/** @file Construct MP Services Protocol. The MP Services Protocol provides a generalized way of performing following tasks: - Retrieving information of multi-processor environment and MP-related status of specific processors. - Dispatching user-provided function to APs. - Maintain MP-related processor status. The MP Services Protocol must be produced on any system with more than one logical processor. The Protocol is available only during boot time. MP Services Protocol is hardware-independent. Most of the logic of this protocol is architecturally neutral. It abstracts the multi-processor environment and status of processors, and provides interfaces to retrieve information, maintain, and dispatch. MP Services Protocol may be consumed by ACPI module. The ACPI module may use this protocol to retrieve data that are needed for an MP platform and report them to OS. MP Services Protocol may also be used to program and configure processors, such as MTRR synchronization for memory space attributes setting in DXE Services. MP Services Protocol may be used by non-CPU DXE drivers to speed up platform boot by taking advantage of the processing capabilities of the APs, for example, using APs to help test system memory in parallel with other device initialization. Diagnostics applications may also use this protocol for multi-processor. Copyright (c) 2022, Qualcomm Innovation Center, Inc. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "MpServicesInternal.h" #define POLL_INTERVAL_US 50000 STATIC CPU_MP_DATA mCpuMpData; STATIC BOOLEAN mNonBlockingModeAllowed; UINT64 *gApStacksBase; UINT64 *gProcessorIDs; CONST UINT64 gApStackSize = AP_STACK_SIZE; VOID *gTtbr0; UINTN gTcr; UINTN gMair; STATIC BOOLEAN IsCurrentProcessorBSP ( VOID ); /** Turns on the specified core using PSCI and executes the user-supplied function that's been configured via a previous call to SetApProcedure. @param ProcessorIndex The index of the core to turn on. @retval EFI_SUCCESS Success. @retval EFI_DEVICE_ERROR The processor could not be turned on. **/ STATIC EFI_STATUS EFIAPI DispatchCpu ( IN UINTN ProcessorIndex ) { ARM_SMC_ARGS Args; EFI_STATUS Status; Status = EFI_SUCCESS; mCpuMpData.CpuData[ProcessorIndex].State = CpuStateBusy; /* Turn the AP on */ if (sizeof (Args.Arg0) == sizeof (UINT32)) { Args.Arg0 = ARM_SMC_ID_PSCI_CPU_ON_AARCH32; } else { Args.Arg0 = ARM_SMC_ID_PSCI_CPU_ON_AARCH64; } Args.Arg1 = gProcessorIDs[ProcessorIndex]; Args.Arg2 = (UINTN)ApEntryPoint; ArmCallSmc (&Args); if (Args.Arg0 != ARM_SMC_PSCI_RET_SUCCESS) { DEBUG ((DEBUG_ERROR, "PSCI_CPU_ON call failed: %d\n", Args.Arg0)); Status = EFI_DEVICE_ERROR; } return Status; } /** Returns whether the specified processor is the BSP. @param[in] ProcessorIndex The index the processor to check. @return TRUE if the processor is the BSP, FALSE otherwise. **/ STATIC BOOLEAN IsProcessorBSP ( UINTN ProcessorIndex ) { EFI_PROCESSOR_INFORMATION *CpuInfo; CpuInfo = &mCpuMpData.CpuData[ProcessorIndex].Info; return (CpuInfo->StatusFlag & PROCESSOR_AS_BSP_BIT) != 0; } /** Get the Application Processors state. @param[in] CpuData The pointer to CPU_AP_DATA of specified AP. @return The AP status. **/ CPU_STATE GetApState ( IN CPU_AP_DATA *CpuData ) { return CpuData->State; } /** Configures the processor context with the user-supplied procedure and argument. @param CpuData The processor context. @param Procedure The user-supplied procedure. @param ProcedureArgument The user-supplied procedure argument. **/ STATIC VOID SetApProcedure ( IN CPU_AP_DATA *CpuData, IN EFI_AP_PROCEDURE Procedure, IN VOID *ProcedureArgument ) { ASSERT (CpuData != NULL); ASSERT (Procedure != NULL); CpuData->Parameter = ProcedureArgument; CpuData->Procedure = Procedure; } /** Returns the index of the next processor that is blocked. @param[out] NextNumber The index of the next blocked processor. @retval EFI_SUCCESS Successfully found the next blocked processor. @retval EFI_NOT_FOUND There are no blocked processors. **/ STATIC EFI_STATUS GetNextBlockedNumber ( OUT UINTN *NextNumber ) { UINTN Index; CPU_STATE State; CPU_AP_DATA *CpuData; for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) { CpuData = &mCpuMpData.CpuData[Index]; if (IsProcessorBSP (Index)) { // Skip BSP continue; } State = CpuData->State; if (State == CpuStateBlocked) { *NextNumber = Index; return EFI_SUCCESS; } } return EFI_NOT_FOUND; } /** Stalls the BSP for the minimum of POLL_INTERVAL_US and Timeout. @param[in] Timeout The time limit in microseconds remaining for APs to return from Procedure. @retval StallTime Time of execution stall. **/ STATIC UINTN CalculateAndStallInterval ( IN UINTN Timeout ) { UINTN StallTime; if ((Timeout < POLL_INTERVAL_US) && (Timeout != 0)) { StallTime = Timeout; } else { StallTime = POLL_INTERVAL_US; } gBS->Stall (StallTime); return StallTime; } /** This service retrieves the number of logical processor in the platform and the number of those logical processors that are enabled on this boot. This service may only be called from the BSP. This function is used to retrieve the following information: - The number of logical processors that are present in the system. - The number of enabled logical processors in the system at the instant this call is made. Because MP Service Protocol provides services to enable and disable processors dynamically, the number of enabled logical processors may vary during the course of a boot session. If this service is called from an AP, then EFI_DEVICE_ERROR is returned. If NumberOfProcessors or NumberOfEnabledProcessors is NULL, then EFI_INVALID_PARAMETER is returned. Otherwise, the total number of processors is returned in NumberOfProcessors, the number of currently enabled processor is returned in NumberOfEnabledProcessors, and EFI_SUCCESS is returned. @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. @param[out] NumberOfProcessors Pointer to the total number of logical processors in the system, including the BSP and disabled APs. @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical processors