/**@file Copyright (c) 2006 - 2013, Intel Corporation. All rights reserved.<BR> This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. Module Name: FWBlockService.c Abstract: Revision History **/ // // The package level header files this module uses // #include <PiDxe.h> // // The protocols, PPI and GUID defintions for this module // #include <Guid/EventGroup.h> #include <Protocol/FirmwareVolumeBlock.h> #include <Protocol/DevicePath.h> // // The Library classes this module consumes // #include <Library/UefiLib.h> #include <Library/UefiDriverEntryPoint.h> #include <Library/BaseLib.h> #include <Library/DxeServicesTableLib.h> #include <Library/UefiRuntimeLib.h> #include <Library/DebugLib.h> #include <Library/BaseMemoryLib.h> #include <Library/MemoryAllocationLib.h> #include <Library/UefiBootServicesTableLib.h> #include <Library/DevicePathLib.h> #include "FwBlockService.h" #include "QemuFlash.h" #define EFI_FVB2_STATUS (EFI_FVB2_READ_STATUS | EFI_FVB2_WRITE_STATUS | EFI_FVB2_LOCK_STATUS) ESAL_FWB_GLOBAL *mFvbModuleGlobal; FV_MEMMAP_DEVICE_PATH mFvMemmapDevicePathTemplate = { { { HARDWARE_DEVICE_PATH, HW_MEMMAP_DP, { (UINT8)(sizeof (MEMMAP_DEVICE_PATH)), (UINT8)(sizeof (MEMMAP_DEVICE_PATH) >> 8) } }, EfiMemoryMappedIO, (EFI_PHYSICAL_ADDRESS) 0, (EFI_PHYSICAL_ADDRESS) 0, }, { END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE, { END_DEVICE_PATH_LENGTH, 0 } } }; FV_PIWG_DEVICE_PATH mFvPIWGDevicePathTemplate = { { { MEDIA_DEVICE_PATH, MEDIA_PIWG_FW_VOL_DP, { (UINT8)(sizeof (MEDIA_FW_VOL_DEVICE_PATH)), (UINT8)(sizeof (MEDIA_FW_VOL_DEVICE_PATH) >> 8) } }, { 0 } }, { END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE, { END_DEVICE_PATH_LENGTH, 0 } } }; EFI_FW_VOL_BLOCK_DEVICE mFvbDeviceTemplate = { FVB_DEVICE_SIGNATURE, NULL, 0, { FvbProtocolGetAttributes, FvbProtocolSetAttributes, FvbProtocolGetPhysicalAddress, FvbProtocolGetBlockSize, FvbProtocolRead, FvbProtocolWrite, FvbProtocolEraseBlocks, NULL } }; VOID EFIAPI FvbVirtualddressChangeEvent ( IN EFI_EVENT Event, IN VOID *Context ) /*++ Routine Description: Fixup internal data so that EFI and SAL can be call in virtual mode. Call the passed in Child Notify event and convert the mFvbModuleGlobal date items to there virtual address. mFvbModuleGlobal->FvInstance[FVB_PHYSICAL] - Physical copy of instance data mFvbModuleGlobal->FvInstance[FVB_VIRTUAL] - Virtual pointer to common instance data. Arguments: (Standard EFI notify event - EFI_EVENT_NOTIFY) Returns: None --*/ { EFI_FW_VOL_INSTANCE *FwhInstance; UINTN Index; EfiConvertPointer (0x0, (VOID **) &mFvbModuleGlobal->FvInstance[FVB_VIRTUAL]); // // Convert the base address of all the instances // Index = 0; FwhInstance = mFvbModuleGlobal->FvInstance[FVB_PHYSICAL]; while (Index < mFvbModuleGlobal->NumFv) { EfiConvertPointer (0x0, (VOID **) &FwhInstance->FvBase[FVB_VIRTUAL]); FwhInstance = (EFI_FW_VOL_INSTANCE *) ( (UINTN) ((UINT8 *) FwhInstance) + FwhInstance->VolumeHeader.HeaderLength + (sizeof (EFI_FW_VOL_INSTANCE) - sizeof (EFI_FIRMWARE_VOLUME_HEADER)) ); Index++; } EfiConvertPointer (0x0, (VOID **) &mFvbModuleGlobal->FvbScratchSpace[FVB_VIRTUAL]); EfiConvertPointer (0x0, (VOID **) &mFvbModuleGlobal); QemuFlashConvertPointers (); } EFI_STATUS GetFvbInstance ( IN UINTN Instance, IN ESAL_FWB_GLOBAL *Global, OUT EFI_FW_VOL_INSTANCE **FwhInstance, IN BOOLEAN Virtual ) /*++ Routine Description: Retrieves the physical address of a memory mapped FV Arguments: Instance - The FV instance whose base address is going to be returned Global - Pointer to ESAL_FWB_GLOBAL that contains all instance