/** @file Ihis library is only intended to be used by UEFI network stack modules. It provides basic functions for the UEFI network stack. Copyright (c) 2005 - 2009, Intel Corporation All rights reserved. This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #ifndef _NET_LIB_H_ #define _NET_LIB_H_ #include typedef UINT32 IP4_ADDR; typedef UINT32 TCP_SEQNO; typedef UINT16 TCP_PORTNO; #define NET_ETHER_ADDR_LEN 6 #define NET_IFTYPE_ETHERNET 0x01 #define EFI_IP_PROTO_UDP 0x11 #define EFI_IP_PROTO_TCP 0x06 #define EFI_IP_PROTO_ICMP 0x01 // // The address classification // #define IP4_ADDR_CLASSA 1 #define IP4_ADDR_CLASSB 2 #define IP4_ADDR_CLASSC 3 #define IP4_ADDR_CLASSD 4 #define IP4_ADDR_CLASSE 5 #define IP4_MASK_NUM 33 #define IP6_HOP_BY_HOP 0 #define IP6_DESTINATION 60 #define IP6_FRAGMENT 44 #define IP6_AH 51 #define IP6_ESP 50 #define IP6_NO_NEXT_HEADER 59 #pragma pack(1) // // Ethernet head definition // typedef struct { UINT8 DstMac [NET_ETHER_ADDR_LEN]; UINT8 SrcMac [NET_ETHER_ADDR_LEN]; UINT16 EtherType; } ETHER_HEAD; // // The EFI_IP4_HEADER is hard to use because the source and // destination address are defined as EFI_IPv4_ADDRESS, which // is a structure. Two structures can't be compared or masked // directly. This is why there is an internal representation. // typedef struct { UINT8 HeadLen : 4; UINT8 Ver : 4; UINT8 Tos; UINT16 TotalLen; UINT16 Id; UINT16 Fragment; UINT8 Ttl; UINT8 Protocol; UINT16 Checksum; IP4_ADDR Src; IP4_ADDR Dst; } IP4_HEAD; // // ICMP head definition. Each ICMP message is categorized as either an error // message or query message. Two message types have their own head format. // typedef struct { UINT8 Type; UINT8 Code; UINT16 Checksum; } IP4_ICMP_HEAD; typedef struct { IP4_ICMP_HEAD Head; UINT32 Fourth; // 4th filed of the head, it depends on Type. IP4_HEAD IpHead; } IP4_ICMP_ERROR_HEAD; typedef struct { IP4_ICMP_HEAD Head; UINT16 Id; UINT16 Seq; } IP4_ICMP_QUERY_HEAD; typedef struct { UINT8 Type; UINT8 Code; UINT16 Checksum; } IP6_ICMP_HEAD; typedef struct { IP6_ICMP_HEAD Head; UINT32 Fourth; EFI_IP6_HEADER IpHead; } IP6_ICMP_ERROR_HEAD; typedef struct { IP6_ICMP_HEAD Head; UINT32 Fourth; } IP6_ICMP_INFORMATION_HEAD; // // UDP header definition // typedef struct { UINT16 SrcPort; UINT16 DstPort; UINT16 Length; UINT16 Checksum; } EFI_UDP_HEADER; // // TCP header definition // typedef struct { TCP_PORTNO SrcPort; TCP_PORTNO DstPort; TCP_SEQNO Seq; TCP_SEQNO Ack; UINT8 Res : 4; UINT8 HeadLen : 4; UINT8 Flag; UINT16 Wnd; UINT16 Checksum; UINT16 Urg; } TCP_HEAD; #pragma pack() #define NET_MAC_EQUAL(pMac1, pMac2, Len) \ (CompareMem ((pMac1), (pMac2), Len) == 0) #define NET_MAC_IS_MULTICAST(Mac, BMac, Len) \ (((*((UINT8 *) Mac) & 0x01) == 0x01) && (!NET_MAC_EQUAL (Mac, BMac, Len))) #define NTOHL(x) (UINT32)((((UINT32) (x) & 0xff) << 24) | \ (((UINT32) (x) & 0xff00) << 8) | \ (((UINT32) (x) & 0xff0000) >> 8) | \ (((UINT32) (x) & 0xff000000) >> 24)) #define HTONL(x) NTOHL(x) #define NTOHS(x) (UINT16)((((UINT16) (x) & 0xff) << 8) | \ (((UINT16) (x) & 0xff00) >> 8)) #define HTONS(x) NTOHS(x) // // Test the IP's attribute, All the IPs are in host byte order. // #define IP4_IS_MULTICAST(Ip) (((Ip) & 0xF0000000) == 0xE0000000) #define IP4_IS_LOCAL_BROADCAST(Ip) ((Ip) == 0xFFFFFFFF) #define IP4_NET_EQUAL(Ip1, Ip2, NetMask) (((Ip1) & (NetMask)) == ((Ip2) & (NetMask))) #define IP4_IS_VALID_NETMASK(Ip) (NetGetMaskLength (Ip) != IP4_MASK_NUM) #define IP6_IS_MULTICAST(Ip6) (((Ip6)->Addr[0]) == 0xFF) // // Convert the EFI_IP4_ADDRESS to plain UINT32 IP4 address. // #define EFI_IP4(EfiIpAddr) (*(IP4_ADDR *) ((EfiIpAddr).Addr)) #define EFI_NTOHL(EfiIp) (NTOHL (EFI_IP4 ((EfiIp)))) #define EFI_IP4_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv4_ADDRESS)) == 0) #define EFI_IP6_EQUAL(Ip1, Ip2) (CompareMem ((Ip1), (Ip2), sizeof (EFI_IPv6_ADDRESS)) == 0) /** Return the length of the mask. Return the length of the mask. Valid values are 0 to 32. If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM. NetMask is in the host byte order. @param[in] NetMask The netmask to get the length from. @return The length of the netmask, or IP4_MASK_NUM (33) if the mask is invalid. **/ INTN EFIAPI NetGetMaskLength ( IN IP4_ADDR NetMask ); /** Return the class of the IP address, such as class A, B, C. Addr is in host byte order. The address of class A starts with 0. If the address belong to class A, return IP4_ADDR_CLASSA. The address of class B starts with 10. If the address belong to class B, return IP4_ADDR_CLASSB. The address of class C starts with 110. If the address belong to class C, return IP4_ADDR_CLASSC. The address of class D starts with 1110. If the address belong to class D, return IP4_ADDR_CLASSD. The address of class E starts with 1111. If the