that exist in the system, including the BSP. @retval EFI_SUCCESS The number of logical processors and enabled logical processors was retrieved. @retval EFI_DEVICE_ERROR The calling processor is an AP. @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL. @retval EFI_INVALID_PARAMETER NumberOfEnabledProcessors is NULL. **/ STATIC EFI_STATUS EFIAPI GetNumberOfProcessors ( IN EFI_MP_SERVICES_PROTOCOL *This, OUT UINTN *NumberOfProcessors, OUT UINTN *NumberOfEnabledProcessors ) { if ((NumberOfProcessors == NULL) || (NumberOfEnabledProcessors == NULL)) { return EFI_INVALID_PARAMETER; } if (!IsCurrentProcessorBSP ()) { return EFI_DEVICE_ERROR; } *NumberOfProcessors = mCpuMpData.NumberOfProcessors; *NumberOfEnabledProcessors = mCpuMpData.NumberOfEnabledProcessors; return EFI_SUCCESS; } /** Gets detailed MP-related information on the requested processor at the instant this call is made. This service may only be called from the BSP. This service retrieves detailed MP-related information about any processor on the platform. Note the following: - The processor information may change during the course of a boot session. - The information presented here is entirely MP related. Information regarding the number of caches and their sizes, frequency of operation, slot numbers is all considered platform-related information and is not provided by this service. @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. @param[in] ProcessorIndex The index of the processor. @param[out] ProcessorInfoBuffer A pointer to the buffer where information for the requested processor is deposited. @retval EFI_SUCCESS Processor information was returned. @retval EFI_DEVICE_ERROR The calling processor is an AP. @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL. @retval EFI_NOT_FOUND The processor with the handle specified by ProcessorNumber does not exist in the platform. **/ STATIC EFI_STATUS EFIAPI GetProcessorInfo ( IN EFI_MP_SERVICES_PROTOCOL *This, IN UINTN ProcessorIndex, OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer ) { if (ProcessorInfoBuffer == NULL) { return EFI_INVALID_PARAMETER; } if (!IsCurrentProcessorBSP ()) { return EFI_DEVICE_ERROR; } ProcessorIndex &= ~CPU_V2_EXTENDED_TOPOLOGY; if (ProcessorIndex >= mCpuMpData.NumberOfProcessors) { return EFI_NOT_FOUND; } CopyMem ( ProcessorInfoBuffer, &mCpuMpData.CpuData[ProcessorIndex], sizeof (EFI_PROCESSOR_INFORMATION) ); return EFI_SUCCESS; } /** This service executes a caller provided function on all enabled APs. APs can run either simultaneously or one at a time in sequence. This service supports both blocking and non-blocking requests. The non-blocking requests use EFI events so the BSP can detect when the APs have finished. This service may only be called from the BSP. This function is used to dispatch all the enabled APs to the function specified by Procedure. If any enabled AP is busy, then EFI_NOT_READY is returned immediately and Procedure is not started on any AP. If SingleThread is TRUE, all the enabled APs execute the function specified by Procedure one by one, in ascending order of processor handle number. Otherwise, all the enabled APs execute the function specified by Procedure simultaneously. If WaitEvent is NULL, execution is in blocking mode. The BSP waits until all APs finish or TimeoutInMicroseconds expires. Otherwise, execution is in non-blocking mode, and the BSP returns from this service without waiting for APs. If a non-blocking mode is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled, then EFI_UNSUPPORTED must be returned. If the timeout specified by TimeoutInMicroseconds expires before all APs return from Procedure, then Procedure on the failed APs is terminated. All enabled APs are always available for further calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() and EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). If FailedCpuList is not NULL, its content points to the list of processor handle numbers in which Procedure was terminated. Note: It is the responsibility of the consumer of the EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() to make sure that the nature of the code that is executed on the BSP and the dispatched APs is well controlled. The MP Services Protocol does not guarantee that the Procedure function is MP-safe. Hence, the tasks that can be run in parallel are limited to certain independent tasks and well-controlled exclusive code. EFI services and protocols may not be called by APs unless otherwise specified. In blocking execution mode, BSP waits until all APs finish or TimeoutInMicroseconds expires. In non-blocking execution mode, BSP is freed to return to the caller and then proceed to the next task without having to wait for APs. The following sequence needs to occur in a non-blocking execution mode: -# The caller that intends to use this MP Services Protocol in non-blocking mode creates WaitEvent by calling the EFI CreateEvent() service. The caller invokes EFI_MP_SERVICES_PROTOCOL.StartupAllAPs(). If the parameter WaitEvent is not NULL, then StartupAllAPs() executes in non-blocking mode. It requests the function specified by Procedure to be started on all the enabled APs, and releases the BSP to continue with other tasks. -# The caller can use the CheckEvent() and WaitForEvent() services to check the state of the WaitEvent created in step 1. -# When the APs complete their task or TimeoutInMicroSecondss expires, the MP Service signals WaitEvent by calling the EFI SignalEvent() function. If FailedCpuList is not NULL, its content is available when WaitEvent is signaled. If all APs returned from Procedure prior to the timeout, then FailedCpuList is set to NULL. If not all APs return from Procedure before the timeout, then FailedCpuList is filled in with the list of the failed APs. The buffer is allocated by MP Service Protocol using AllocatePool(). It is the caller's responsibility to free the buffer with FreePool() service. -# This invocation of SignalEvent() function informs the caller that invoked EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() that either all the APs completed the specified task or a timeout occurred. The contents of FailedCpuList can be examined to determine which APs did not complete the specified task prior to the timeout. @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. @param[in] Procedure A pointer to the function to be run on enabled APs of the system. See type EFI_AP_PROCEDURE. @param[in] SingleThread If TRUE, then all the enabled APs execute the function specified by Procedure one by one, in ascending order of processor handle number. If FALSE, then all the enabled APs execute the function specified by Procedure simultaneously. @param[in] WaitEvent The event created by the caller with CreateEvent() service. If it is NULL, then execute in blocking mode. BSP waits until all APs finish or TimeoutInMicroseconds expires. If it's not NULL, then execute in non-blocking mode. BSP requests the function specified by Procedure to be started on all the enabled APs, and go on executing immediately. If all return from Procedure, or TimeoutInMicroseconds expires, this event is signaled. The BSP can use the CheckEvent() or WaitForEvent() services to check the state of event. Type EFI_EVENT is defined in CreateEvent() in the Unified Extensible Firmware Interface Specification. @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for APs to return from Procedure, either for blocking or non-blocking mode. Zero means infinity. If the timeout expires before all APs return from Procedure, then Procedure on the failed APs is terminated. All enabled APs are available for next function assigned by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() or EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). If the timeout expires in blocking mode, BSP returns EFI_TIMEOUT. If the timeout expires in non-blocking mode, WaitEvent is signaled with SignalEvent(). @param[in] ProcedureArgument The parameter passed into Procedure for all APs. @param[out] FailedCpuList If NULL, this parameter is ignored. Otherwise, if all APs finish successfully, then its content is set to NULL. If not all APs finish before timeout expires, then its content is set to address of the buffer holding handle numbers of the failed APs. The buffer is allocated by MP Service Protocol, and it's the caller's responsibility to free the buffer with FreePool() service. In blocking mode, it is ready for consumption when the call returns. In non-blocking mode, it is ready when WaitEvent is signaled. The list of failed CPU is terminated by END_OF_CPU_LIST. @retval EFI_SUCCESS In blocking mode, all APs have finished before the timeout expired. @retval EFI_SUCCESS In non-blocking mode, function has been dispatched to all enabled APs. @retval EFI_UNSUPPORTED A non-blocking mode request was made after the UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was signaled. @retval EFI_DEVICE_ERROR Caller processor is AP. @retval EFI_NOT_STARTED No enabled APs exist in the system. @retval EFI_NOT_READY Any enabled APs are busy. @retval EFI_TIMEOUT In blocking mode, the timeout expired before all enabled APs have finished. @retval EFI_INVALID_PARAMETER Procedure is NULL. **/ STATIC EFI_STATUS EFIAPI StartupAllAPs ( IN EFI_MP_SERVICES_PROTOCOL *This, IN EFI_AP_PROCEDURE Procedure, IN BOOLEAN SingleThread, IN EFI_EVENT WaitEvent OPTIONAL, IN UINTN TimeoutInMicroseconds, IN VOID *ProcedureArgument OPTIONAL, OUT UINTN **FailedCpuList OPTIONAL ) { EFI_STATUS Status; if (!IsCurrentProcessorBSP ()) { return EFI_DEVICE_ERROR; } if ((mCpuMpData.NumberOfProcessors == 1) || (mCpuMpData.NumberOfEnabledProcessors == 1)) { return EFI_NOT_STARTED; } if (Procedure == NULL) { return EFI_INVALID_PARAMETER; } if ((WaitEvent != NULL) && !mNonBlockingModeAllowed) { return EFI_UNSUPPORTED; } if (FailedCpuList != NULL) { mCpuMpData.FailedList = AllocateZeroPool ( (mCpuMpData.NumberOfProcessors + 1) * sizeof (UINTN) ); if (mCpuMpData.FailedList == NULL) { return EFI_OUT_OF_RESOURCES; } SetMemN ( mCpuMpData.FailedList, (mCpuMpData.NumberOfProcessors + 1) * sizeof (UINTN), END_OF_CPU_LIST ); mCpuMpData.FailedListIndex = 0; *FailedCpuList = mCpuMpData.FailedList; } StartupAllAPsPrepareState (SingleThread); // If any enabled APs are busy (ignoring the BSP), return EFI_NOT_READY if (mCpuMpData.StartCount != (mCpuMpData.NumberOfEnabledProcessors - 1)) { return EFI_NOT_READY; } if (WaitEvent != NULL) { Status = StartupAllAPsWithWaitEvent ( Procedure, ProcedureArgument, WaitEvent, TimeoutInMicroseconds, SingleThread, FailedCpuList ); if (EFI_ERROR (Status) && (FailedCpuList != NULL)) { if (mCpuMpData.FailedListIndex == 0) { FreePool (*FailedCpuList); *FailedCpuList = NULL; } } } else { Status = StartupAllAPsNoWaitEvent ( Procedure, ProcedureArgument, TimeoutInMicroseconds, SingleThread, FailedCpuList ); if (FailedCpuList != NULL) { if (mCpuMpData.FailedListIndex == 0) { FreePool (*FailedCpuList); *FailedCpuList = NULL; } } } return Status; } /** This service lets the caller get one enabled AP to execute a caller-provided function. The caller can request the BSP to either wait for the completion of the AP or just proceed with the next task by using the EFI event mechanism. See EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() for more details on non-blocking execution support. This service may only be called from the BSP. This function is used to dispatch one enabled AP to the function specified by Procedure passing in the argument specified by ProcedureArgument. If WaitEvent is NULL, execution is in blocking mode. The BSP waits until the AP finishes or TimeoutInMicroSecondss expires. Otherwise, execution is in non-blocking mode. BSP proceeds to the next task without waiting for the AP. If a non-blocking mode is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled, then EFI_UNSUPPORTED must be returned. If the timeout specified by TimeoutInMicroseconds expires before the AP returns from Procedure, then execution of Procedure by the AP is terminated. The AP is available