot, NULL, &ReadyToBootEvent ); ASSERT_EFI_ERROR (Status); // // Register the event handling function to set the End Of DXE flag. // Status = gBS->CreateEventEx ( EVT_NOTIFY_SIGNAL, TPL_NOTIFY, OnEndOfDxe, NULL, &gEfiEndOfDxeEventGroupGuid, &EndOfDxeEvent ); ASSERT_EFI_ERROR (Status); return EFI_SUCCESS; }