address belong to class E, return IP4_ADDR_CLASSE. @param[in] Addr The address to get the class from. @return IP address class, such as IP4_ADDR_CLASSA. **/ INTN EFIAPI NetGetIpClass ( IN IP4_ADDR Addr ); /** Check whether the IP is a valid unicast address according to the netmask. If NetMask is zero, use the IP address's class to get the default mask. If Ip is 0, IP is not a valid unicast address. Class D address is used for multicasting and class E address is reserved for future. If Ip belongs to class D or class E, Ip is not a valid unicast address. If all bits of the host address of Ip are 0 or 1, Ip is not a valid unicast address. @param[in] Ip The IP to check against. @param[in] NetMask The mask of the IP. @return TRUE if Ip is a valid unicast address on the network, otherwise FALSE. **/ BOOLEAN EFIAPI Ip4IsUnicast ( IN IP4_ADDR Ip, IN IP4_ADDR NetMask ); /** Check whether the incoming IPv6 address is a valid unicast address. If the address is a multicast address has binary 0xFF at the start, it is not a valid unicast address. If the address is unspecified ::, it is not a valid unicast address to be assigned to any node. If the address is loopback address ::1, it is also not a valid unicast address to be assigned to any physical interface. @param[in] Ip6 The IPv6 address to check against. @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE. **/ BOOLEAN Ip6IsValidUnicast ( IN EFI_IPv6_ADDRESS *Ip6 ); /** Switches the endianess of an IPv6 address This function swaps the bytes in a 128-bit IPv6 address to switch the value from little endian to big endian or vice versa. The byte swapped value is returned. @param Ip6 Points to an IPv6 address @return The byte swapped IPv6 address. **/ EFI_IPv6_ADDRESS * Ip6Swap128 ( EFI_IPv6_ADDRESS *Ip6 ); extern IP4_ADDR gIp4AllMasks[IP4_MASK_NUM]; extern EFI_IPv4_ADDRESS mZeroIp4Addr; #define NET_IS_DIGIT(Ch) (('0' <= (Ch)) && ((Ch) <= '9')) #define NET_ROUNDUP(size, unit) (((size) + (unit) - 1) & (~((unit) - 1))) #define NET_IS_LOWER_CASE_CHAR(Ch) (('a' <= (Ch)) && ((Ch) <= 'z')) #define NET_IS_UPPER_CASE_CHAR(Ch) (('A' <= (Ch)) && ((Ch) <= 'Z')) #define TICKS_PER_MS 10000U #define TICKS_PER_SECOND 10000000U #define NET_RANDOM(Seed) ((UINT32) ((UINT32) (Seed) * 1103515245UL + 12345) % 4294967295UL) /** Extract a UINT32 from a byte stream. This function copies a UINT32 from a byte stream, and then converts it from Network byte order to host byte order. Use this function to avoid alignment error. @param[in] Buf The buffer to extract the UINT32. @return The UINT32 extracted. **/ UINT32 EFIAPI NetGetUint32 ( IN UINT8 *Buf ); /** Puts a UINT32 into the byte stream in network byte order. Converts a UINT32 from host byte order to network byte order, and then copies it to the byte stream. @param[in, out] Buf The buffer to put the UINT32. @param[in] Data The data to put. **/ VOID EFIAPI NetPutUint32 ( IN OUT UINT8 *Buf, IN UINT32 Data ); /** Initialize a random seed using current time. Get current time first. Then initialize a random seed based on some basic mathematical operations on the hour, day, minute, second, nanosecond and year of the current time. @return The random seed, initialized with current time. **/ UINT32 EFIAPI NetRandomInitSeed ( VOID ); #define NET_LIST_USER_STRUCT(Entry, Type, Field) \ BASE_CR(Entry, Type, Field) #define NET_LIST_USER_STRUCT_S(Entry, Type, Field, Sig) \ CR(Entry, Type, Field, Sig) // // Iterate through the double linked list. It is NOT delete safe // #define NET_LIST_FOR_EACH(Entry, ListHead) \ for(Entry = (ListHead)->ForwardLink; Entry != (ListHead); Entry = Entry->ForwardLink) // // Iterate through the double linked list. This is delete-safe. // Don't touch NextEntry. Also, don't use this macro if list // entries other than the Entry may be deleted when processing // the current Entry. // #define NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, ListHead) \ for(Entry = (ListHead)->ForwardLink, NextEntry = Entry->ForwardLink; \ Entry != (ListHead); \ Entry = NextEntry, NextEntry = Entry->ForwardLink \ ) // // Make sure the list isn't empty before getting the first/last record. // #define NET_LIST_HEAD(ListHead, Type, Field) \ NET_LIST_USER_STRUCT((ListHead)->ForwardLink, Type, Field) #define NET_LIST_TAIL(ListHead, Type, Field) \ NET_LIST_USER_STRUCT((ListHead)->BackLink, Type, Field) /** Remove the first node entry on the list, and return the removed node entry. Removes the first node entry from a doubly linked list. It is up to the caller of this function to release the memory used by the first node, if that is required. On exit, the removed node is returned. If Head is NULL, then ASSERT(). If Head was not initialized, then ASSERT(). If PcdMaximumLinkedListLength is not zero, and the