data FwhInstance - The EFI_FW_VOL_INSTANCE fimrware instance structure Virtual - Whether CPU is in virtual or physical mode Returns: EFI_SUCCESS - Successfully returns EFI_INVALID_PARAMETER - Instance not found --*/ { EFI_FW_VOL_INSTANCE *FwhRecord; *FwhInstance = NULL; if (Instance >= Global->NumFv) { return EFI_INVALID_PARAMETER; } // // Find the right instance of the FVB private data // FwhRecord = Global->FvInstance[Virtual]; while (Instance > 0) { FwhRecord = (EFI_FW_VOL_INSTANCE *) ( (UINTN) ((UINT8 *) FwhRecord) + FwhRecord->VolumeHeader.HeaderLength + (sizeof (EFI_FW_VOL_INSTANCE) - sizeof (EFI_FIRMWARE_VOLUME_HEADER)) ); Instance--; } *FwhInstance = FwhRecord; return EFI_SUCCESS; } EFI_STATUS FvbGetPhysicalAddress ( IN UINTN Instance, OUT EFI_PHYSICAL_ADDRESS *Address, IN ESAL_FWB_GLOBAL *Global, IN BOOLEAN Virtual ) /*++ Routine Description: Retrieves the physical address of a memory mapped FV Arguments: Instance - The FV instance whose base address is going to be returned Address - Pointer to a caller allocated EFI_PHYSICAL_ADDRESS that on successful return, contains the base address of the firmware volume. Global - Pointer to ESAL_FWB_GLOBAL that contains all instance data Virtual - Whether CPU is in virtual or physical mode Returns: EFI_SUCCESS - Successfully returns EFI_INVALID_PARAMETER - Instance not found --*/ { EFI_FW_VOL_INSTANCE *FwhInstance; EFI_STATUS Status; // // Find the right instance of the FVB private data // Status = GetFvbInstance (Instance, Global, &FwhInstance, Virtual); ASSERT_EFI_ERROR (Status); *Address = FwhInstance->FvBase[Virtual]; return EFI_SUCCESS; } EFI_STATUS FvbGetVolumeAttributes ( IN UINTN Instance, OUT EFI_FVB_ATTRIBUTES_2 *Attributes, IN ESAL_FWB_GLOBAL *Global, IN BOOLEAN Virtual ) /*++ Routine Description: Retrieves attributes, insures positive polarity of attribute bits, returns resulting attributes in output parameter Arguments: Instance - The FV instance whose attributes is going to be returned Attributes - Output buffer which contains attributes Global - Pointer to ESAL_FWB_GLOBAL that contains all instance data Virtual - Whether CPU is in virtual or physical mode Returns: EFI_SUCCESS - Successfully returns EFI_INVALID_PARAMETER - Instance not found --*/ { EFI_FW_VOL_INSTANCE *FwhInstance; EFI_STATUS Status; // // Find the right instance of the FVB private data // Status = GetFvbInstance (Instance, Global, &FwhInstance, Virtual); ASSERT_EFI_ERROR (Status); *Attributes = FwhInstance->VolumeHeader.Attributes; return EFI_SUCCESS; } EFI_STATUS FvbGetLbaAddress ( IN UINTN Instance, IN EFI_LBA Lba, OUT UINTN *LbaAddress, OUT UINTN *LbaLength, OUT UINTN *NumOfBlocks, IN ESAL_FWB_GLOBAL *Global, IN BOOLEAN Virtual ) /*++ Routine Description: Retrieves the starting address of an LBA in an FV Arguments: Instance - The FV instance which the Lba belongs to Lba - The logical block address LbaAddress - On output, contains the physical starting address of the Lba LbaLength - On output, contains the length of the block NumOfBlocks - A pointer to a caller allocated UINTN in which the number of consecutive blocks starting with Lba is returned. All blocks in this range have a size of BlockSize Global - Pointer to ESAL_FWB_GLOBAL that contains all instance data Virtual - Whether CPU is in virtual or physical mode Returns: EFI_SUCCESS - Successfully returns EFI_INVALID_PARAMETER - Instance not found --*/ { UINT32 NumBlocks; UINT32 BlockLength; UINTN Offset; EFI_LBA StartLba; EFI_LBA NextLba; EFI_FW_VOL_INSTANCE *FwhInstance; EFI_FV_BLOCK_MAP_ENTRY *BlockMap; EFI_STATUS