for subsequent calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() and EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. @param[in] Procedure A pointer to the function to be run on enabled APs of the system. See type EFI_AP_PROCEDURE. @param[in] ProcessorNumber The handle number of the AP. The range is from 0 to the total number of logical processors minus 1. The total number of logical processors can be retrieved by EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). @param[in] WaitEvent The event created by the caller with CreateEvent() service. If it is NULL, then execute in blocking mode. BSP waits until all APs finish or TimeoutInMicroseconds expires. If it's not NULL, then execute in non-blocking mode. BSP requests the function specified by Procedure to be started on all the enabled APs, and go on executing immediately. If all return from Procedure or TimeoutInMicroseconds expires, this event is signaled. The BSP can use the CheckEvent() or WaitForEvent() services to check the state of event. Type EFI_EVENT is defined in CreateEvent() in the Unified Extensible Firmware Interface Specification. @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for APs to return from Procedure, either for blocking or non-blocking mode. Zero means infinity. If the timeout expires before all APs return from Procedure, then Procedure on the failed APs is terminated. All enabled APs are available for next function assigned by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() or EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). If the timeout expires in blocking mode, BSP returns EFI_TIMEOUT. If the timeout expires in non-blocking mode, WaitEvent is signaled with SignalEvent(). @param[in] ProcedureArgument The parameter passed into Procedure for all APs. @param[out] Finished If NULL, this parameter is ignored. In blocking mode, this parameter is ignored. In non-blocking mode, if AP returns from Procedure before the timeout expires, its content is set to TRUE. Otherwise, the value is set to FALSE. The caller can determine if the AP returned from Procedure by evaluating this value. @retval EFI_SUCCESS In blocking mode, specified AP finished before the timeout expires. @retval EFI_SUCCESS In non-blocking mode, the function has been dispatched to specified AP. @retval EFI_UNSUPPORTED A non-blocking mode request was made after the UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was signaled. @retval EFI_DEVICE_ERROR The calling processor is an AP. @retval EFI_TIMEOUT In blocking mode, the timeout expired before the specified AP has finished. @retval EFI_NOT_READY The specified AP is busy. @retval EFI_NOT_FOUND The processor with the handle specified by ProcessorNumber does not exist. @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP. @retval EFI_INVALID_PARAMETER Procedure is NULL. **/ STATIC EFI_STATUS EFIAPI StartupThisAP ( IN EFI_MP_SERVICES_PROTOCOL *This, IN EFI_AP_PROCEDURE Procedure, IN UINTN ProcessorNumber, IN EFI_EVENT WaitEvent OPTIONAL, IN UINTN TimeoutInMicroseconds, IN VOID *ProcedureArgument OPTIONAL, OUT BOOLEAN *Finished OPTIONAL ) { EFI_STATUS Status; UINTN Timeout; CPU_AP_DATA *CpuData; if (!IsCurrentProcessorBSP ()) { return EFI_DEVICE_ERROR; } if (Procedure == NULL) { return EFI_INVALID_PARAMETER; } if (ProcessorNumber >= mCpuMpData.NumberOfProcessors) { return EFI_NOT_FOUND; } CpuData = &mCpuMpData.CpuData[ProcessorNumber]; if (IsProcessorBSP (ProcessorNumber)) { return EFI_INVALID_PARAMETER; } if (!IsProcessorEnabled (ProcessorNumber)) { return EFI_INVALID_PARAMETER; } if ((GetApState (CpuData) != CpuStateIdle) && (GetApState (CpuData) != CpuStateFinished)) { return EFI_NOT_READY; } if ((WaitEvent != NULL) && !mNonBlockingModeAllowed) { return EFI_UNSUPPORTED; } Timeout = TimeoutInMicroseconds; CpuData->Timeout = TimeoutInMicroseconds; CpuData->TimeTaken = 0; CpuData->TimeoutActive = (BOOLEAN)(TimeoutInMicroseconds != 0); SetApProcedure ( CpuData, Procedure, ProcedureArgument ); Status = DispatchCpu (ProcessorNumber); if (EFI_ERROR (Status)) { CpuData->State = CpuStateIdle; return EFI_NOT_READY; } if (WaitEvent != NULL) { // Non Blocking if (Finished != NULL) { CpuData->SingleApFinished = Finished; *Finished = FALSE; } CpuData->WaitEvent = WaitEvent; Status = gBS->SetTimer ( CpuData->CheckThisAPEvent, TimerPeriodic, POLL_INTERVAL_US ); return EFI_SUCCESS; } // Blocking while (TRUE) { if (GetApState (CpuData) == CpuStateFinished) { CpuData->State = CpuStateIdle; break; } if ((TimeoutInMicroseconds != 0) && (Timeout == 0)) { return EFI_TIMEOUT; } Timeout -= CalculateAndStallInterval (Timeout); } return EFI_SUCCESS; } /** This service switches the requested AP to be the BSP from that point onward. This service changes the BSP for all purposes. This call can only be performed by the current BSP. This service switches the requested AP to be the BSP from that point onward. This service changes the BSP for all purposes. The new BSP can take over the execution of the old BSP and continue seamlessly from where the old one left off. This service may not be supported after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled. If the BSP cannot be switched prior to the return from this service, then EFI_UNSUPPORTED must be returned. @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. @param[in] ProcessorNumber The handle number of AP that is to become the new BSP. The range is from 0 to the total number of logical processors minus 1. The total number of logical processors can be retrieved by EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an enabled AP. Otherwise, it will be disabled. @retval EFI_SUCCESS BSP successfully switched. @retval EFI_UNSUPPORTED Switching the BSP cannot be completed prior to this service returning. @retval EFI_UNSUPPORTED Switching the BSP is not supported. @retval EFI_SUCCESS The calling processor is an AP. @retval EFI_NOT_FOUND The processor with the handle specified by ProcessorNumber does not exist. @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or