/** @file Copyright (c) 2017 - 2018, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "DmaProtection.h" UINTN mVtdUnitNumber; VTD_UNIT_INFORMATION *mVtdUnitInformation; BOOLEAN mVtdEnabled; /** Flush VTD page table and context table memory. This action is to make sure the IOMMU engine can get final data in memory. @param[in] VtdIndex The index used to identify a VTd engine. @param[in] Base The base address of memory to be flushed. @param[in] Size The size of memory in bytes to be flushed. **/ VOID FlushPageTableMemory ( IN UINTN VtdIndex, IN UINTN Base, IN UINTN Size ) { if (mVtdUnitInformation[VtdIndex].ECapReg.Bits.C == 0) { WriteBackDataCacheRange ((VOID *)Base, Size); } } /** Flush VTd engine write buffer. @param[in] VtdIndex The index used to identify a VTd engine. **/ VOID FlushWriteBuffer ( IN UINTN VtdIndex ) { UINT32 Reg32; if (mVtdUnitInformation[VtdIndex].CapReg.Bits.RWBF != 0) { Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_GSTS_REG); MmioWrite32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_GCMD_REG, Reg32 | B_GMCD_REG_WBF); do { Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_GSTS_REG); } while ((Reg32 & B_GSTS_REG_WBF) != 0); } } /** Invalidate VTd context cache. @param[in] VtdIndex The index used to identify a VTd engine. **/ EFI_STATUS InvalidateContextCache ( IN UINTN VtdIndex ) { UINT64 Reg64; Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CCMD_REG); if ((Reg64 & B_CCMD_REG_ICC) != 0) { DEBUG ((DEBUG_ERROR,"ERROR: InvalidateContextCache: B_CCMD_REG_ICC is set for VTD(%d)\n",VtdIndex)); return EFI_DEVICE_ERROR; } Reg64 &= ((~B_CCMD_REG_ICC) & (~B_CCMD_REG_CIRG_MASK)); Reg64 |= (B_CCMD_REG_ICC | V_CCMD_REG_CIRG_GLOBAL); MmioWrite64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CCMD_REG, Reg64); do { Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CCMD_REG); } while ((Reg64 & B_CCMD_REG_ICC) != 0); return EFI_SUCCESS; } /** Invalidate VTd IOTLB. @param[in] VtdIndex The index used to identify a VTd engine. **/ EFI_STATUS InvalidateIOTLB ( IN UINTN VtdIndex ) { UINT64 Reg64; Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG); if ((Reg64 & B_IOTLB_REG_IVT) != 0) { DEBUG ((DEBUG_ERROR,"ERROR: InvalidateIOTLB: B_IOTLB_REG_IVT is set for VTD(%d)\n", VtdIndex)); return EFI_DEVICE_ERROR; } Reg64 &= ((~B_IOTLB_REG_IVT) & (~B_IOTLB_REG_IIRG_MASK)); Reg64 |= (B_IOTLB_REG_IVT | V_IOTLB_REG_IIRG_GLOBAL); MmioWrite64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG, Reg64); do { Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG); } while ((Reg64 & B_IOTLB_REG_IVT) != 0); return EFI_SUCCESS; } /** Invalid VTd global IOTLB. @param[in] VtdIndex The index of VTd engine. @retval EFI_SUCCESS VTd global IOTLB is invalidated. @retval EFI_DEVICE_ERROR VTd global IOTLB is not invalidated. **/ EFI_STATUS InvalidateVtdIOTLBGlobal ( IN UINTN VtdIndex ) { if (!mVtdEnabled) { return EFI_SUCCESS; } DEBUG((DEBUG_VERBOSE, "InvalidateVtdIOTLBGlobal(%d)\n", VtdIndex)); // // Write Buffer Flush before invalidation // FlushWriteBuffer (VtdIndex); // // Invalidate the context cache // if (mVtdUnitInformation[VtdIndex].HasDirtyContext) { InvalidateContextCache (VtdIndex); } // // Invalidate the IOTLB cache // if (mVtdUnitInformation[VtdIndex].HasDirtyContext || mVtdUnitInformation[VtdIndex].HasDirtyPages) { InvalidateIOTLB (VtdIndex); } return EFI_SUCCESS; } /** Prepare VTD configuration. **/ VOID PrepareVtdConfig ( VOID ) { UINTN Index; UINTN DomainNumber; for (Index = 0; Index < mVtdUnitNumber; Index++) { DEBUG ((DEBUG_INFO, "Dump VTd Capability (%d)\n", Index)); mVtdUnitInformation[Index].CapReg.Uint64 = MmioRead64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_CAP_REG); DumpVtdCapRegs (&mVtdUnitInformation[Index].CapReg); mVtdUnitInformation[Index].ECapReg.Uint64 = MmioRead64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_ECAP_REG); DumpVtdECapRegs (&mVtdUnitInformation[Index].ECapReg); if ((mVtdUnitInformation[Index].CapReg.Bits.SLLPS & BIT0) == 0) { DEBUG((DEBUG_WARN, "!!!! 2MB super page is not supported on VTD %d !!!!\n", Index)); } if ((mVtdUnitInformation[Index].CapReg.Bits.SAGAW & BIT2) == 0) { DEBUG((DEBUG_ERROR, "!!!! 4-level page-table is not supported on VTD %d !!!!\n", Index)); return ; } DomainNumber = (UINTN)1 << (UINT8)((UINTN)mVtdUnitInformation[Index].CapReg.Bits.ND * 2 + 4); if (mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceDataNumber >= DomainNumber) { DEBUG((DEBUG_ERROR, "!!!! Pci device Number(0x%x) >= DomainNumber(0x%x) !!!!\n", mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceDataNumber, DomainNumber)); return ; } } return ; } /** Disable PMR in all VTd engine. **/ VOID DisablePmr ( VOID ) { UINT32 Reg32; VTD_CAP_REG CapReg; UINTN Index; DEBUG ((DEBUG_INFO,"DisablePmr\n")); for (Index = 0; Index < mVtdUnitNumber; Index++) { CapReg.Uint64 = MmioRead64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_CAP_REG); if (CapReg.Bits.PLMR == 0 || CapReg.Bits.PHMR == 0) { continue ; } Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_PMEN_ENABLE_REG); if ((Reg32 & BIT0) != 0) { MmioWrite32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_PMEN_ENABLE_REG, 0x0); do { Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_PMEN_ENABLE_REG); } while((Reg32 & BIT0) != 0); DEBUG ((DEBUG_INFO,"Pmr(%d) disabled\n", Index)); } else { DEBUG ((DEBUG_INFO,"Pmr(%d) not enabled\n", Index)); } } return ; } /** Enable DMAR translation. @retval EFI_SUCCESS DMAR translation is enabled. @retval EFI_DEVICE_ERROR DMAR translation is not enabled. **/ EFI_STATUS EnableDmar ( VOID ) { UINTN Index; UINT32 Reg32; for (Index = 0; Index < mVtdUnitNumber; Index++) { DEBUG((DEBUG_INFO, ">>>>>>EnableDmar() for engine [%d] \n", Index)); if (mVtdUnitInformation[Index].ExtRootEntryTable != NULL) { DEBUG((DEBUG_INFO, "ExtRootEntryTable 0x%x \n", mVtdUnitInformation[Index].ExtRootEntryTable)); MmioWrite64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_RTADDR_REG, (UINT64)(UINTN)mVtdUnitInformation[Index].ExtRootEntryTable | BIT11); } else { DEBUG((DEBUG_INFO, "RootEntryTable 0x%x \n", mVtdUnitInformation[Index].RootEntryTable)); MmioWrite64 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_RTADDR_REG, (UINT64)(UINTN)mVtdUnitInformation[Index].RootEntryTable); } MmioWrite32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GCMD_REG, B_GMCD_REG_SRTP); DEBUG((DEBUG_INFO, "EnableDmar: waiting for RTPS bit to be set... \n")); do { Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GSTS_REG); } while((Reg32 & B_GSTS_REG_RTPS) == 0); // // Init DMAr Fault Event and Data registers // Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_FEDATA_REG); // // Write Buffer Flush before invalidation // FlushWriteBuffer (Index); // // Invalidate the context cache // InvalidateContextCache (Index); // // Invalidate the IOTLB cache // InvalidateIOTLB (Index); // // Enable VTd // MmioWrite32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GCMD_REG, B_GMCD_REG_TE); DEBUG((DEBUG_INFO, "EnableDmar: Waiting B_GSTS_REG_TE ...