/** @file NvmExpressDxe driver is used to manage non-volatile memory subsystem which follows NVM Express specification. Copyright (c) 2013 - 2019, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "NvmExpress.h" #define NVME_SHUTDOWN_PROCESS_TIMEOUT 45 // // The number of NVME controllers managed by this driver, used by // NvmeRegisterShutdownNotification() and NvmeUnregisterShutdownNotification(). // UINTN mNvmeControllerNumber = 0; /** Read Nvm Express controller capability register. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @param Cap The buffer used to store capability register content. @return EFI_SUCCESS Successfully read the controller capability register content. @return EFI_DEVICE_ERROR Fail to read the controller capability register. **/ EFI_STATUS ReadNvmeControllerCapabilities ( IN NVME_CONTROLLER_PRIVATE_DATA *Private, IN NVME_CAP *Cap ) { EFI_PCI_IO_PROTOCOL *PciIo; EFI_STATUS Status; UINT64 Data; PciIo = Private->PciIo; Status = PciIo->Mem.Read ( PciIo, EfiPciIoWidthUint32, NVME_BAR, NVME_CAP_OFFSET, 2, &Data ); if (EFI_ERROR(Status)) { return Status; } WriteUnaligned64 ((UINT64*)Cap, Data); return EFI_SUCCESS; } /** Read Nvm Express controller configuration register. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @param Cc The buffer used to store configuration register content. @return EFI_SUCCESS Successfully read the controller configuration register content. @return EFI_DEVICE_ERROR Fail to read the controller configuration register. **/ EFI_STATUS ReadNvmeControllerConfiguration ( IN NVME_CONTROLLER_PRIVATE_DATA *Private, IN NVME_CC *Cc ) { EFI_PCI_IO_PROTOCOL *PciIo; EFI_STATUS Status; UINT32 Data; PciIo = Private->PciIo; Status = PciIo->Mem.Read ( PciIo, EfiPciIoWidthUint32, NVME_BAR, NVME_CC_OFFSET, 1, &Data ); if (EFI_ERROR(Status)) { return Status; } WriteUnaligned32 ((UINT32*)Cc, Data); return EFI_SUCCESS; } /** Write Nvm Express controller configuration register. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @param Cc The buffer used to store the content to be written into configuration register. @return EFI_SUCCESS Successfully write data into the controller configuration register. @return EFI_DEVICE_ERROR Fail to write data into the controller configuration register. **/ EFI_STATUS WriteNvmeControllerConfiguration ( IN NVME_CONTROLLER_PRIVATE_DATA *Private, IN NVME_CC *Cc ) { EFI_PCI_IO_PROTOCOL *PciIo; EFI_STATUS Status; UINT32 Data; PciIo = Private->PciIo; Data = ReadUnaligned32 ((UINT32*)Cc); Status = PciIo->Mem.Write ( PciIo, EfiPciIoWidthUint32, NVME_BAR, NVME_CC_OFFSET, 1, &Data ); if (EFI_ERROR(Status)) { return Status; } DEBUG ((DEBUG_INFO, "Cc.En: %d\n", Cc->En)); DEBUG ((DEBUG_INFO, "Cc.Css: %d\n", Cc->Css)); DEBUG ((DEBUG_INFO, "Cc.Mps: %d\n", Cc->Mps)); DEBUG ((DEBUG_INFO, "Cc.Ams: %d\n", Cc->Ams)); DEBUG ((DEBUG_INFO, "Cc.Shn: %d\n", Cc->Shn)); DEBUG ((DEBUG_INFO, "Cc.Iosqes: %d\n", Cc->Iosqes)); DEBUG ((DEBUG_INFO, "Cc.Iocqes: %d\n", Cc->Iocqes)); return EFI_SUCCESS; } /** Read Nvm Express controller status register. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @param Csts The buffer used to store status register content. @return EFI_SUCCESS Successfully read the controller status register content. @return EFI_DEVICE_ERROR Fail to read the controller status register. **/ EFI_STATUS ReadNvmeControllerStatus ( IN NVME_CONTROLLER_PRIVATE_DATA *Private, IN NVME_CSTS *Csts ) { EFI_PCI_IO_PROTOCOL *PciIo; EFI_STATUS Status; UINT32 Data; PciIo = Private->PciIo; Status = PciIo->Mem.Read ( PciIo, EfiPciIoWidthUint32, NVME_BAR, NVME_CSTS_OFFSET, 1, &Data ); if (EFI_ERROR(Status)) { return Status; } WriteUnaligned32 ((UINT32*)Csts, Data); return EFI_SUCCESS; } /** Write Nvm Express admin queue attributes register. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @param Aqa The buffer used to store the content to be written into admin queue attributes register. @return EFI_SUCCESS Successfully write data into the admin queue attributes register. @return EFI_DEVICE_ERROR Fail to write data into the admin queue attributes register. **/ EFI_STATUS WriteNvmeAdminQueueAttributes ( IN NVME_CONTROLLER_PRIVATE_DATA *Private, IN NVME_AQA *Aqa ) { EFI_PCI_IO_PROTOCOL *PciIo; EFI_STATUS Status; UINT32 Data; PciIo = Private->PciIo; Data = ReadUnaligned32 ((UINT32*)Aqa); Status = PciIo->Mem.Write ( PciIo, EfiPciIoWidthUint32, NVME_BAR, NVME_AQA_OFFSET, 1, &Data ); if (EFI_ERROR(Status)) { return Status; } DEBUG ((DEBUG_INFO, "Aqa.Asqs: %d\n", Aqa->Asqs)); DEBUG ((DEBUG_INFO, "Aqa.Acqs: %d\n", Aqa->Acqs)); return EFI_SUCCESS; } /** Write Nvm Express admin submission queue base address register. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @param Asq The buffer used to store the content to be written into admin submission queue base address register. @return EFI_SUCCESS Successfully write data into the admin submission queue base address register. @return EFI_DEVICE_ERROR Fail to write data into the admin submission queue base address register. **/ EFI_STATUS WriteNvmeAdminSubmissionQueueBaseAddress ( IN NVME_CONTROLLER_PRIVATE_DATA *Private, IN NVME_ASQ *Asq ) { EFI_PCI_IO_PROTOCOL *PciIo; EFI_STATUS Status; UINT64 Data; PciIo = Private->PciIo; Data = ReadUnaligned64 ((UINT64*)Asq); Status = PciIo->Mem.Write ( PciIo, EfiPciIoWidthUint32, NVME_BAR, NVME_ASQ_OFFSET, 2, &Data ); if (EFI_ERROR(Status)) { return Status; } DEBUG ((DEBUG_INFO, "Asq: %lx\n", *Asq)); return EFI_SUCCESS; } /** Write Nvm Express admin completion queue base address register. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @param Acq The buffer used to store the content to be written into admin completion queue base address register. @return EFI_SUCCESS Successfully write data into the admin completion queue base address register. @return EFI_DEVICE_ERROR Fail to write data into the admin completion queue base address register. **/ EFI_STATUS WriteNvmeAdminCompletionQueueBaseAddress ( IN NVME_CONTROLLER_PRIVATE_DATA *Private, IN NVME_ACQ *Acq ) { EFI_PCI_IO_PROTOCOL *PciIo; EFI_STATUS Status; UINT64 Data; PciIo = Private->PciIo; Data = ReadUnaligned64 ((UINT64*)Acq); Status = PciIo->Mem.Write ( PciIo, EfiPciIoWidthUint32, NVME_BAR, NVME_ACQ_OFFSET, 2, &Data ); if (EFI_ERROR(Status)) { return Status; } DEBUG ((DEBUG_INFO, "Acq: %lxh\n", *Acq)); return EFI_SUCCESS; } /** Disable the Nvm Express controller. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @return EFI_SUCCESS Successfully disable the controller. @return EFI_DEVICE_ERROR Fail to disable the controller. **/ EFI_STATUS NvmeDisableController ( IN NVME_CONTROLLER_PRIVATE_DATA *Private ) { NVME_CC Cc; NVME_CSTS Csts; EFI_STATUS Status; UINT32 Index; UINT8 Timeout; // // Read Controller Configuration Register. // Status = ReadNvmeControllerConfiguration (Private, &Cc); if (EFI_ERROR(Status)) { return Status; } Cc.En = 0; // // Disable the controller. // Status = WriteNvmeControllerConfiguration (Private, &Cc); if (EFI_ERROR(Status)) { return Status; } // // Cap.To specifies max delay time in 500ms increments for Csts.Rdy to transition from 1 to 0 after // Cc.Enable transition from 1 to 0. Loop produces a 1 millisecond delay per itteration, up to 500 * Cap.To. // if (Private->Cap.To == 0) { Timeout = 1; } else { Timeout = Private->Cap.To; } for(Index = (Timeout * 500); Index != 0; --Index) { gBS->Stall(1000); // // Check if the controller is initialized // Status = ReadNvmeControllerStatus (Private, &Csts); if (EFI_ERROR(Status)) { return Status; } if (Csts.Rdy == 0) { break; } } if (Index == 0) { Status = EFI_DEVICE_ERROR; REPORT_STATUS_CODE ( (EFI_ERROR_CODE | EFI_ERROR_MAJOR), (EFI_IO_BUS_SCSI | EFI_IOB_EC_INTERFACE_ERROR) ); } DEBUG ((DEBUG_INFO, "NVMe controller is disabled with status [%r].\n", Status)); return Status; } /** Enable the Nvm Express controller. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @return EFI_SUCCESS Successfully enable the controller. @return EFI_DEVICE_ERROR Fail to enable the controller. @return EFI_TIMEOUT Fail to enable the controller in given time slot. **/ EFI_STATUS NvmeEnableController ( IN NVME_CONTROLLER_PRIVATE_DATA *Private ) { NVME_CC Cc; NVME_CSTS Csts; EFI_STATUS Status; UINT32 Index; UINT8 Timeout; // // Enable the controller. // CC.AMS, CC.MPS and CC.CSS are all set to 0. // ZeroMem (&Cc, sizeof (NVME_CC)); Cc.En = 1; Cc.Iosqes = 6; Cc.Iocqes = 4; Status = WriteNvmeControllerConfiguration (Private, &Cc); if (EFI_ERROR(Status)) { return Status; } // // Cap.To specifies max delay time in 500ms increments for Csts.Rdy to set after // Cc.Enable. Loop produces a 1 millisecond delay per itteration, up to 500 * Cap.To. // if (Private->Cap.To == 0) { Timeout = 1; } else { Timeout = Private->Cap.To; } for(Index = (Timeout * 500); Index != 0; --Index) { gBS->Stall(1000); // // Check if the controller is initialized // Status = ReadNvmeControllerStatus (Private, &Csts); if (EFI_ERROR(Status)) { return Status; } if (Csts.Rdy) { break; } } if (Index == 0) { Status = EFI_TIMEOUT; REPORT_STATUS_CODE ( (EFI_ERROR_CODE | EFI_ERROR_MAJOR), (EFI_IO_BUS_SCSI | EFI_IOB_EC_INTERFACE_ERROR) ); } DEBUG ((DEBUG_INFO, "NVMe controller is enabled with status [%r].\n", Status)); return Status; } /** Get identify controller data. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @param Buffer The buffer used to store the identify controller data. @return EFI_SUCCESS Successfully get the identify controller data. @return EFI_DEVICE_ERROR Fail to get the identify controller data. **/ EFI_STATUS NvmeIdentifyController ( IN NVME_CONTROLLER_PRIVATE_DATA *Private, IN VOID *Buffer ) { EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket; EFI_NVM_EXPRESS_COMMAND Command; EFI_NVM_EXPRESS_COMPLETION Completion; EFI_STATUS Status; ZeroMem (&CommandPacket, sizeof(EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET)); ZeroMem (&Command, sizeof(EFI_NVM_EXPRESS_COMMAND)); ZeroMem (&Completion, sizeof(EFI_NVM_EXPRESS_COMPLETION)); Command.Cdw0.Opcode = NVME_ADMIN_IDENTIFY_CMD; // // According to Nvm Express 1.1 spec Figure 38, When not