a disabled AP. @retval EFI_NOT_READY The specified AP is busy. **/ STATIC EFI_STATUS EFIAPI SwitchBSP ( IN EFI_MP_SERVICES_PROTOCOL *This, IN UINTN ProcessorNumber, IN BOOLEAN EnableOldBSP ) { return EFI_UNSUPPORTED; } /** This service lets the caller enable or disable an AP from this point onward. This service may only be called from the BSP. This service allows the caller enable or disable an AP from this point onward. The caller can optionally specify the health status of the AP by Health. If an AP is being disabled, then the state of the disabled AP is implementation dependent. If an AP is enabled, then the implementation must guarantee that a complete initialization sequence is performed on the AP, so the AP is in a state that is compatible with an MP operating system. This service may not be supported after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled. If the enable or disable AP operation cannot be completed prior to the return from this service, then EFI_UNSUPPORTED must be returned. @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. @param[in] ProcessorNumber The handle number of AP that is to become the new BSP. The range is from 0 to the total number of logical processors minus 1. The total number of logical processors can be retrieved by EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). @param[in] EnableAP Specifies the new state for the processor for enabled, FALSE for disabled. @param[in] HealthFlag If not NULL, a pointer to a value that specifies the new health status of the AP. This flag corresponds to StatusFlag defined in EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only the PROCESSOR_HEALTH_STATUS_BIT is used. All other bits are ignored. If it is NULL, this parameter is ignored. @retval EFI_SUCCESS The specified AP was enabled or disabled successfully. @retval EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed prior to this service returning. @retval EFI_UNSUPPORTED Enabling or disabling an AP is not supported. @retval EFI_DEVICE_ERROR The calling processor is an AP. @retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber does not exist. @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP. **/ STATIC EFI_STATUS EFIAPI EnableDisableAP ( IN EFI_MP_SERVICES_PROTOCOL *This, IN UINTN ProcessorNumber, IN BOOLEAN EnableAP, IN UINT32 *HealthFlag OPTIONAL ) { UINTN StatusFlag; CPU_AP_DATA *CpuData; StatusFlag = mCpuMpData.CpuData[ProcessorNumber].Info.StatusFlag; CpuData = &mCpuMpData.CpuData[ProcessorNumber]; if (!IsCurrentProcessorBSP ()) { return EFI_DEVICE_ERROR; } if (ProcessorNumber >= mCpuMpData.NumberOfProcessors) { return EFI_NOT_FOUND; } if (IsProcessorBSP (ProcessorNumber)) { return EFI_INVALID_PARAMETER; } if (GetApState (CpuData) != CpuStateIdle) { return EFI_UNSUPPORTED; } if (EnableAP) { if (!IsProcessorEnabled (ProcessorNumber)) { mCpuMpData.NumberOfEnabledProcessors++; } StatusFlag |= PROCESSOR_ENABLED_BIT; } else { if (IsProcessorEnabled (ProcessorNumber) && !IsProcessorBSP (ProcessorNumber)) { mCpuMpData.NumberOfEnabledProcessors--; } StatusFlag &= ~PROCESSOR_ENABLED_BIT; } if ((HealthFlag != NULL) && !IsProcessorBSP (ProcessorNumber)) { StatusFlag &= ~PROCESSOR_HEALTH_STATUS_BIT; StatusFlag |= (*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT); } mCpuMpData.CpuData[ProcessorNumber].Info.StatusFlag = StatusFlag; return EFI_SUCCESS; } /** This return the handle number for the calling processor. This service may be called from the BSP and APs. This service returns the processor handle number for the calling processor. The returned value is in the range from 0 to the total number of logical processors minus 1. The total number of logical processors can be retrieved with EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). This service may be called from the BSP and APs. If ProcessorNumber is NULL, then EFI_INVALID_PARAMETER is returned. Otherwise, the current processors handle number is returned in ProcessorNumber, and EFI_SUCCESS is returned. @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance. @param[out] ProcessorNumber The handle number of AP that is to become the new BSP. The range is from 0 to the total number of logical processors minus 1. The total number of logical processors can be retrieved by EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). @retval EFI_SUCCESS The current processor handle number was returned in ProcessorNumber. @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL. **/ STATIC EFI_STATUS EFIAPI WhoAmI ( IN EFI_MP_SERVICES_PROTOCOL *This, OUT UINTN *ProcessorNumber ) { UINTN Index; UINT64 ProcessorId; if (ProcessorNumber == NULL) { return EFI_INVALID_PARAMETER; } ProcessorId = GET_MPIDR_AFFINITY_BITS (ArmReadMpidr ()); for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) { if (ProcessorId == gProcessorIDs[Index]) { *ProcessorNumber = Index; break; } } return EFI_SUCCESS; } STATIC EFI_MP_SERVICES_PROTOCOL mMpServicesProtocol = { GetNumberOfProcessors, GetProcessorInfo, StartupAllAPs, StartupThisAP, SwitchBSP, EnableDisableAP, WhoAmI }; /** Adds the specified processor the list of failed processors. @param ProcessorIndex The processor index to add. @param ApState Processor state. **/ STATIC VOID AddProcessorToFailedList ( UINTN ProcessorIndex, CPU_STATE ApState ) { UINTN Index; BOOLEAN Found; Found = FALSE; if ((mCpuMpData.FailedList == NULL) || (ApState == CpuStateIdle) || (ApState == CpuStateFinished) || IsProcessorBSP (ProcessorIndex)) { return; } // If we are retrying make sure we don't double count for (Index = 0; Index < mCpuMpData.FailedListIndex; Index++) { if (mCpuMpData.FailedList[Index] == ProcessorIndex) { Found = TRUE; break; } } /* If the CPU isn't already in the FailedList, add it */ if (!Found) { mCpuMpData.FailedList[mCpuMpData.FailedListIndex++] = ProcessorIndex; } } /** Handles the StartupAllAPs case where the timeout has occurred. **/ STATIC VOID ProcessStartupAllAPsTimeout ( VOID ) { CPU_AP_DATA *CpuData; UINTN Index; if (mCpuMpData.FailedList == NULL) { return; } for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) { CpuData = &mCpuMpData.CpuData[Index]; if (IsProcessorBSP (Index)) { // Skip BSP continue; } if (!IsProcessorEnabled (Index)) { // Skip Disabled processors continue; } CpuData = &mCpuMpData.CpuData[Index]; AddProcessorToFailedList (Index, GetApState (CpuData)); } } /** Updates the status of the APs. @param[in] ProcessorIndex The index of the AP to update. **/ STATIC VOID UpdateApStatus ( IN UINTN ProcessorIndex ) { EFI_STATUS Status; CPU_AP_DATA *CpuData; CPU_AP_DATA *NextCpuData; CPU_STATE State; UINTN NextNumber; CpuData = &mCpuMpData.CpuData[ProcessorIndex]; if (IsProcessorBSP (ProcessorIndex)) { // Skip BSP return; } if (!IsProcessorEnabled (ProcessorIndex)) { // Skip Disabled processors return; } State = GetApState (CpuData); switch (State) { case CpuStateFinished: if (mCpuMpData.SingleThread) { Status = GetNextBlockedNumber (&NextNumber); if (!EFI_ERROR (Status)) { NextCpuData = &mCpuMpData.CpuData[NextNumber]; NextCpuData->State = CpuStateReady; SetApProcedure ( NextCpuData, mCpuMpData.Procedure, mCpuMpData.ProcedureArgument ); Status = DispatchCpu (NextNumber); if (!EFI_ERROR (Status)) { mCpuMpData.StartCount++; } else { AddProcessorToFailedList (NextNumber, NextCpuData->State); } } } CpuData->State = CpuStateIdle; mCpuMpData.FinishCount++; break; default: break; } } /** If a timeout is specified in StartupAllAps(), a timer is set, which invokes this procedure periodically to check whether all APs have finished. @param[in] Event The WaitEvent the user supplied. @param[in] Context The event context. **/ STATIC VOID EFIAPI CheckAllAPsStatus ( IN EFI_EVENT Event, IN VOID *Context ) { EFI_STATUS Status; UINTN Index; mCpuMpData.AllTimeTaken += POLL_INTERVAL_US; for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) { UpdateApStatus (Index); } if (mCpuMpData.AllTimeoutActive && (mCpuMpData.AllTimeTaken > mCpuMpData.AllTimeout)) { ProcessStartupAllAPsTimeout (); // Force terminal exit mCpuMpData.FinishCount = mCpuMpData.StartCount; } if (mCpuMpData.FinishCount != mCpuMpData.StartCount) { return; } gBS->SetTimer ( mCpuMpData.CheckAllAPsEvent, TimerCancel, 0 ); if (mCpuMpData.FailedListIndex == 0) { if (mCpuMpData.FailedList != NULL) { // Since we don't have the original `FailedCpuList` // pointer here to set to NULL, don't free the // memory. } } Status = gBS->SignalEvent (mCpuMpData.AllWaitEvent); ASSERT_EFI_ERROR (Status); mCpuMpData.AllWaitEvent = NULL; } /** Invoked periodically via a timer to check the state of the processor. @param Event The event supplied by the timer expiration. @param Context The processor context. **/ STATIC VOID EFIAPI CheckThisAPStatus ( IN EFI_EVENT Event, IN VOID *Context ) { EFI_STATUS Status; CPU_AP_DATA *CpuData; CPU_STATE State; CpuData = Context; CpuData->TimeTaken += POLL_INTERVAL_US; State = GetApState (CpuData); if (State == CpuStateFinished) { Status = gBS->SetTimer (CpuData->CheckThisAPEvent, TimerCancel, 0); ASSERT_EFI_ERROR (Status); if (CpuData->SingleApFinished != NULL) { *(CpuData->SingleApFinished) = TRUE; } if (CpuData->WaitEvent != NULL) { Status = gBS->SignalEvent (CpuData->WaitEvent); ASSERT_EFI_ERROR (Status); } CpuData->State = CpuStateIdle; } if (CpuData->TimeoutActive && (CpuData->TimeTaken > CpuData->Timeout)) { Status = gBS->SetTimer (CpuData->CheckThisAPEvent, TimerCancel, 0); if (CpuData->WaitEvent != NULL) { Status = gBS->SignalEvent (CpuData->WaitEvent); ASSERT_EFI_ERROR (Status); CpuData->WaitEvent = NULL; } } } /** This function is called by all processors (both BSP and AP) once and collects MP related data. @param BSP TRUE if the processor is the BSP. @param Mpidr The MPIDR for the specified processor. This should be the full MPIDR and not only the affinity bits. @param ProcessorIndex The index of the processor. @return EFI_SUCCESS if the data for the processor collected and filled in. **/ STATIC EFI_STATUS FillInProcessorInformation ( IN BOOLEAN BSP, IN UINTN Mpidr, IN UINTN ProcessorIndex ) { EFI_PROCESSOR_INFORMATION *CpuInfo; CpuInfo = &mCpuMpData.CpuData[ProcessorIndex].Info; CpuInfo->ProcessorId = GET_MPIDR_AFFINITY_BITS (Mpidr); CpuInfo->StatusFlag = PROCESSOR_ENABLED_BIT | PROCESSOR_HEALTH_STATUS_BIT; if (BSP) { CpuInfo->StatusFlag |= PROCESSOR_AS_BSP_BIT; } if ((Mpidr & MPIDR_MT_BIT) > 0) { CpuInfo->Location.Package = GET_MPIDR_AFF2 (Mpidr); CpuInfo->Location.Core = GET_MPIDR_AFF1 (Mpidr); CpuInfo->Location.Thread = GET_MPIDR_AFF0 (Mpidr); CpuInfo->ExtendedInformation.Location2.Package = GET_MPIDR_AFF3 (Mpidr); CpuInfo->ExtendedInformation.Location2.Die = GET_MPIDR_AFF2 (Mpidr); CpuInfo->ExtendedInformation.Location2.Core = GET_MPIDR_AFF1 (Mpidr); CpuInfo->ExtendedInformation.Location2.Thread = GET_MPIDR_AFF0 (Mpidr); } else { CpuInfo->Location.Package = GET_MPIDR_AFF1 (Mpidr); CpuInfo->Location.Core = GET_MPIDR_AFF0 (Mpidr); CpuInfo->Location.Thread = 0; CpuInfo->ExtendedInformation.Location2.Package = GET_MPIDR_AFF2 (Mpidr); CpuInfo->ExtendedInformation.Location2.Die = GET_MPIDR_AFF1 (Mpidr); CpuInfo->ExtendedInformation.Location2.Core = GET_MPIDR_AFF0 (Mpidr); CpuInfo->ExtendedInformation.Location2.Thread = 0; } mCpuMpData.CpuData[ProcessorIndex].State = BSP ? CpuStateBusy : CpuStateIdle; mCpuMpData.CpuData[ProcessorIndex].Procedure = NULL; mCpuMpData.CpuData[ProcessorIndex].Parameter = NULL; return EFI_SUCCESS; } /** Initializes the MP Services system data @param NumberOfProcessors The number of processors, both BSP and AP. @param CoreInfo CPU information gathered earlier during boot. **/ STATIC EFI_STATUS MpServicesInitialize ( IN UINTN NumberOfProcessors, IN CONST ARM_CORE_INFO *CoreInfo ) { EFI_STATUS Status; UINTN Index; EFI_EVENT ReadyToBootEvent; BOOLEAN IsBsp; // // Clear the data structure area first. // ZeroMem (&mCpuMpData, sizeof (CPU_MP_DATA)); // // First BSP fills and inits all known values, including its own records. // mCpuMpData.NumberOfProcessors = NumberOfProcessors; mCpuMpData.NumberOfEnabledProcessors = NumberOfProcessors; mCpuMpData.CpuData = AllocateZeroPool ( mCpuMpData.NumberOfProcessors * sizeof (CPU_AP_DATA) ); if (mCpuMpData.CpuData == NULL) { return EFI_OUT_OF_RESOURCES; } /* Allocate one extra for the sentinel entry at the end */ gProcessorIDs = AllocateZeroPool ((mCpuMpData.NumberOfProcessors + 1) * sizeof (UINT64)); ASSERT (gProcessorIDs != NULL); Status = gBS->CreateEvent ( EVT_TIMER | EVT_NOTIFY_SIGNAL, TPL_CALLBACK, CheckAllAPsStatus, NULL, &mCpuMpData.CheckAllAPsEvent ); ASSERT_EFI_ERROR (Status); gApStacksBase = AllocatePages ( EFI_SIZE_TO_PAGES ( mCpuMpData.NumberOfProcessors * gApStackSize ) ); ASSERT (gApStacksBase != NULL); for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) { if (GET_MPIDR_AFFINITY_BITS (ArmReadMpidr ()) == CoreInfo[Index].Mpidr) { IsBsp = TRUE; } else { IsBsp = FALSE; } FillInProcessorInformation (IsBsp, CoreInfo[Index].Mpidr, Index); gProcessorIDs[Index] = mCpuMpData.CpuData[Index].Info.ProcessorId; Status = gBS->CreateEvent ( EVT_TIMER | EVT_NOTIFY_SIGNAL, TPL_CALLBACK, CheckThisAPStatus, (VOID *)&mCpuMpData.CpuData[Index], &mCpuMpData.CpuData[Index].CheckThisAPEvent ); ASSERT_EFI_ERROR (Status); } gProcessorIDs[Index] = MAX_UINT64; gTcr = ArmGetTCR (); gMair = ArmGetMAIR (); gTtbr0 = ArmGetTTBR0BaseAddress (); // // The global pointer variables as well as the gProcessorIDs array contents // are accessed by the other cores so we must clean them to the PoC // WriteBackDataCacheRange (&gProcessorIDs, sizeof (UINT64 *)); WriteBackDataCacheRange (&gApStacksBase, sizeof (UINT64 *)); WriteBackDataCacheRange ( gProcessorIDs, (mCpuMpData.NumberOfProcessors + 1) * sizeof (UINT64) ); mNonBlockingModeAllowed = TRUE; Status = EfiCreateEventReadyToBootEx ( TPL_CALLBACK, ReadyToBootSignaled, NULL, &ReadyToBootEvent ); ASSERT_EFI_ERROR (Status); return EFI_SUCCESS; } /** Event notification function called when the EFI_EVENT_GROUP_READY_TO_BOOT is signaled. After this point, non-blocking mode is no longer allowed. @param Event Event whose notification function is being invoked. @param Context The pointer to the notification function's context, which is implementation-dependent. **/ STATIC VOID EFIAPI ReadyToBootSignaled ( IN EFI_EVENT Event, IN VOID *Context ) { mNonBlockingModeAllowed = FALSE; } /** Initialize multi-processor support. @param ImageHandle Image handle. @param SystemTable System table. @return EFI_SUCCESS on success, or an error code. **/ EFI_STATUS EFIAPI ArmPsciMpServicesDxeInitialize ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { EFI_STATUS Status; EFI_HANDLE Handle; UINTN MaxCpus; EFI_LOADED_IMAGE_PROTOCOL *Image; EFI_HOB_GENERIC_HEADER *Hob; VOID *HobData; UINTN HobDataSize; CONST ARM_CORE_INFO *CoreInfo; MaxCpus = 1; Status = gBS->HandleProtocol ( ImageHandle, &gEfiLoadedImageProtocolGuid, (VOID **)&Image ); ASSERT_EFI_ERROR (Status); // // Parts of the code in this driver may be executed by other cores running // with the MMU off so we need to ensure that everything is clean to the // point of coherency (PoC) // WriteBackDataCacheRange (Image->ImageBase, Image->ImageSize); Hob = GetFirstGuidHob (&gArmMpCoreInfoGuid); if (Hob != NULL) { HobData = GET_GUID_HOB_DATA (Hob); HobDataSize = GET_GUID_HOB_DATA_SIZE (Hob); CoreInfo = (ARM_CORE_INFO *)HobData; MaxCpus = HobDataSize / sizeof (ARM_CORE_INFO); } if (MaxCpus == 1) { DEBUG ((DEBUG_WARN, "Trying to use EFI_MP_SERVICES_PROTOCOL on a UP system")); // We are not MP so nothing to do return EFI_NOT_FOUND; } Status = MpServicesInitialize (MaxCpus, CoreInfo); if (Status != EFI_SUCCESS) { ASSERT_EFI_ERROR (Status); return Status; } // // Now install the MP services protocol. // Handle = NULL; Status = gBS->InstallMultipleProtocolInterfaces ( &Handle, &gEfiMpServiceProtocolGuid, &mMpServicesProtocol, NULL ); ASSERT_EFI_ERROR (Status); return Status; } /** AP exception handler. @param InterruptType The AArch64 CPU exception type. @param SystemContext System context. **/ STATIC VOID EFIAPI ApExceptionHandler ( IN CONST EFI_EXCEPTION_TYPE InterruptType, IN CONST EFI_SYSTEM_CONTEXT SystemContext ) { ARM_SMC_ARGS Args; UINT64 Mpidr; UINTN Index; UINTN ProcessorIndex; Mpidr = GET_MPIDR_AFFINITY_BITS (ArmReadMpidr ()); Index = 0; ProcessorIndex = MAX_UINT64; do { if (gProcessorIDs[Index] == Mpidr) { ProcessorIndex = Index; break; } Index++; } while (gProcessorIDs[Index] != MAX_UINT64); if (ProcessorIndex != MAX_UINT64) { mCpuMpData.CpuData[ProcessorIndex].State = CpuStateFinished; ArmDataMemoryBarrier (); } Args.Arg0 = ARM_SMC_ID_PSCI_CPU_OFF; ArmCallSmc (&Args); /* Should never be reached */ ASSERT (FALSE); CpuDeadLoop (); } /** C entry-point for the AP. This function gets called from the assembly function ApEntryPoint. **/ VOID ApProcedure ( VOID ) { ARM_SMC_ARGS Args; EFI_AP_PROCEDURE UserApProcedure; VOID *UserApParameter; UINTN ProcessorIndex; ProcessorIndex = 0; WhoAmI (&mMpServicesProtocol, &ProcessorIndex); /* Fetch the user-supplied procedure and parameter to execute */ UserApProcedure = mCpuMpData.CpuData[ProcessorIndex].Procedure; UserApParameter = mCpuMpData.CpuData[ProcessorIndex].Parameter; InitializeCpuExceptionHandlers (NULL); RegisterCpuInterruptHandler (EXCEPT_AARCH64_SYNCHRONOUS_EXCEPTIONS, ApExceptionHandler); RegisterCpuInterruptHandler (EXCEPT_AARCH64_IRQ, ApExceptionHandler); RegisterCpuInterruptHandler (EXCEPT_AARCH64_FIQ, ApExceptionHandler); RegisterCpuInterruptHandler (EXCEPT_AARCH64_SERROR, ApExceptionHandler); UserApProcedure (UserApParameter); mCpuMpData.CpuData[ProcessorIndex].State = CpuStateFinished; ArmDataMemoryBarrier (); /* Since we're finished with this AP, turn it off */ Args.Arg0 = ARM_SMC_ID_PSCI_CPU_OFF; ArmCallSmc (&Args); /* Should never be reached */ ASSERT (FALSE); CpuDeadLoop (); } /** Returns whether the processor executing this function is the BSP. @return Whether the current processor is the BSP. **/ STATIC BOOLEAN IsCurrentProcessorBSP ( VOID ) { EFI_STATUS Status; UINTN ProcessorIndex; Status = WhoAmI (&mMpServicesProtocol, &ProcessorIndex); if (EFI_ERROR (Status)) { ASSERT_EFI_ERROR (Status); return FALSE; } return