Status; // // Find the right instance of the FVB private data // Status = GetFvbInstance (Instance, Global, &FwhInstance, Virtual); ASSERT_EFI_ERROR (Status); StartLba = 0; Offset = 0; BlockMap = &(FwhInstance->VolumeHeader.BlockMap[0]); // // Parse the blockmap of the FV to find which map entry the Lba belongs to // while (TRUE) { NumBlocks = BlockMap->NumBlocks; BlockLength = BlockMap->Length; if (NumBlocks == 0 || BlockLength == 0) { return EFI_INVALID_PARAMETER; } NextLba = StartLba + NumBlocks; // // The map entry found // if (Lba >= StartLba && Lba < NextLba) { Offset = Offset + (UINTN) MultU64x32 ((Lba - StartLba), BlockLength); if (LbaAddress != NULL) { *LbaAddress = FwhInstance->FvBase[Virtual] + Offset; } if (LbaLength != NULL) { *LbaLength = BlockLength; } if (NumOfBlocks != NULL) { *NumOfBlocks = (UINTN) (NextLba - Lba); } return EFI_SUCCESS; } StartLba = NextLba; Offset = Offset + NumBlocks * BlockLength; BlockMap++; } } EFI_STATUS FvbSetVolumeAttributes ( IN UINTN Instance, IN OUT EFI_FVB_ATTRIBUTES_2 *Attributes, IN ESAL_FWB_GLOBAL *Global, IN BOOLEAN Virtual ) /*++ Routine Description: Modifies the current settings of the firmware volume according to the input parameter, and returns the new setting of the volume Arguments: Instance - The FV instance whose attributes is going to be modified Attributes - On input, it is a pointer to EFI_FVB_ATTRIBUTES_2 containing the desired firmware volume settings. On successful return, it contains the new settings of the firmware volume Global - Pointer to ESAL_FWB_GLOBAL that contains all instance data Virtual - Whether CPU is in virtual or physical mode Returns: EFI_SUCCESS - Successfully returns EFI_ACCESS_DENIED - The volume setting is locked and cannot be modified EFI_INVALID_PARAMETER - Instance not found, or The attributes requested are in conflict with the capabilities as declared in the firmware volume header --*/ { EFI_FW_VOL_INSTANCE *FwhInstance; EFI_FVB_ATTRIBUTES_2 OldAttributes; EFI_FVB_ATTRIBUTES_2 *AttribPtr; UINT32 Capabilities; UINT32 OldStatus; UINT32 NewStatus; EFI_STATUS Status; EFI_FVB_ATTRIBUTES_2 UnchangedAttributes; // // Find the right instance of the FVB private data // Status = GetFvbInstance (Instance, Global, &FwhInstance, Virtual); ASSERT_EFI_ERROR (Status); AttribPtr = (EFI_FVB_ATTRIBUTES_2 *) &(FwhInstance->VolumeHeader.Attributes); OldAttributes = *AttribPtr; Capabilities = OldAttributes & (EFI_FVB2_READ_DISABLED_CAP | \ EFI_FVB2_READ_ENABLED_CAP | \ EFI_FVB2_WRITE_DISABLED_CAP | \ EFI_FVB2_WRITE_ENABLED_CAP | \ EFI_FVB2_LOCK_CAP \ ); OldStatus = OldAttributes & EFI_FVB2_STATUS; NewStatus = *Attributes & EFI_FVB2_STATUS; UnchangedAttributes = EFI_FVB2_READ_DISABLED_CAP | \ EFI_FVB2_READ_ENABLED_CAP | \ EFI_FVB2_WRITE_DISABLED_CAP | \ EFI_FVB2_WRITE_ENABLED_CAP | \ EFI_FVB2_LOCK_CAP | \ EFI_FVB2_STICKY_WRITE | \ EFI_FVB2_MEMORY_MAPPED | \ EFI_FVB2_ERASE_POLARITY | \ EFI_FVB2_READ_LOCK_CAP | \ EFI_FVB2_WRITE_LOCK_CAP | \ EFI_FVB2_ALIGNMENT; // // Some attributes of FV is read only can *not* be set // if ((OldAttributes & UnchangedAttributes) ^ (*Attributes & UnchangedAttributes)) { return EFI_INVALID_PARAMETER; } // // If firmware volume is locked, no status bit can be updated // if (OldAttributes & EFI_FVB2_LOCK_STATUS) { if (OldStatus ^ NewStatus) { return EFI_ACCESS_DENIED; } } // // Test read disable // if ((Capabilities & EFI_FVB2_READ_DISABLED_CAP) == 0) { if ((NewStatus & EFI_FVB2_READ_STATUS) == 0) { return EFI_INVALID_PARAMETER; } } // // Test read enable // if ((Capabilities & EFI_FVB2_READ_ENABLED_CAP) == 