number of nodes in the linked list including the head node is greater than or equal to PcdMaximumLinkedListLength, then ASSERT(). @param[in, out] Head The list header. @return The first node entry that is removed from the list, NULL if the list is empty. **/ LIST_ENTRY * EFIAPI NetListRemoveHead ( IN OUT LIST_ENTRY *Head ); /** Remove the last node entry on the list and return the removed node entry. Removes the last node entry from a doubly linked list. It is up to the caller of this function to release the memory used by the first node, if that is required. On exit, the removed node is returned. If Head is NULL, then ASSERT(). If Head was not initialized, then ASSERT(). If PcdMaximumLinkedListLength is not zero, and the number of nodes in the linked list including the head node is greater than or equal to PcdMaximumLinkedListLength, then ASSERT(). @param[in, out] Head The list head. @return The last node entry that is removed from the list, NULL if the list is empty. **/ LIST_ENTRY * EFIAPI NetListRemoveTail ( IN OUT LIST_ENTRY *Head ); /** Insert a new node entry after a designated node entry of a doubly linked list. Inserts a new node entry designated by NewEntry after the node entry designated by PrevEntry of the doubly linked list. @param[in, out] PrevEntry The entry after which to insert. @param[in, out] NewEntry The new entry to insert. **/ VOID EFIAPI NetListInsertAfter ( IN OUT LIST_ENTRY *PrevEntry, IN OUT LIST_ENTRY *NewEntry ); /** Insert a new node entry before a designated node entry of a doubly linked list. Inserts a new node entry designated by NewEntry before the node entry designated by PostEntry of the doubly linked list. @param[in, out] PostEntry The entry to insert before. @param[in, out] NewEntry The new entry to insert. **/ VOID EFIAPI NetListInsertBefore ( IN OUT LIST_ENTRY *PostEntry, IN OUT LIST_ENTRY *NewEntry ); // // Object container: EFI network stack spec defines various kinds of // tokens. The drivers can share code to manage those objects. // typedef struct { LIST_ENTRY Link; VOID *Key; VOID *Value; } NET_MAP_ITEM; typedef struct { LIST_ENTRY Used; LIST_ENTRY Recycled; UINTN Count; } NET_MAP; #define NET_MAP_INCREAMENT 64 /** Initialize the netmap. Netmap is a reposity to keep the pairs. Initialize the forward and backward links of two head nodes donated by Map->Used and Map->Recycled of two doubly linked lists. Initializes the count of the pairs in the netmap to zero. If Map is NULL, then ASSERT(). If the address of Map->Used is NULL, then ASSERT(). If the address of Map->Recycled is NULl, then ASSERT(). @param[in, out] Map The netmap to initialize. **/ VOID EFIAPI NetMapInit ( IN OUT NET_MAP *Map ); /** To clean up the netmap, that is, release allocated memories. Removes all nodes of the Used doubly linked list and frees memory of all related netmap items. Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items. The number of the pairs in the netmap is set to zero. If Map is NULL, then ASSERT(). @param[in, out] Map The netmap to clean up. **/ VOID EFIAPI NetMapClean ( IN OUT NET_MAP *Map ); /** Test whether the netmap is empty and return true if it is. If the number of the pairs in the netmap is zero, return TRUE. If Map is NULL, then ASSERT(). @param[in] Map The net map to test. @return TRUE if the netmap is empty, otherwise FALSE. **/ BOOLEAN EFIAPI NetMapIsEmpty ( IN NET_MAP *Map ); /** Return the number of the pairs in the netmap. @param[in] Map The netmap to get the entry number. @return The entry number in the netmap. **/ UINTN EFIAPI NetMapGetCount ( IN NET_MAP *Map ); /** Allocate an item to save the pair to the head of the netmap. Allocate an item to save the pair and add corresponding node entry to the beginning of the Used doubly linked list. The number of the pairs in the netmap increase by 1. If Map is NULL, then ASSERT(). @param[in, out] Map The netmap to insert into. @param[in] Key The user's key. @param[in] Value The user's value for the key. @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item. @retval EFI_SUCCESS The item is inserted to the head. **/ EFI_STATUS EFIAPI NetMapInsertHead ( IN OUT NET_MAP *Map, IN VOID *Key, IN VOID *Value OPTIONAL ); /** Allocate an item to save the pair to the tail of the netmap. Allocate an item to save the pair and add corresponding node entry to the tail of the Used doubly linked list. The number of the pairs in the netmap increase by 1. If Map is NULL, then ASSERT(). @param[in, out] Map The netmap to insert into. @param[in] Key The user's key. @param[in] Value The user's value for the key. @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item. @retval EFI_SUCCESS The item is inserted to the tail. **/ EFI_STATUS EFIAPI NetMapInsertTail ( IN OUT NET_MAP *Map, IN VOID *Key, IN VOID *Value OPTIONAL ); /** Finds the key in the netmap and returns the point to the item containing the Key. Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every item with the key to search. It returns the point to the item contains the Key if found. If Map is NULL, then ASSERT(). @param[in] Map The netmap to search within. @param[in] Key The key to search. @return The point to the item contains the Key, or NULL if Key isn't in the map. **/ NET_MAP_ITEM * EFIAPI NetMapFindKey ( IN NET_MAP *Map, IN VOID *Key ); /** Remove the node entry of the item from the netmap and return the key of the removed item. Remove the node entry of the item from the Used doubly linked list of the netmap. The number of the pairs in the netmap decrease by 1. Then add the node entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL, Value will point to the value of the item. It returns the key of the removed item. If Map is NULL, then ASSERT(). If Item is NULL, then ASSERT(). if item in not in the netmap, then ASSERT(). @param[in, out] Map The netmap to remove the item from. @param[in, out] Item The item to remove. @param[out] Value The variable to receive the value if not NULL. @return The key of the removed item. **/ VOID * EFIAPI NetMapRemoveItem ( IN OUT NET_MAP *Map, IN OUT NET_MAP_ITEM *Item, OUT VOID **Value OPTIONAL ); /** Remove the first node entry on the netmap and return the key of the removed item. Remove the first node entry from the Used doubly linked list of the netmap. The number of the pairs in the netmap decrease by 1. Then add the node entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL, parameter Value will point to the value of the item. It returns the key of the removed item. If Map is NULL, then ASSERT(). If the Used doubly linked list is empty, then ASSERT(). @param[in, out] Map The netmap to remove the head from. @param[out] Value The variable to receive the value if not NULL. @return The key of the item removed. **/ VOID * EFIAPI NetMapRemoveHead ( IN OUT NET_MAP *Map, OUT VOID **Value OPTIONAL ); /** Remove the last node entry on the netmap and return the key of the removed item. Remove the last node entry from the Used doubly linked list of the netmap. The number of the pairs in the netmap decrease by 1. Then add the node entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL, parameter Value will point to the value of the item. It returns the key of the removed item. If Map is NULL, then ASSERT(). If the Used doubly linked list is empty, then ASSERT(). @param[in, out] Map The netmap to remove the tail from. @param[out] Value The variable to receive the value if not NULL. @return The key of the item removed. **/ VOID * EFIAPI NetMapRemoveTail ( IN OUT NET_MAP *Map, OUT VOID **Value OPTIONAL ); typedef EFI_STATUS (*NET_MAP_CALLBACK) ( IN NET_MAP *Map, IN NET_MAP_ITEM *Item, IN VOID *Arg ); /** Iterate through the netmap and call CallBack for each item. It will contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break from the loop. It returns the CallBack's last return value. This function is delete safe for the current item. If Map is NULL, then ASSERT(). If CallBack is NULL, then ASSERT(). @param[in] Map The Map to iterate through. @param[in] CallBack The callback function to call for each item. @param[in] Arg The opaque parameter to the callback. @retval EFI_SUCCESS There is no item in the netmap or CallBack for each item return EFI_SUCCESS. @retval Others It returns the CallBack's last return value. **/ EFI_STATUS EFIAPI NetMapIterate ( IN NET_MAP *Map, IN NET_MAP_CALLBACK CallBack, IN VOID *Arg ); // // Helper functions to implement driver binding and service binding protocols. // /** Create a child of the service that is identified by ServiceBindingGuid. Get the ServiceBinding Protocol first, then use it to create a child. If ServiceBindingGuid is NULL, then ASSERT(). If ChildHandle is NULL, then ASSERT(). @param[in] Controller The controller which has the service installed. @param[in] Image The image handle used to open service. @param[in] ServiceBindingGuid The service's Guid. @param[in, out] ChildHandle The handle to receive the created child. @retval EFI_SUCCESS The child was successfully created. @retval Others Failed to create the child. **/ EFI_STATUS EFIAPI NetLibCreateServiceChild ( IN EFI_HANDLE Controller, IN EFI_HANDLE Image, IN EFI_GUID *ServiceBindingGuid, IN OUT EFI_HANDLE *ChildHandle ); /** Destroy a child of the service that is identified by ServiceBindingGuid. Get the ServiceBinding Protocol first, then use it to destroy a child. If ServiceBindingGuid is NULL, then ASSERT(). @param[in] Controller The controller which has the service installed. @param[in] Image The image handle used to open