IsProcessorBSP (ProcessorIndex); } /** Returns whether the specified processor is enabled. @param[in] ProcessorIndex The index of the processor to check. @return TRUE if the processor is enabled, FALSE otherwise. **/ STATIC BOOLEAN IsProcessorEnabled ( UINTN ProcessorIndex ) { EFI_PROCESSOR_INFORMATION *CpuInfo; CpuInfo = &mCpuMpData.CpuData[ProcessorIndex].Info; return (CpuInfo->StatusFlag & PROCESSOR_ENABLED_BIT) != 0; } /** Sets up the state for the StartupAllAPs function. @param SingleThread Whether the APs will execute sequentially. **/ STATIC VOID StartupAllAPsPrepareState ( IN BOOLEAN SingleThread ) { UINTN Index; CPU_STATE APInitialState; CPU_AP_DATA *CpuData; mCpuMpData.FinishCount = 0; mCpuMpData.StartCount = 0; mCpuMpData.SingleThread = SingleThread; APInitialState = CpuStateReady; for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) { CpuData = &mCpuMpData.CpuData[Index]; // // Get APs prepared, and put failing APs into FailedCpuList. // If "SingleThread", only 1 AP will put into ready state, other AP will be // put into ready state 1 by 1, until the previous 1 finished its task. // If not "SingleThread", all APs are put into ready state from the // beginning // if (IsProcessorBSP (Index)) { // Skip BSP continue; } if (!IsProcessorEnabled (Index)) { // Skip Disabled processors if (mCpuMpData.FailedList != NULL) { mCpuMpData.FailedList[mCpuMpData.FailedListIndex++] = Index; } continue; } // If any APs finished after timing out, reset state to Idle if (GetApState (CpuData) == CpuStateFinished) { CpuData->State = CpuStateIdle; } if (GetApState (CpuData) != CpuStateIdle) { // Skip busy processors if (mCpuMpData.FailedList != NULL) { mCpuMpData.FailedList[mCpuMpData.FailedListIndex++] = Index; } } CpuData->State = APInitialState; mCpuMpData.StartCount++; if (SingleThread) { APInitialState = CpuStateBlocked; } } } /** Handles execution of StartupAllAPs when a WaitEvent has been specified. @param Procedure The user-supplied procedure. @param ProcedureArgument The user-supplied procedure argument. @param WaitEvent The wait event to be signaled when the work is complete or a timeout has occurred. @param TimeoutInMicroseconds The timeout for the work to be completed. Zero indicates an infinite timeout. @param SingleThread Whether the APs will execute sequentially. @param FailedCpuList User-supplied pointer for list of failed CPUs. @return EFI_SUCCESS on success. **/ STATIC EFI_STATUS StartupAllAPsWithWaitEvent ( IN EFI_AP_PROCEDURE Procedure, IN VOID *ProcedureArgument, IN EFI_EVENT WaitEvent, IN UINTN TimeoutInMicroseconds, IN BOOLEAN SingleThread, IN UINTN **FailedCpuList ) { EFI_STATUS Status; UINTN Index; CPU_AP_DATA *CpuData; for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) { CpuData = &mCpuMpData.CpuData[Index]; if (IsProcessorBSP (Index)) { // Skip BSP continue; } if (!IsProcessorEnabled (Index)) { // Skip Disabled processors continue; } if (GetApState (CpuData) == CpuStateReady) { SetApProcedure (CpuData, Procedure, ProcedureArgument); if ((mCpuMpData.StartCount == 0) || !SingleThread) { Status = DispatchCpu (Index); if (EFI_ERROR (Status)) { AddProcessorToFailedList (Index, CpuData->State); break; } } } } if (EFI_ERROR (Status)) { return EFI_NOT_READY; } // // Save data into private data structure, and create timer to poll AP state // before exiting // mCpuMpData.Procedure = Procedure; mCpuMpData.ProcedureArgument = ProcedureArgument; mCpuMpData.AllWaitEvent = WaitEvent; mCpuMpData.AllTimeout = TimeoutInMicroseconds; mCpuMpData.AllTimeTaken = 0; mCpuMpData.AllTimeoutActive = (BOOLEAN)(TimeoutInMicroseconds != 0); Status = gBS->SetTimer ( mCpuMpData.CheckAllAPsEvent, TimerPeriodic, POLL_INTERVAL_US ); return Status; } /** Handles execution of StartupAllAPs when no wait event has been specified. @param Procedure The user-supplied procedure. @param ProcedureArgument The user-supplied procedure argument. @param TimeoutInMicroseconds The timeout for the work to be completed. Zero indicates an infinite timeout. @param SingleThread Whether the APs will execute sequentially. @param FailedCpuList User-supplied pointer for list of failed CPUs. @return EFI_SUCCESS on success. **/ STATIC EFI_STATUS StartupAllAPsNoWaitEvent ( IN EFI_AP_PROCEDURE Procedure, IN VOID *ProcedureArgument, IN UINTN TimeoutInMicroseconds, IN BOOLEAN SingleThread, IN UINTN **FailedCpuList ) { EFI_STATUS Status; UINTN Index; UINTN NextIndex; UINTN Timeout; CPU_AP_DATA *CpuData; BOOLEAN DispatchError; Timeout = TimeoutInMicroseconds; DispatchError = FALSE; while (TRUE) { for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) { CpuData = &mCpuMpData.CpuData[Index]; if (IsProcessorBSP (Index)) { // Skip BSP continue; } if (!IsProcessorEnabled (Index)) { // Skip Disabled processors continue; } switch (GetApState (CpuData)) { case CpuStateReady: SetApProcedure (CpuData, Procedure, ProcedureArgument); Status = DispatchCpu (Index); if (EFI_ERROR (Status)) { AddProcessorToFailedList (Index, CpuData->State); CpuData->State = CpuStateIdle; mCpuMpData.StartCount--; DispatchError = TRUE; if (SingleThread) { // Dispatch the next available AP Status = GetNextBlockedNumber (&NextIndex); if (!EFI_ERROR (Status)) { mCpuMpData.CpuData[NextIndex].State = CpuStateReady; } } } break; case CpuStateFinished: mCpuMpData.FinishCount++; if (SingleThread) { Status = GetNextBlockedNumber (&NextIndex); if (!EFI_ERROR (Status)) { mCpuMpData.CpuData[NextIndex].State = CpuStateReady; } } CpuData->State = CpuStateIdle; break; default: break; } } if (mCpuMpData.FinishCount == mCpuMpData.StartCount) { Status = EFI_SUCCESS; break; } if ((TimeoutInMicroseconds != 0) && (Timeout == 0)) { Status = EFI_TIMEOUT; break; } Timeout -= CalculateAndStallInterval (Timeout); } if (Status == EFI_TIMEOUT) { // Add any remaining CPUs to the FailedCpuList if (FailedCpuList != NULL) { for (Index = 0; Index < mCpuMpData.NumberOfProcessors; Index++) { AddProcessorToFailedList (Index, mCpuMpData.CpuData[Index].State); } } } if (DispatchError) { Status = EFI_NOT_READY; } return Status; }