0) { if (NewStatus & EFI_FVB2_READ_STATUS) { return EFI_INVALID_PARAMETER; } } // // Test write disable // if ((Capabilities & EFI_FVB2_WRITE_DISABLED_CAP) == 0) { if ((NewStatus & EFI_FVB2_WRITE_STATUS) == 0) { return EFI_INVALID_PARAMETER; } } // // Test write enable // if ((Capabilities & EFI_FVB2_WRITE_ENABLED_CAP) == 0) { if (NewStatus & EFI_FVB2_WRITE_STATUS) { return EFI_INVALID_PARAMETER; } } // // Test lock // if ((Capabilities & EFI_FVB2_LOCK_CAP) == 0) { if (NewStatus & EFI_FVB2_LOCK_STATUS) { return EFI_INVALID_PARAMETER; } } *AttribPtr = (*AttribPtr) & (0xFFFFFFFF & (~EFI_FVB2_STATUS)); *AttribPtr = (*AttribPtr) | NewStatus; *Attributes = *AttribPtr; return EFI_SUCCESS; } // // FVB protocol APIs // EFI_STATUS EFIAPI FvbProtocolGetPhysicalAddress ( IN CONST EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This, OUT EFI_PHYSICAL_ADDRESS *Address ) /*++ Routine Description: Retrieves the physical address of the device. Arguments: This - Calling context Address - Output buffer containing the address. Returns: Returns: EFI_SUCCESS - Successfully returns --*/ { EFI_FW_VOL_BLOCK_DEVICE *FvbDevice; FvbDevice = FVB_DEVICE_FROM_THIS (This); return FvbGetPhysicalAddress (FvbDevice->Instance, Address, mFvbModuleGlobal, EfiGoneVirtual ()); } EFI_STATUS EFIAPI FvbProtocolGetBlockSize ( IN CONST EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This, IN CONST EFI_LBA Lba, OUT UINTN *BlockSize, OUT UINTN *NumOfBlocks ) /*++ Routine Description: Retrieve the size of a logical block Arguments: This - Calling context Lba - Indicates which block to return the size for. BlockSize - A pointer to a caller allocated UINTN in which the size of the block is returned NumOfBlocks - a pointer to a caller allocated UINTN in which the number of consecutive blocks starting with Lba is returned. All blocks in this range have a size of BlockSize Returns: EFI_SUCCESS - The firmware volume was read successfully and contents are in Buffer --*/ { EFI_FW_VOL_BLOCK_DEVICE *FvbDevice; FvbDevice = FVB_DEVICE_FROM_THIS (This); return FvbGetLbaAddress ( FvbDevice->Instance, Lba, NULL, BlockSize, NumOfBlocks, mFvbModuleGlobal, EfiGoneVirtual () ); } EFI_STATUS EFIAPI FvbProtocolGetAttributes ( IN CONST EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This, OUT EFI_FVB_ATTRIBUTES_2 *Attributes ) /*++ Routine Description: Retrieves Volume attributes. No polarity translations are done. Arguments: This - Calling context Attributes - output buffer which contains attributes Returns: EFI_SUCCESS - Successfully returns --*/ { EFI_FW_VOL_BLOCK_DEVICE *FvbDevice; FvbDevice = FVB_DEVICE_FROM_THIS (This); return FvbGetVolumeAttributes (FvbDevice->Instance, Attributes, mFvbModuleGlobal, EfiGoneVirtual ()); } EFI_STATUS EFIAPI FvbProtocolSetAttributes ( IN CONST EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This, IN OUT EFI_FVB_ATTRIBUTES_2 *Attributes ) /*++ Routine Description: Sets Volume attributes. No polarity translations are done. Arguments: This - Calling context Attributes - output buffer which contains attributes Returns: EFI_SUCCESS - Successfully returns --*/ { EFI_FW_VOL_BLOCK_DEVICE *FvbDevice; FvbDevice = FVB_DEVICE_FROM_THIS (This); return FvbSetVolumeAttributes (FvbDevice->Instance, Attributes, mFvbModuleGlobal, EfiGoneVirtual ()); } EFI_STATUS EFIAPI FvbProtocolEraseBlocks ( IN CONST EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This, ... ) /*++ Routine Description: The EraseBlock() function erases one or more blocks as denoted by the variable argument list. The entire parameter