service. @param[in] ServiceBindingGuid The service's Guid. @param[in] ChildHandle The child to destroy. @retval EFI_SUCCESS The child is successfully destroyed. @retval Others Failed to destroy the child. **/ EFI_STATUS EFIAPI NetLibDestroyServiceChild ( IN EFI_HANDLE Controller, IN EFI_HANDLE Image, IN EFI_GUID *ServiceBindingGuid, IN EFI_HANDLE ChildHandle ); /** Convert the mac address of the simple network protocol installed on SnpHandle to a unicode string. Callers are responsible for freeing the string storage. Get the mac address of the Simple Network protocol from the SnpHandle. Then convert the mac address into a unicode string. It takes 2 unicode characters to represent a 1 byte binary buffer, plus one unicode character for the null terminator. @param[in] SnpHandle The handle on which the simple network protocol is installed. @param[in] ImageHandle The image handle to act as the agent handle to get the simple network protocol. @param[out] MacString The pointer to store the address of the string representation of the mac address. @retval EFI_SUCCESS Converted the mac address a unicode string successfully. @retval EFI_OUT_OF_RESOURCES There are not enough memory resources. @retval Others Failed to open the simple network protocol. **/ EFI_STATUS EFIAPI NetLibGetMacString ( IN EFI_HANDLE SnpHandle, IN EFI_HANDLE ImageHandle, OUT CHAR16 **MacString ); /** Create an IPv4 device path node. The header type of IPv4 device path node is MESSAGING_DEVICE_PATH. The header subtype of IPv4 device path node is MSG_IPv4_DP. The length of the IPv4 device path node in bytes is 19. Get other info from parameters to make up the whole IPv4 device path node. @param[in, out] Node Pointer to the IPv4 device path node. @param[in] Controller The handle where the NIC IP4 config protocol resides. @param[in] LocalIp The local IPv4 address. @param[in] LocalPort The local port. @param[in] RemoteIp The remote IPv4 address. @param[in] RemotePort The remote port. @param[in] Protocol The protocol type in the IP header. @param[in] UseDefaultAddress Whether this instance is using default address or not. **/ VOID EFIAPI NetLibCreateIPv4DPathNode ( IN OUT IPv4_DEVICE_PATH *Node, IN EFI_HANDLE Controller, IN IP4_ADDR LocalIp, IN UINT16 LocalPort, IN IP4_ADDR RemoteIp, IN UINT16 RemotePort, IN UINT16 Protocol, IN BOOLEAN UseDefaultAddress ); /** Find the UNDI/SNP handle from controller and protocol GUID. For example, IP will open an MNP child to transmit/receive packets. When MNP is stopped, IP should also be stopped. IP needs to find its own private data which is related the IP's service binding instance that is install on UNDI/SNP handle. Now, the controller is either a MNP or ARP child handle. But IP opens these handle BY_DRIVER, use that info, we can get the UNDI/SNP handle. @param[in] Controller Then protocol handle to check. @param[in] ProtocolGuid The protocol that is related with the handle. @return The UNDI/SNP handle or NULL for errors. **/ EFI_HANDLE EFIAPI NetLibGetNicHandle ( IN EFI_HANDLE Controller, IN EFI_GUID *ProtocolGuid ); /** This is the default unload handle for all the network drivers. Disconnect the driver specified by ImageHandle from all the devices in the handle database. Uninstall all the protocols installed in the driver entry point. @param[in] ImageHandle The drivers' driver image. @retval EFI_SUCCESS The image is unloaded. @retval Others Failed to unload the image. **/ EFI_STATUS EFIAPI NetLibDefaultUnload ( IN EFI_HANDLE ImageHandle ); // //Various signatures // #define NET_BUF_SIGNATURE SIGNATURE_32 ('n', 'b', 'u', 'f') #define NET_VECTOR_SIGNATURE SIGNATURE_32 ('n', 'v', 'e', 'c') #define NET_QUE_SIGNATURE SIGNATURE_32 ('n', 'b', 'q', 'u') #define NET_PROTO_DATA 64 // Opaque buffer for protocols #define NET_BUF_HEAD 1 // Trim or allocate space from head #define NET_BUF_TAIL 0 // Trim or allocate space from tail #define NET_VECTOR_OWN_FIRST 0x01 // We allocated the 1st block in the vector #define NET_CHECK_SIGNATURE(PData, SIGNATURE) \ ASSERT (((PData) != NULL) && ((PData)->Signature == (SIGNATURE))) #define NET_SWAP_SHORT(Value) \ ((((Value) & 0xff) << 8) | (((Value) >> 8) & 0xff)) // // Single memory block in the vector. // typedef struct { UINT32 Len; // The block's length UINT8 *Bulk; // The block's Data } NET_BLOCK; typedef VOID (*NET_VECTOR_EXT_FREE) (VOID *Arg); // //NET_VECTOR contains several blocks to hold all packet's //fragments and other house-keeping stuff for sharing. It //doesn't specify the where actual packet fragment begins. // typedef struct { UINT32 Signature; INTN RefCnt; // Reference count to share NET_VECTOR. NET_VECTOR_EXT_FREE Free; // external function to free NET_VECTOR VOID *Arg; // opeque argument to Free UINT32 Flag; // Flags, NET_VECTOR_OWN_FIRST