used, the field shall be cleared to 0h. // For the Identify command, the Namespace Identifier is only used for the Namespace data structure. // Command.Nsid = 0; CommandPacket.NvmeCmd = &Command; CommandPacket.NvmeCompletion = &Completion; CommandPacket.TransferBuffer = Buffer; CommandPacket.TransferLength = sizeof (NVME_ADMIN_CONTROLLER_DATA); CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT; CommandPacket.QueueType = NVME_ADMIN_QUEUE; // // Set bit 0 (Cns bit) to 1 to identify a controller // Command.Cdw10 = 1; Command.Flags = CDW10_VALID; Status = Private->Passthru.PassThru ( &Private->Passthru, NVME_CONTROLLER_ID, &CommandPacket, NULL ); return Status; } /** Get specified identify namespace data. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @param NamespaceId The specified namespace identifier. @param Buffer The buffer used to store the identify namespace data. @return EFI_SUCCESS Successfully get the identify namespace data. @return EFI_DEVICE_ERROR Fail to get the identify namespace data. **/ EFI_STATUS NvmeIdentifyNamespace ( IN NVME_CONTROLLER_PRIVATE_DATA *Private, IN UINT32 NamespaceId, IN VOID *Buffer ) { EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket; EFI_NVM_EXPRESS_COMMAND Command; EFI_NVM_EXPRESS_COMPLETION Completion; EFI_STATUS Status; ZeroMem (&CommandPacket, sizeof(EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET)); ZeroMem (&Command, sizeof(EFI_NVM_EXPRESS_COMMAND)); ZeroMem (&Completion, sizeof(EFI_NVM_EXPRESS_COMPLETION)); CommandPacket.NvmeCmd = &Command; CommandPacket.NvmeCompletion = &Completion; Command.Cdw0.Opcode = NVME_ADMIN_IDENTIFY_CMD; Command.Nsid = NamespaceId; CommandPacket.TransferBuffer = Buffer; CommandPacket.TransferLength = sizeof (NVME_ADMIN_NAMESPACE_DATA); CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT; CommandPacket.QueueType = NVME_ADMIN_QUEUE; // // Set bit 0 (Cns bit) to 1 to identify a namespace // CommandPacket.NvmeCmd->Cdw10 = 0; CommandPacket.NvmeCmd->Flags = CDW10_VALID; Status = Private->Passthru.PassThru ( &Private->Passthru, NamespaceId, &CommandPacket, NULL ); return Status; } /** Create io completion queue. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @return EFI_SUCCESS Successfully create io completion queue. @return EFI_DEVICE_ERROR Fail to create io completion queue. **/ EFI_STATUS NvmeCreateIoCompletionQueue ( IN NVME_CONTROLLER_PRIVATE_DATA *Private ) { EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket; EFI_NVM_EXPRESS_COMMAND Command; EFI_NVM_EXPRESS_COMPLETION Completion; EFI_STATUS Status; NVME_ADMIN_CRIOCQ CrIoCq; UINT32 Index; UINT16 QueueSize; Status = EFI_SUCCESS; Private->CreateIoQueue = TRUE; for (Index = 1; Index < NVME_MAX_QUEUES; Index++) { ZeroMem (&CommandPacket, sizeof(EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET)); ZeroMem (&Command, sizeof(EFI_NVM_EXPRESS_COMMAND)); ZeroMem (&Completion, sizeof(EFI_NVM_EXPRESS_COMPLETION)); ZeroMem (&CrIoCq, sizeof(NVME_ADMIN_CRIOCQ)); CommandPacket.NvmeCmd = &Command; CommandPacket.NvmeCompletion = &Completion; Command.Cdw0.Opcode = NVME_ADMIN_CRIOCQ_CMD; CommandPacket.TransferBuffer = Private->CqBufferPciAddr[Index]; CommandPacket.TransferLength = EFI_PAGE_SIZE; CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT; CommandPacket.QueueType = NVME_ADMIN_QUEUE; if (Index == 1) { QueueSize = NVME_CCQ_SIZE; } else { if (Private->Cap.Mqes > NVME_ASYNC_CCQ_SIZE) { QueueSize = NVME_ASYNC_CCQ_SIZE; } else { QueueSize = Private->Cap.Mqes; } } CrIoCq.Qid = Index; CrIoCq.Qsize = QueueSize; CrIoCq.Pc = 1; CopyMem (&CommandPacket.NvmeCmd->Cdw10, &CrIoCq, sizeof (NVME_ADMIN_CRIOCQ)); CommandPacket.NvmeCmd->Flags = CDW10_VALID | CDW11_VALID; Status = Private->Passthru.PassThru ( &Private->Passthru, 0, &CommandPacket, NULL ); if (EFI_ERROR (Status)) { break; } } Private->CreateIoQueue = FALSE; return Status; } /** Create io submission queue. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @return EFI_SUCCESS Successfully create io submission queue. @return EFI_DEVICE_ERROR Fail to create io submission queue. **/ EFI_STATUS NvmeCreateIoSubmissionQueue ( IN NVME_CONTROLLER_PRIVATE_DATA *Private ) { EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket; EFI_NVM_EXPRESS_COMMAND Command; EFI_NVM_EXPRESS_COMPLETION Completion; EFI_STATUS Status; NVME_ADMIN_CRIOSQ CrIoSq; UINT32 Index; UINT16 QueueSize; Status = EFI_SUCCESS; Private->CreateIoQueue = TRUE; for (Index = 1; Index < NVME_MAX_QUEUES; Index++) { ZeroMem (&CommandPacket, sizeof(EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET)); ZeroMem (&Command, sizeof(EFI_NVM_EXPRESS_COMMAND)); ZeroMem (&Completion, sizeof(EFI_NVM_EXPRESS_COMPLETION)); ZeroMem (&CrIoSq, sizeof(NVME_ADMIN_CRIOSQ)); CommandPacket.NvmeCmd = &Command; CommandPacket.NvmeCompletion = &Completion; Command.Cdw0.Opcode = NVME_ADMIN_CRIOSQ_CMD; CommandPacket.TransferBuffer = Private->SqBufferPciAddr[Index]; CommandPacket.TransferLength = EFI_PAGE_SIZE; CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT; CommandPacket.QueueType = NVME_ADMIN_QUEUE; if (Index == 1) { QueueSize = NVME_CSQ_SIZE; } else { if (Private->Cap.Mqes > NVME_ASYNC_CSQ_SIZE) { QueueSize = NVME_ASYNC_CSQ_SIZE; } else { QueueSize = Private->Cap.Mqes; } } CrIoSq.Qid = Index; CrIoSq.Qsize = QueueSize; CrIoSq.Pc = 1; CrIoSq.Cqid = Index; CrIoSq.Qprio = 0; CopyMem (&CommandPacket.NvmeCmd->Cdw10, &CrIoSq, sizeof (NVME_ADMIN_CRIOSQ)); CommandPacket.NvmeCmd->Flags = CDW10_VALID | CDW11_VALID; Status = Private->Passthru.PassThru ( &Private->Passthru, 0, &CommandPacket, NULL ); if (EFI_ERROR (Status)) { break; } } Private->CreateIoQueue = FALSE; return Status; } /** Initialize the Nvm Express controller. @param[in] Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @retval EFI_SUCCESS The NVM Express Controller is initialized successfully. @retval Others A device error occurred while initializing the controller. **/ EFI_STATUS NvmeControllerInit ( IN NVME_CONTROLLER_PRIVATE_DATA *Private ) { EFI_STATUS Status; EFI_PCI_IO_PROTOCOL *PciIo; UINT64 Supports; NVME_AQA Aqa; NVME_ASQ Asq; NVME_ACQ Acq; UINT8 Sn[21]; UINT8 Mn[41]; // // Save original PCI attributes and enable this controller. // PciIo = Private->PciIo; Status = PciIo->Attributes ( PciIo, EfiPciIoAttributeOperationGet, 0, &Private->PciAttributes ); if (EFI_ERROR (Status)) { return Status; } Status = PciIo->Attributes ( PciIo, EfiPciIoAttributeOperationSupported, 0, &Supports ); if (!EFI_ERROR (Status)) { Supports &= (UINT64)EFI_PCI_DEVICE_ENABLE; Status = PciIo->Attributes ( PciIo, EfiPciIoAttributeOperationEnable, Supports, NULL ); } if (EFI_ERROR (Status)) { DEBUG ((DEBUG_INFO, "NvmeControllerInit: failed to enable controller\n")); return