list of blocks must be verified prior to erasing any blocks. If a block is requested that does not exist within the associated firmware volume (it has a larger index than the last block of the firmware volume), the EraseBlock() function must return EFI_INVALID_PARAMETER without modifying the contents of the firmware volume. Arguments: This - Calling context ... - Starting LBA followed by Number of Lba to erase. a -1 to terminate the list. Returns: EFI_SUCCESS - The erase request was successfully completed EFI_ACCESS_DENIED - The firmware volume is in the WriteDisabled state EFI_DEVICE_ERROR - The block device is not functioning correctly and could not be written. Firmware device may have been partially erased --*/ { EFI_FW_VOL_BLOCK_DEVICE *FvbDevice; EFI_FW_VOL_INSTANCE *FwhInstance; UINTN NumOfBlocks; VA_LIST args; EFI_LBA StartingLba; UINTN NumOfLba; EFI_STATUS Status; FvbDevice = FVB_DEVICE_FROM_THIS (This); Status = GetFvbInstance (FvbDevice->Instance, mFvbModuleGlobal, &FwhInstance, EfiGoneVirtual ()); ASSERT_EFI_ERROR (Status); NumOfBlocks = FwhInstance->NumOfBlocks; VA_START (args, This); do { StartingLba = VA_ARG (args, EFI_LBA); if (StartingLba == EFI_LBA_LIST_TERMINATOR) { break; } NumOfLba = VA_ARG (args, UINT32); // // Check input parameters // if ((NumOfLba == 0) || ((StartingLba + NumOfLba) > NumOfBlocks)) { VA_END (args); return EFI_INVALID_PARAMETER; } } while (1); VA_END (args); VA_START (args, This); do { StartingLba = VA_ARG (args, EFI_LBA); if (StartingLba == EFI_LBA_LIST_TERMINATOR) { break; } NumOfLba = VA_ARG (args, UINT32); while (NumOfLba > 0) { Status = QemuFlashEraseBlock (StartingLba); if (EFI_ERROR (Status)) { VA_END (args); return Status; } StartingLba++; NumOfLba--; } } while (1); VA_END (args); return EFI_SUCCESS; } EFI_STATUS EFIAPI FvbProtocolWrite ( IN CONST EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This, IN EFI_LBA Lba, IN UINTN Offset, IN OUT UINTN *NumBytes, IN UINT8 *Buffer ) /*++ Routine Description: Writes data beginning at Lba:Offset from FV. The write terminates either when *NumBytes of data have been written, or when a block boundary is reached. *NumBytes is updated to reflect the actual number of bytes written. The write opertion does not include erase. This routine will attempt to write only the specified bytes. If the writes do not stick, it will return an error. Arguments: This - Calling context Lba - Block in which to begin write Offset - Offset in the block at which to begin write NumBytes - On input, indicates the requested write size. On output, indicates the actual number of bytes written Buffer - Buffer containing source data for the write. Returns: EFI_SUCCESS - The firmware volume was written successfully EFI_BAD_BUFFER_SIZE - Write attempted across a LBA boundary. On output, NumBytes contains the total number of bytes actually written EFI_ACCESS_DENIED - The firmware volume is in the WriteDisabled state EFI_DEVICE_ERROR - The block device is not functioning correctly and could not be written EFI_INVALID_PARAMETER - NumBytes or Buffer are NULL --*/ { return QemuFlashWrite ((EFI_LBA)Lba, (UINTN)Offset, NumBytes, (UINT8 *)Buffer); } EFI_STATUS EFIAPI FvbProtocolRead ( IN CONST EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *This, IN CONST EFI_LBA Lba, IN CONST UINTN Offset, IN OUT UINTN *NumBytes, IN UINT8 *Buffer ) /*++ Routine Description: Reads data beginning at Lba:Offset from FV. The Read terminates either when *NumBytes of data have been read, or when a block boundary is reached. *NumBytes is updated to reflect