UINT32 Len; // Total length of the assocated BLOCKs UINT32 BlockNum; NET_BLOCK Block[1]; } NET_VECTOR; // //NET_BLOCK_OP operates on the NET_BLOCK. It specifies //where the actual fragment begins and ends // typedef struct { UINT8 *BlockHead; // Block's head, or the smallest valid Head UINT8 *BlockTail; // Block's tail. BlockTail-BlockHead=block length UINT8 *Head; // 1st byte of the data in the block UINT8 *Tail; // Tail of the data in the block, Tail-Head=Size UINT32 Size; // The size of the data } NET_BLOCK_OP; // //NET_BUF is the buffer manage structure used by the //network stack. Every network packet may be fragmented. The Vector points to //memory blocks used by each fragment, and BlockOp //specifies where each fragment begins and ends. // //It also contains an opaque area for the protocol to store //per-packet information. Protocol must be careful not //to overwrite the members after that. // typedef struct { UINT32 Signature; INTN RefCnt; LIST_ENTRY List; // The List this NET_BUF is on IP4_HEAD *Ip; // Network layer header, for fast access TCP_HEAD *Tcp; // Transport layer header, for fast access UINT8 ProtoData [NET_PROTO_DATA]; //Protocol specific data NET_VECTOR *Vector; // The vector containing the packet UINT32 BlockOpNum; // Total number of BlockOp in the buffer UINT32 TotalSize; // Total size of the actual packet NET_BLOCK_OP BlockOp[1]; // Specify the position of actual packet } NET_BUF; // //A queue of NET_BUFs. It is a thin extension of //NET_BUF functions. // typedef struct { UINT32 Signature; INTN RefCnt; LIST_ENTRY List; // The List this buffer queue is on LIST_ENTRY BufList; // list of queued buffers UINT32 BufSize; // total length of DATA in the buffers UINT32 BufNum; // total number of buffers on the chain } NET_BUF_QUEUE; // // Pseudo header for TCP and UDP checksum // #pragma pack(1) typedef struct { IP4_ADDR SrcIp; IP4_ADDR DstIp; UINT8 Reserved; UINT8 Protocol; UINT16 Len; } NET_PSEUDO_HDR; #pragma pack() // // The fragment entry table used in network interfaces. This is // the same as NET_BLOCK now. Use two different to distinguish // the two in case that NET_BLOCK be enhanced later. // typedef struct { UINT32 Len; UINT8 *Bulk; } NET_FRAGMENT; #define NET_GET_REF(PData) ((PData)->RefCnt++) #define NET_PUT_REF(PData) ((PData)->RefCnt--) #define NETBUF_FROM_PROTODATA(Info) BASE_CR((Info), NET_BUF, ProtoData) #define NET_BUF_SHARED(Buf) \ (((Buf)->RefCnt > 1) || ((Buf)->Vector->RefCnt > 1)) #define NET_VECTOR_SIZE(BlockNum) \ (sizeof (NET_VECTOR) + ((BlockNum) - 1) * sizeof (NET_BLOCK)) #define NET_BUF_SIZE(BlockOpNum) \ (sizeof (NET_BUF) + ((BlockOpNum) - 1) * sizeof (NET_BLOCK_OP)) #define NET_HEADSPACE(BlockOp) \ (UINTN)((BlockOp)->Head - (BlockOp)->BlockHead) #define NET_TAILSPACE(BlockOp) \ (UINTN)((BlockOp)->BlockTail - (BlockOp)->Tail) /** Allocate a single block NET_BUF. Upon allocation, all the free space is in the tail room. @param[in] Len The length of the block. @return Pointer to the allocated NET_BUF, or NULL if the allocation failed due to resource limit. **/ NET_BUF * EFIAPI NetbufAlloc ( IN UINT32 Len ); /** Free the net buffer and its associated NET_VECTOR. Decrease the reference count of the net buffer by one. Free the associated net vector and itself if the reference count of the net buffer is decreased to 0. The net vector free operation decreases the reference count of the net vector by one, and performs the resource free operation when the reference count of the net vector is 0. @param[in] Nbuf Pointer to the NET_BUF to be freed. **/ VOID EFIAPI NetbufFree ( IN NET_BUF *Nbuf ); /** Get the index of NET_BLOCK_OP that contains the byte at Offset in the net buffer. For example, this function can be used to retrieve the IP header in the packet. It also can be used to get the fragment that contains the byte used mainly by the library implementation itself. @param[in] Nbuf Pointer to the net buffer. @param[in] Offset The offset of the byte. @param[out] Index Index of the NET_BLOCK_OP that contains the byte at Offset. @return Pointer to the Offset'th byte of data in the net buffer, or NULL if there is no such data in the net buffer. **/ UINT8 * EFIAPI NetbufGetByte ( IN NET_BUF *Nbuf, IN UINT32 Offset, OUT UINT32 *Index OPTIONAL ); /** Create a copy of the net buffer that shares the associated net vector. The reference count of the newly created net buffer is set to 1. The reference count of the associated net vector is increased by one. @param[in] Nbuf Pointer to the net buffer to be cloned. @return Pointer to the cloned net buffer, or NULL if the allocation failed due to resource limit. **/ NET_BUF * EFIAPI NetbufClone ( IN NET_BUF *Nbuf ); /** Create a duplicated copy of the net buffer with data copied and