\n")); do { Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GSTS_REG); } while ((Reg32 & B_GSTS_REG_TE) == 0); DEBUG ((DEBUG_INFO,"VTD (%d) enabled!<<<<<<\n",Index)); } // // Need disable PMR, since we already setup translation table. // DisablePmr (); mVtdEnabled = TRUE; return EFI_SUCCESS; } /** Disable DMAR translation. @retval EFI_SUCCESS DMAR translation is disabled. @retval EFI_DEVICE_ERROR DMAR translation is not disabled. **/ EFI_STATUS DisableDmar ( VOID ) { UINTN Index; UINTN SubIndex; UINT32 Reg32; for (Index = 0; Index < mVtdUnitNumber; Index++) { DEBUG((DEBUG_INFO, ">>>>>>DisableDmar() for engine [%d] \n", Index)); // // Write Buffer Flush before invalidation // FlushWriteBuffer (Index); // // Disable VTd // MmioWrite32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GCMD_REG, B_GMCD_REG_SRTP); do { Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GSTS_REG); } while((Reg32 & B_GSTS_REG_RTPS) == 0); Reg32 = MmioRead32 (mVtdUnitInformation[Index].VtdUnitBaseAddress + R_GSTS_REG); DEBUG((DEBUG_INFO, "DisableDmar: GSTS_REG - 0x%08x\n", Reg32)); DEBUG ((DEBUG_INFO,"VTD (%d) Disabled!<<<<<<\n",Index)); } mVtdEnabled = FALSE; for (Index = 0; Index < mVtdUnitNumber; Index++) { DEBUG((DEBUG_INFO, "engine [%d] access\n", Index)); for (SubIndex = 0; SubIndex < mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceDataNumber; SubIndex++) { DEBUG ((DEBUG_INFO, " PCI S%04X B%02x D%02x F%02x - %d\n", mVtdUnitInformation[Index].Segment, mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceData[Index].PciSourceId.Bits.Bus, mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceData[Index].PciSourceId.Bits.Device, mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceData[Index].PciSourceId.Bits.Function, mVtdUnitInformation[Index].PciDeviceInfo.PciDeviceData[Index].AccessCount )); } } return EFI_SUCCESS; } /** Dump VTd capability registers. @param[in] CapReg The capability register. **/ VOID DumpVtdCapRegs ( IN VTD_CAP_REG *CapReg ) { DEBUG((DEBUG_INFO, " CapReg:\n", CapReg->Uint64)); DEBUG((DEBUG_INFO, " ND - 0x%x\n", CapReg->Bits.ND)); DEBUG((DEBUG_INFO, " AFL - 0x%x\n", CapReg->Bits.AFL)); DEBUG((DEBUG_INFO, " RWBF - 0x%x\n", CapReg->Bits.RWBF)); DEBUG((DEBUG_INFO, " PLMR - 0x%x\n", CapReg->Bits.PLMR)); DEBUG((DEBUG_INFO, " PHMR - 0x%x\n", CapReg->Bits.PHMR)); DEBUG((DEBUG_INFO, " CM - 0x%x\n", CapReg->Bits.CM)); DEBUG((DEBUG_INFO, " SAGAW - 0x%x\n", CapReg->Bits.SAGAW)); DEBUG((DEBUG_INFO, " MGAW - 0x%x\n", CapReg->Bits.MGAW)); DEBUG((DEBUG_INFO, " ZLR - 0x%x\n", CapReg->Bits.ZLR)); DEBUG((DEBUG_INFO, " FRO - 0x%x\n", CapReg->Bits.FRO)); DEBUG((DEBUG_INFO, " SLLPS - 0x%x\n", CapReg->Bits.SLLPS)); DEBUG((DEBUG_INFO, " PSI - 0x%x\n", CapReg->Bits.PSI)); DEBUG((DEBUG_INFO, " NFR - 0x%x\n", CapReg->Bits.NFR)); DEBUG((DEBUG_INFO, " MAMV - 0x%x\n", CapReg->Bits.MAMV)); DEBUG((DEBUG_INFO, " DWD - 0x%x\n", CapReg->Bits.DWD)); DEBUG((DEBUG_INFO, " DRD - 0x%x\n", CapReg->Bits.DRD)); DEBUG((DEBUG_INFO, " FL1GP - 0x%x\n", CapReg->Bits.FL1GP)); DEBUG((DEBUG_INFO, " PI - 0x%x\n", CapReg->Bits.PI)); } /** Dump VTd extended capability registers. @param[in] ECapReg The extended capability register. **/ VOID DumpVtdECapRegs ( IN VTD_ECAP_REG *ECapReg ) { DEBUG((DEBUG_INFO, " ECapReg:\n", ECapReg->Uint64)); DEBUG((DEBUG_INFO, " C - 0x%x\n", ECapReg->Bits.C)); DEBUG((DEBUG_INFO, " QI - 0x%x\n", ECapReg->Bits.QI)); DEBUG((DEBUG_INFO, " DT - 0x%x\n", ECapReg->Bits.DT)); DEBUG((DEBUG_INFO, " IR - 0x%x\n", ECapReg->Bits.IR)); DEBUG((DEBUG_INFO, " EIM - 0x%x\n", ECapReg->Bits.EIM)); DEBUG((DEBUG_INFO, " PT - 0x%x\n", ECapReg->Bits.PT)); DEBUG((DEBUG_INFO, " SC - 0x%x\n", ECapReg->Bits.SC)); DEBUG((DEBUG_INFO, " IRO - 0x%x\n", ECapReg->Bits.IRO)); DEBUG((DEBUG_INFO, " MHMV - 0x%x\n", ECapReg->Bits.MHMV)); DEBUG((DEBUG_INFO, " ECS - 0x%x\n", ECapReg->Bits.ECS)); DEBUG((DEBUG_INFO, " MTS - 0x%x\n", ECapReg->Bits.MTS)); DEBUG((DEBUG_INFO, " NEST - 0x%x\n", ECapReg->Bits.NEST)); DEBUG((DEBUG_INFO, " DIS - 0x%x\n", ECapReg->Bits.DIS)); DEBUG((DEBUG_INFO, " PASID - 0x%x\n", ECapReg->Bits.PASID)); DEBUG((DEBUG_INFO, " PRS - 0x%x\n", ECapReg->Bits.PRS)); DEBUG((DEBUG_INFO, " ERS - 0x%x\n", ECapReg->Bits.ERS)); DEBUG((DEBUG_INFO, " SRS - 0x%x\n", ECapReg->Bits.SRS)); DEBUG((DEBUG_INFO, " NWFS - 0x%x\n", ECapReg->Bits.NWFS)); DEBUG((DEBUG_INFO, " EAFS - 0x%x\n", ECapReg->Bits.EAFS)); DEBUG((DEBUG_INFO, " PSS - 0x%x\n", ECapReg->Bits.PSS)); } /** Dump VTd registers. @param[in] VtdIndex The index of VTd engine. **/ VOID DumpVtdRegs ( IN UINTN VtdIndex ) { UINTN Index; UINT64 Reg64; VTD_FRCD_REG FrcdReg; VTD_CAP_REG CapReg; UINT32 Reg32; VTD_SOURCE_ID SourceId; DEBUG((DEBUG_INFO, "#### DumpVtdRegs(%d) Begin ####\n", VtdIndex)); Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_VER_REG); DEBUG((DEBUG_INFO, " VER_REG - 0x%08x\n", Reg32)); CapReg.Uint64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CAP_REG); DEBUG((DEBUG_INFO, " CAP_REG - 0x%016lx\n", CapReg.Uint64)); Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_ECAP_REG); DEBUG((DEBUG_INFO, " ECAP_REG - 0x%016lx\n", Reg64)); Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_GSTS_REG); DEBUG((DEBUG_INFO, " GSTS_REG - 0x%08x \n", Reg32)); Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_RTADDR_REG); DEBUG((DEBUG_INFO, " RTADDR_REG - 0x%016lx\n", Reg64)); Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_CCMD_REG); DEBUG((DEBUG_INFO, " CCMD_REG - 0x%016lx\n", Reg64)); Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FSTS_REG); DEBUG((DEBUG_INFO, " FSTS_REG - 0x%08x\n", Reg32)); Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FECTL_REG); DEBUG((DEBUG_INFO, " FECTL_REG - 0x%08x\n", Reg32)); Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FEDATA_REG); DEBUG((DEBUG_INFO, " FEDATA_REG - 0x%08x\n", Reg32)); Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FEADDR_REG); DEBUG((DEBUG_INFO, " FEADDR_REG - 0x%08x\n",Reg32)); Reg32 = MmioRead32 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + R_FEUADDR_REG); DEBUG((DEBUG_INFO, " FEUADDR_REG - 0x%08x\n",Reg32)); for (Index = 0; Index < (UINTN)CapReg.Bits.NFR + 1; Index++) { FrcdReg.Uint64[0] = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + ((CapReg.Bits.FRO * 16) + (Index * 16) + R_FRCD_REG)); FrcdReg.Uint64[1] = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + ((CapReg.Bits.FRO * 16) + (Index * 16) + R_FRCD_REG + sizeof(UINT64))); DEBUG((DEBUG_INFO, " FRCD_REG[%d] - 0x%016lx %016lx\n", Index, FrcdReg.Uint64[1], FrcdReg.Uint64[0])); if (FrcdReg.Uint64[1] != 0 || FrcdReg.Uint64[0] != 0) { DEBUG((DEBUG_INFO, " Fault Info - 0x%016lx\n", VTD_64BITS_ADDRESS(FrcdReg.Bits.FILo, FrcdReg.Bits.FIHi))); SourceId.Uint16 = (UINT16)FrcdReg.Bits.SID; DEBUG((DEBUG_INFO, " Source - B%02x D%02x F%02x\n", SourceId.Bits.Bus, SourceId.Bits.Device, SourceId.Bits.Function)); DEBUG((DEBUG_INFO, " Type - %x (%a)\n", FrcdReg.Bits.T, FrcdReg.Bits.T ? "read" : "write")); DEBUG((DEBUG_INFO, " Reason - %x (Refer to VTd Spec, Appendix A)\n", FrcdReg.Bits.FR)); } } Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IVA_REG); DEBUG((DEBUG_INFO, " IVA_REG - 0x%016lx\n",Reg64)); Reg64 = MmioRead64 (mVtdUnitInformation[VtdIndex].VtdUnitBaseAddress + (mVtdUnitInformation[VtdIndex].ECapReg.Bits.IRO * 16) + R_IOTLB_REG); DEBUG((DEBUG_INFO, " IOTLB_REG - 0x%016lx\n",Reg64)); DEBUG((DEBUG_INFO, "#### DumpVtdRegs(%d) End ####\n", VtdIndex)); } /** Dump VTd registers for all VTd engine. **/ VOID DumpVtdRegsAll ( VOID ) { UINTN Num; for (Num = 0; Num < mVtdUnitNumber; Num++) { DumpVtdRegs (Num); } } /** Dump VTd registers if there is error. **/ VOID DumpVtdIfError ( VOID ) { UINTN Num; UINTN Index; VTD_FRCD_REG FrcdReg; VTD_CAP_REG CapReg; UINT32 Reg32; BOOLEAN HasError; for (Num = 0; Num < mVtdUnitNumber; Num++) { HasError = FALSE; Reg32 = MmioRead32 (mVtdUnitInformation[Num].VtdUnitBaseAddress + R_FSTS_REG); if (Reg32 != 0) { HasError = TRUE; } Reg32 = MmioRead32 (mVtdUnitInformation[Num].VtdUnitBaseAddress + R_FECTL_REG); if ((Reg32 & BIT30) != 0) { HasError = TRUE; } CapReg.Uint64 = MmioRead64 (mVtdUnitInformation[Num].VtdUnitBaseAddress + R_CAP_REG); for (Index = 0; Index < (UINTN)CapReg.Bits.NFR + 1; Index++) { FrcdReg.Uint64[0] = MmioRead64 (mVtdUnitInformation[Num].VtdUnitBaseAddress + ((CapReg.Bits.FRO * 16) + (Index * 16) + R_FRCD_REG)); FrcdReg.Uint64[1] = MmioRead64 (mVtdUnitInformation[Num].VtdUnitBaseAddress + ((CapReg.Bits.FRO * 16) + (Index * 16) + R_FRCD_REG + sizeof(UINT64))); if (FrcdReg.Bits.F != 0) { HasError = TRUE; } } if (HasError) { REPORT_STATUS_CODE (EFI_ERROR_CODE, PcdGet32 (PcdErrorCodeVTdError)); DEBUG((DEBUG_INFO, "\n#### ERROR ####\n")); DumpVtdRegs (Num); DEBUG((DEBUG_INFO, "#### ERROR ####\n\n")); // // Clear // for (Index = 0; Index < (UINTN)CapReg.Bits.NFR + 1; Index++) { FrcdReg.Uint64[1] = MmioRead64 (mVtdUnitInformation[Num].VtdUnitBaseAddress + ((CapReg.Bits.FRO * 16) + (Index * 16) + R_FRCD_REG + sizeof(UINT64))); if (FrcdReg.Bits.F != 0) { // // Software writes the value read from this field (F) to Clear it. // MmioWrite64 (mVtdUnitInformation[Num].VtdUnitBaseAddress + ((CapReg.Bits.FRO * 16) + (Index * 16) + R_FRCD_REG + sizeof(UINT64)), FrcdReg.Uint64[1]); } } MmioWrite32 (mVtdUnitInformation[Num].VtdUnitBaseAddress + R_FSTS_REG, MmioRead32 (mVtdUnitInformation[Num].VtdUnitBaseAddress + R_FSTS_REG)); } } }