the actual number of bytes written. The write opertion does not include erase. This routine will attempt to write only the specified bytes. If the writes do not stick, it will return an error. Arguments: This - Calling context Lba - Block in which to begin Read Offset - Offset in the block at which to begin Read NumBytes - On input, indicates the requested write size. On output, indicates the actual number of bytes Read Buffer - Buffer containing source data for the Read. Returns: EFI_SUCCESS - The firmware volume was read successfully and contents are in Buffer EFI_BAD_BUFFER_SIZE - Read attempted across a LBA boundary. On output, NumBytes contains the total number of bytes returned in Buffer EFI_ACCESS_DENIED - The firmware volume is in the ReadDisabled state EFI_DEVICE_ERROR - The block device is not functioning correctly and could not be read EFI_INVALID_PARAMETER - NumBytes or Buffer are NULL --*/ { return QemuFlashRead ((EFI_LBA)Lba, (UINTN)Offset, NumBytes, (UINT8 *)Buffer); } EFI_STATUS ValidateFvHeader ( EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader ) /*++ Routine Description: Check the integrity of firmware volume header Arguments: FwVolHeader - A pointer to a firmware volume header Returns: EFI_SUCCESS - The firmware volume is consistent EFI_NOT_FOUND - The firmware volume has corrupted. So it is not an FV --*/ { UINT16 Checksum; // // Verify the header revision, header signature, length // Length of FvBlock cannot be 2**64-1 // HeaderLength cannot be an odd number // if ((FwVolHeader->Revision != EFI_FVH_REVISION) || (FwVolHeader->Signature != EFI_FVH_SIGNATURE) || (FwVolHeader->FvLength == ((UINTN) -1)) || ((FwVolHeader->HeaderLength & 0x01) != 0) ) { return EFI_NOT_FOUND; } // // Verify the header checksum // Checksum = CalculateSum16 ((UINT16 *) FwVolHeader, FwVolHeader->HeaderLength); if (Checksum != 0) { UINT16 Expected; Expected = ((UINTN) FwVolHeader->Checksum + 0x10000 - Checksum) & 0xffff; DEBUG ((EFI_D_INFO, "FV@%p Checksum is 0x%x, expected 0x%x\n", FwVolHeader, FwVolHeader->Checksum, Expected)); return EFI_NOT_FOUND; } return EFI_SUCCESS; } STATIC EFI_STATUS MarkMemoryRangeForRuntimeAccess ( EFI_PHYSICAL_ADDRESS BaseAddress, UINT64 Length ) { EFI_STATUS Status; // // Mark flash region as runtime memory // Status = gDS->RemoveMemorySpace ( BaseAddress, Length ); Status = gDS->AddMemorySpace ( EfiGcdMemoryTypeSystemMemory, BaseAddress, Length, EFI_MEMORY_UC | EFI_MEMORY_RUNTIME ); ASSERT_EFI_ERROR (Status); Status = gBS->AllocatePages ( AllocateAddress, EfiRuntimeServicesData, (UINTN) EFI_SIZE_TO_PAGES (Length), &BaseAddress ); ASSERT_EFI_ERROR (Status); return Status; } STATIC EFI_STATUS InitializeVariableFvHeader ( VOID ) { EFI_STATUS Status; EFI_FIRMWARE_VOLUME_HEADER *GoodFwVolHeader; EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader; UINTN Length; UINTN WriteLength; UINTN BlockSize; FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) (UINTN) PcdGet32 (PcdOvmfFlashNvStorageVariableBase); Length = (FixedPcdGet32 (PcdFlashNvStorageVariableSize) + FixedPcdGet32 (PcdFlashNvStorageFtwWorkingSize) + FixedPcdGet32 (PcdFlashNvStorageFtwSpareSize) + FixedPcdGet32 (PcdOvmfFlashNvStorageEventLogSize)); BlockSize = PcdGet32 (PcdOvmfFirmwareBlockSize); Status = ValidateFvHeader (FwVolHeader); if (!EFI_ERROR (Status)) { if (FwVolHeader->FvLength != Length || FwVolHeader->BlockMap[0].Length != BlockSize) { Status = EFI_VOLUME_CORRUPTED; } } if (EFI_ERROR (Status)) { UINTN Offset; UINTN Start; DEBUG ((EFI_D_INFO, "Variable FV header is not valid. It will be reinitialized.