HeadSpace bytes of head space reserved. The duplicated net buffer will allocate its own memory to hold the data of the source net buffer. @param[in] Nbuf Pointer to the net buffer to be duplicated from. @param[in, out] Duplicate Pointer to the net buffer to duplicate to, if NULL a new net buffer is allocated. @param[in] HeadSpace Length of the head space to reserve. @return Pointer to the duplicated net buffer, or NULL if the allocation failed due to resource limit. **/ NET_BUF * EFIAPI NetbufDuplicate ( IN NET_BUF *Nbuf, IN OUT NET_BUF *Duplicate OPTIONAL, IN UINT32 HeadSpace ); /** Create a NET_BUF structure which contains Len byte data of Nbuf starting from Offset. A new NET_BUF structure will be created but the associated data in NET_VECTOR is shared. This function exists to do IP packet fragmentation. @param[in] Nbuf Pointer to the net buffer to be extracted. @param[in] Offset Starting point of the data to be included in the new net buffer. @param[in] Len Bytes of data to be included in the new net buffer. @param[in] HeadSpace Bytes of head space to reserve for protocol header. @return Pointer to the cloned net buffer, or NULL if the allocation failed due to resource limit. **/ NET_BUF * EFIAPI NetbufGetFragment ( IN NET_BUF *Nbuf, IN UINT32 Offset, IN UINT32 Len, IN UINT32 HeadSpace ); /** Reserve some space in the header room of the net buffer. Upon allocation, all the space is in the tail room of the buffer. Call this function to move some space to the header room. This function is quite limited in that it can only reserve space from the first block of an empty NET_BUF not built from the external. But it should be enough for the network stack. @param[in, out] Nbuf Pointer to the net buffer. @param[in] Len The length of buffer to be reserved from the header. **/ VOID EFIAPI NetbufReserve ( IN OUT NET_BUF *Nbuf, IN UINT32 Len ); /** Allocate Len bytes of space from the header or tail of the buffer. @param[in, out] Nbuf Pointer to the net buffer. @param[in] Len The length of the buffer to be allocated. @param[in] FromHead The flag to indicate whether reserve the data from head (TRUE) or tail (FALSE). @return Pointer to the first byte of the allocated buffer, or NULL if there is no sufficient space. **/ UINT8* EFIAPI NetbufAllocSpace ( IN OUT NET_BUF *Nbuf, IN UINT32 Len, IN BOOLEAN FromHead ); /** Trim Len bytes from the header or tail of the net buffer. @param[in, out] Nbuf Pointer to the net buffer. @param[in] Len The length of the data to be trimmed. @param[in] FromHead The flag to indicate whether trim data from head (TRUE) or tail (FALSE). @return Length of the actually trimmed data, which may be less than Len if the TotalSize of Nbuf is less than Len. **/ UINT32 EFIAPI NetbufTrim ( IN OUT NET_BUF *Nbuf, IN UINT32 Len, IN BOOLEAN FromHead ); /** Copy Len bytes of data from the specific offset of the net buffer to the destination memory. The Len bytes of data may cross several fragments of the net buffer. @param[in] Nbuf Pointer to the net buffer. @param[in] Offset The sequence number of the first byte to copy. @param[in] Len Length of the data to copy. @param[in] Dest The destination of the data to copy to. @return The length of the actual copied data, or 0 if the offset specified exceeds the total size of net buffer. **/ UINT32 EFIAPI NetbufCopy ( IN NET_BUF *Nbuf, IN UINT32 Offset, IN UINT32 Len, IN UINT8 *Dest ); /** Build a NET_BUF from external blocks. A new NET_BUF structure will be created from external blocks. An additional block of memory will be allocated to hold reserved HeadSpace bytes of header room and existing HeadLen bytes of header, but the external blocks are shared by the net buffer to avoid data copying. @param[in] ExtFragment Pointer to the data block. @param[in] ExtNum The number of the data blocks. @param[in] HeadSpace The head space to be reserved. @param[in] HeadLen The length of the protocol header. The function pulls this amount of data into a linear block. @param[in] ExtFree Pointer to the caller-provided free function. @param[in] Arg The argument passed to ExtFree when ExtFree is called. @return Pointer to the net buffer built from the data blocks, or NULL if the allocation failed due to resource limit. **/ NET_BUF * EFIAPI NetbufFromExt ( IN NET_FRAGMENT *ExtFragment, IN UINT32 ExtNum, IN UINT32 HeadSpace, IN UINT32 HeadLen, IN NET_VECTOR_EXT_FREE ExtFree, IN VOID *Arg OPTIONAL ); /** Build a fragment table to contain the fragments in the net buffer. This is the opposite operation of the NetbufFromExt. @param[in] Nbuf Point to the net buffer. @param[in, out] ExtFragment Pointer to the data block. @param[in, out] ExtNum The number of the data blocks. @retval EFI_BUFFER_TOO_SMALL The number of non-empty blocks is bigger than