\n")); // // Get FvbInfo to provide in FwhInstance. // Status = GetFvbInfo (Length, &GoodFwVolHeader); ASSERT (!EFI_ERROR (Status)); Start = (UINTN)(UINT8*) FwVolHeader - PcdGet32 (PcdOvmfFdBaseAddress); ASSERT (Start % BlockSize == 0 && Length % BlockSize == 0); ASSERT (GoodFwVolHeader->HeaderLength <= BlockSize); // // Erase all the blocks // for (Offset = Start; Offset < Start + Length; Offset += BlockSize) { Status = QemuFlashEraseBlock ((EFI_LBA) Offset / BlockSize); ASSERT_EFI_ERROR (Status); } // // Write good FV header // WriteLength = GoodFwVolHeader->HeaderLength; Status = QemuFlashWrite ( (EFI_LBA) Start / BlockSize, 0, &WriteLength, (UINT8 *) GoodFwVolHeader); ASSERT_EFI_ERROR (Status); ASSERT (WriteLength == GoodFwVolHeader->HeaderLength); } return Status; } EFI_STATUS EFIAPI FvbInitialize ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) /*++ Routine Description: This function does common initialization for FVB services Arguments: Returns: --*/ { EFI_STATUS Status; EFI_FW_VOL_INSTANCE *FwhInstance; EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader; UINT32 BufferSize; EFI_FV_BLOCK_MAP_ENTRY *PtrBlockMapEntry; EFI_HANDLE FwbHandle; EFI_FW_VOL_BLOCK_DEVICE *FvbDevice; EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *OldFwbInterface; UINT32 MaxLbaSize; EFI_PHYSICAL_ADDRESS BaseAddress; UINT64 Length; UINTN NumOfBlocks; EFI_EVENT VirtualAddressChangeEvent; if (EFI_ERROR (QemuFlashInitialize ())) { // // Return an error so image will be unloaded // DEBUG ((EFI_D_INFO, "QEMU flash was not detected. Writable FVB is not being installed.\n")); return EFI_WRITE_PROTECTED; } // // Allocate runtime services data for global variable, which contains // the private data of all firmware volume block instances // mFvbModuleGlobal = AllocateRuntimePool (sizeof (ESAL_FWB_GLOBAL)); ASSERT (mFvbModuleGlobal != NULL); BaseAddress = (UINTN) PcdGet32 (PcdOvmfFdBaseAddress); Length = PcdGet32 (PcdOvmfFirmwareFdSize); Status = InitializeVariableFvHeader (); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_INFO, "QEMU Flash: Unable to initialize variable FV header\n")); return EFI_WRITE_PROTECTED; } FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) (UINTN) BaseAddress; Status = ValidateFvHeader (FwVolHeader); if (EFI_ERROR (Status)) { // // Get FvbInfo // Status = GetFvbInfo (Length, &FwVolHeader); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_INFO, "EFI_ERROR (GetFvbInfo (Length, &FwVolHeader))\n")); return EFI_WRITE_PROTECTED; } } BufferSize = (sizeof (EFI_FW_VOL_INSTANCE) + FwVolHeader->HeaderLength - sizeof (EFI_FIRMWARE_VOLUME_HEADER)); // // Only need to allocate once. There is only one copy of physical memory for // the private data of each FV instance. But in virtual mode or in physical // mode, the address of the the physical memory may be different. // mFvbModuleGlobal->FvInstance[FVB_PHYSICAL] = AllocateRuntimePool (BufferSize); ASSERT (mFvbModuleGlobal->FvInstance[FVB_PHYSICAL] != NULL); // // Make a virtual copy of the FvInstance pointer. // FwhInstance = mFvbModuleGlobal->FvInstance[FVB_PHYSICAL]; mFvbModuleGlobal->FvInstance[FVB_VIRTUAL] = FwhInstance; mFvbModuleGlobal->NumFv = 0; MaxLbaSize = 0; FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) (UINTN) PcdGet32 (PcdOvmfFlashNvStorageVariableBase); FwhInstance->FvBase[FVB_PHYSICAL] = (UINTN) BaseAddress; FwhInstance->FvBase[FVB_VIRTUAL] = (UINTN) BaseAddress; CopyMem ((UINTN *) &(FwhInstance->VolumeHeader), (UINTN *) FwVolHeader, FwVolHeader->HeaderLength); FwVolHeader = &(FwhInstance->VolumeHeader); EfiInitializeLock (&(FwhInstance->FvbDevLock), TPL_HIGH_LEVEL); NumOfBlocks = 0; for (PtrBlockMapEntry = FwVolHeader->BlockMap; PtrBlockMapEntry->NumBlocks != 0; PtrBlockMapEntry++) { // // Get the maximum size of a block. // if (MaxLbaSize < PtrBlockMapEntry->Length) { MaxLbaSize = PtrBlockMapEntry->Length; } NumOfBlocks = NumOfBlocks + PtrBlockMapEntry->NumBlocks; } // // The total number of blocks in the FV. // FwhInstance->NumOfBlocks = NumOfBlocks; // // Add a FVB Protocol Instance // FvbDevice = AllocateRuntimePool (sizeof (EFI_FW_VOL_BLOCK_DEVICE)); ASSERT (FvbDevice != NULL); CopyMem (FvbDevice, &mFvbDeviceTemplate, sizeof (EFI_FW_VOL_BLOCK_DEVICE)); FvbDevice->Instance = mFvbModuleGlobal->NumFv; mFvbModuleGlobal->NumFv++; // // Set up the devicepath // if (FwVolHeader->ExtHeaderOffset == 0) { // // FV does not contains extension header, then produce MEMMAP_DEVICE_PATH // FvbDevice->DevicePath = (EFI_DEVICE_PATH_PROTOCOL *) AllocateCopyPool (sizeof (FV_MEMMAP_DEVICE_PATH), &mFvMemmapDevicePathTemplate); ((FV_MEMMAP_DEVICE_PATH *) FvbDevice->DevicePath)->MemMapDevPath.StartingAddress = BaseAddress; ((FV_MEMMAP_DEVICE_PATH *) FvbDevice->DevicePath)->MemMapDevPath.EndingAddress = BaseAddress + FwVolHeader->FvLength - 1; } else { FvbDevice->DevicePath = (EFI_DEVICE_PATH_PROTOCOL *) AllocateCopyPool (sizeof (FV_PIWG_DEVICE_PATH), &mFvPIWGDevicePathTemplate); CopyGuid ( &((FV_PIWG_DEVICE_PATH *)FvbDevice->DevicePath)->FvDevPath.FvName, (GUID *)(UINTN)(BaseAddress + FwVolHeader->ExtHeaderOffset) ); } // // Find a handle with a matching device path that has supports FW Block protocol // Status = gBS->LocateDevicePath (&gEfiFirmwareVolumeBlockProtocolGuid, &FvbDevice->DevicePath, &FwbHandle); if (EFI_ERROR (Status)) { // // LocateDevicePath fails so install a new interface and device path // FwbHandle = NULL; DEBUG ((EFI_D_INFO, "Installing QEMU flash FVB\n")); Status = gBS->InstallMultipleProtocolInterfaces ( &FwbHandle, &gEfiFirmwareVolumeBlockProtocolGuid, &FvbDevice->FwVolBlockInstance, &gEfiDevicePathProtocolGuid, FvbDevice->DevicePath, NULL ); ASSERT_EFI_ERROR (Status); } else if (IsDevicePathEnd (FvbDevice->DevicePath)) { // // Device already exists, so reinstall the FVB protocol // Status = gBS->HandleProtocol ( FwbHandle, &gEfiFirmwareVolumeBlockProtocolGuid, (VOID**)&OldFwbInterface ); ASSERT_EFI_ERROR (Status); DEBUG ((EFI_D_INFO, "Reinstalling FVB for QEMU flash region\n")); Status = gBS->ReinstallProtocolInterface ( FwbHandle, &gEfiFirmwareVolumeBlockProtocolGuid, OldFwbInterface, &FvbDevice->FwVolBlockInstance ); ASSERT_EFI_ERROR (Status); } else { // // There was a FVB protocol on an End Device Path node // ASSERT (FALSE); } MarkMemoryRangeForRuntimeAccess (BaseAddress, Length); // // Set several PCD values to point to flash // PcdSet64 ( PcdFlashNvStorageVariableBase64, (UINTN) PcdGet32 (PcdOvmfFlashNvStorageVariableBase) ); PcdSet32 ( PcdFlashNvStorageFtwWorkingBase, PcdGet32 (PcdOvmfFlashNvStorageFtwWorkingBase) ); PcdSet32 ( PcdFlashNvStorageFtwSpareBase, PcdGet32 (PcdOvmfFlashNvStorageFtwSpareBase) ); FwhInstance = (EFI_FW_VOL_INSTANCE *) ( (UINTN) ((UINT8 *) FwhInstance) + FwVolHeader->HeaderLength + (sizeof (EFI_FW_VOL_INSTANCE) - sizeof (EFI_FIRMWARE_VOLUME_HEADER)) ); VirtualAddressChangeEvent = NULL; Status = gBS->CreateEventEx ( EVT_NOTIFY_SIGNAL, TPL_NOTIFY, FvbVirtualddressChangeEvent, NULL, &gEfiEventVirtualAddressChangeGuid, &VirtualAddressChangeEvent ); ASSERT_EFI_ERROR (Status); PcdSetBool (PcdOvmfFlashVariablesEnable, TRUE); return EFI_SUCCESS; }