ExtNum. @retval EFI_SUCCESS Fragment table is built successfully. **/ EFI_STATUS EFIAPI NetbufBuildExt ( IN NET_BUF *Nbuf, IN OUT NET_FRAGMENT *ExtFragment, IN OUT UINT32 *ExtNum ); /** Build a net buffer from a list of net buffers. All the fragments will be collected from the list of NEW_BUF and then a new net buffer will be created through NetbufFromExt. @param[in] BufList A List of the net buffer. @param[in] HeadSpace The head space to be reserved. @param[in] HeaderLen The length of the protocol header. The function pulls this amount of data into a linear block. @param[in] ExtFree Pointer to the caller provided free function. @param[in] Arg The argument passed to ExtFree when ExtFree is called. @return Pointer to the net buffer built from the list of net buffers. **/ NET_BUF * EFIAPI NetbufFromBufList ( IN LIST_ENTRY *BufList, IN UINT32 HeadSpace, IN UINT32 HeaderLen, IN NET_VECTOR_EXT_FREE ExtFree, IN VOID *Arg OPTIONAL ); /** Free a list of net buffers. @param[in, out] Head Pointer to the head of linked net buffers. **/ VOID EFIAPI NetbufFreeList ( IN OUT LIST_ENTRY *Head ); /** Initiate the net buffer queue. @param[in, out] NbufQue Pointer to the net buffer queue to be initialized. **/ VOID EFIAPI NetbufQueInit ( IN OUT NET_BUF_QUEUE *NbufQue ); /** Allocate and initialize a net buffer queue. @return Pointer to the allocated net buffer queue, or NULL if the allocation failed due to resource limit. **/ NET_BUF_QUEUE * EFIAPI NetbufQueAlloc ( VOID ); /** Free a net buffer queue. Decrease the reference count of the net buffer queue by one. The real resource free operation isn't performed until the reference count of the net buffer queue is decreased to 0. @param[in] NbufQue Pointer to the net buffer queue to be freed. **/ VOID EFIAPI NetbufQueFree ( IN NET_BUF_QUEUE *NbufQue ); /** Remove a net buffer from the head in the specific queue and return it. @param[in, out] NbufQue Pointer to the net buffer queue. @return Pointer to the net buffer removed from the specific queue, or NULL if there is no net buffer in the specific queue. **/ NET_BUF * EFIAPI NetbufQueRemove ( IN OUT NET_BUF_QUEUE *NbufQue ); /** Append a net buffer to the net buffer queue. @param[in, out] NbufQue Pointer to the net buffer queue. @param[in, out] Nbuf Pointer to the net buffer to be appended. **/ VOID EFIAPI NetbufQueAppend ( IN OUT NET_BUF_QUEUE *NbufQue, IN OUT NET_BUF *Nbuf ); /** Copy Len bytes of data from the net buffer queue at the specific offset to the destination memory. The copying operation is the same as NetbufCopy but applies to the net buffer queue instead of the net buffer. @param[in] NbufQue Pointer to the net buffer queue. @param[in] Offset The sequence number of the first byte to copy. @param[in] Len Length of the data to copy. @param[out] Dest The destination of the data to copy to. @return The length of the actual copied data, or 0 if the offset specified exceeds the total size of net buffer queue. **/ UINT32 EFIAPI NetbufQueCopy ( IN NET_BUF_QUEUE *NbufQue, IN UINT32 Offset, IN UINT32 Len, OUT UINT8 *Dest ); /** Trim Len bytes of data from the queue header and release any net buffer that is trimmed wholely. The trimming operation is the same as NetbufTrim but applies to the net buffer queue instead of the net buffer. @param[in, out] NbufQue Pointer to the net buffer queue. @param[in] Len Length of the data to trim. @return The actual length of the data trimmed. **/ UINT32 EFIAPI NetbufQueTrim ( IN OUT NET_BUF_QUEUE *NbufQue, IN UINT32 Len ); /** Flush the net buffer queue. @param[in, out] NbufQue Pointer to the queue to be flushed. **/ VOID EFIAPI NetbufQueFlush ( IN OUT NET_BUF_QUEUE *NbufQue ); /** Compute the checksum for a bulk of data. @param[in] Bulk Pointer to the data. @param[in] Len Length of the data, in bytes. @return The computed checksum. **/ UINT16 EFIAPI NetblockChecksum ( IN UINT8 *Bulk, IN UINT32 Len ); /** Add two checksums. @param[in] Checksum1 The first checksum to be added. @param[in] Checksum2 The second checksum to be added. @return The new checksum. **/ UINT16 EFIAPI NetAddChecksum ( IN UINT16 Checksum1, IN UINT16 Checksum2 ); /** Compute the checksum for a NET_BUF. @param[in] Nbuf Pointer to the net buffer. @return The computed checksum. **/ UINT16 EFIAPI NetbufChecksum ( IN NET_BUF *Nbuf ); /** Compute the checksum for TCP/UDP pseudo header. Src and Dst are in network byte order, and Len is in host byte order. @param[in] Src The source address of the packet. @param[in] Dst The destination address of the packet. @param[in] Proto The protocol type of the packet. @param[in] Len The length of the packet. @return The computed checksum. **/ UINT16 EFIAPI NetPseudoHeadChecksum ( IN IP4_ADDR Src, IN IP4_ADDR Dst, IN UINT8 Proto, IN UINT16 Len ); #endif