Status; } // // Enable 64-bit DMA support in the PCI layer. // Status = PciIo->Attributes ( PciIo, EfiPciIoAttributeOperationEnable, EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE, NULL ); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_WARN, "NvmeControllerInit: failed to enable 64-bit DMA (%r)\n", Status)); } // // Read the Controller Capabilities register and verify that the NVM command set is supported // Status = ReadNvmeControllerCapabilities (Private, &Private->Cap); if (EFI_ERROR (Status)) { return Status; } if (Private->Cap.Css != 0x01) { DEBUG ((DEBUG_INFO, "NvmeControllerInit: the controller doesn't support NVMe command set\n")); return EFI_UNSUPPORTED; } // // Currently the driver only supports 4k page size. // ASSERT ((Private->Cap.Mpsmin + 12) <= EFI_PAGE_SHIFT); Private->Cid[0] = 0; Private->Cid[1] = 0; Private->Cid[2] = 0; Private->Pt[0] = 0; Private->Pt[1] = 0; Private->Pt[2] = 0; Private->SqTdbl[0].Sqt = 0; Private->SqTdbl[1].Sqt = 0; Private->SqTdbl[2].Sqt = 0; Private->CqHdbl[0].Cqh = 0; Private->CqHdbl[1].Cqh = 0; Private->CqHdbl[2].Cqh = 0; Private->AsyncSqHead = 0; Status = NvmeDisableController (Private); if (EFI_ERROR(Status)) { return Status; } // // set number of entries admin submission & completion queues. // Aqa.Asqs = NVME_ASQ_SIZE; Aqa.Rsvd1 = 0; Aqa.Acqs = NVME_ACQ_SIZE; Aqa.Rsvd2 = 0; // // Address of admin submission queue. // Asq = (UINT64)(UINTN)(Private->BufferPciAddr) & ~0xFFF; // // Address of admin completion queue. // Acq = (UINT64)(UINTN)(Private->BufferPciAddr + EFI_PAGE_SIZE) & ~0xFFF; // // Address of I/O submission & completion queue. // ZeroMem (Private->Buffer, EFI_PAGES_TO_SIZE (6)); Private->SqBuffer[0] = (NVME_SQ *)(UINTN)(Private->Buffer); Private->SqBufferPciAddr[0] = (NVME_SQ *)(UINTN)(Private->BufferPciAddr); Private->CqBuffer[0] = (NVME_CQ *)(UINTN)(Private->Buffer + 1 * EFI_PAGE_SIZE); Private->CqBufferPciAddr[0] = (NVME_CQ *)(UINTN)(Private->BufferPciAddr + 1 * EFI_PAGE_SIZE); Private->SqBuffer[1] = (NVME_SQ *)(UINTN)(Private->Buffer + 2 * EFI_PAGE_SIZE); Private->SqBufferPciAddr[1] = (NVME_SQ *)(UINTN)(Private->BufferPciAddr + 2 * EFI_PAGE_SIZE); Private->CqBuffer[1] = (NVME_CQ *)(UINTN)(Private->Buffer + 3 * EFI_PAGE_SIZE); Private->CqBufferPciAddr[1] = (NVME_CQ *)(UINTN)(Private->BufferPciAddr + 3 * EFI_PAGE_SIZE); Private->SqBuffer[2] = (NVME_SQ *)(UINTN)(Private->Buffer + 4 * EFI_PAGE_SIZE); Private->SqBufferPciAddr[2] = (NVME_SQ *)(UINTN)(Private->BufferPciAddr + 4 * EFI_PAGE_SIZE); Private->CqBuffer[2] = (NVME_CQ *)(UINTN)(Private->Buffer + 5 * EFI_PAGE_SIZE); Private->CqBufferPciAddr[2] = (NVME_CQ *)(UINTN)(Private->BufferPciAddr + 5 * EFI_PAGE_SIZE); DEBUG ((DEBUG_INFO, "Private->Buffer = [%016X]\n", (UINT64)(UINTN)Private->Buffer)); DEBUG ((DEBUG_INFO, "Admin Submission Queue size (Aqa.Asqs) = [%08X]\n", Aqa.Asqs)); DEBUG ((DEBUG_INFO, "Admin Completion Queue size (Aqa.Acqs) = [%08X]\n", Aqa.Acqs)); DEBUG ((DEBUG_INFO, "Admin Submission Queue (SqBuffer[0]) = [%016X]\n", Private->SqBuffer[0])); DEBUG ((DEBUG_INFO, "Admin Completion Queue (CqBuffer[0]) = [%016X]\n", Private->CqBuffer[0])); DEBUG ((DEBUG_INFO, "Sync I/O Submission Queue (SqBuffer[1]) = [%016X]\n", Private->SqBuffer[1])); DEBUG ((DEBUG_INFO, "Sync I/O Completion Queue (CqBuffer[1]) = [%016X]\n", Private->CqBuffer[1])); DEBUG ((DEBUG_INFO, "Async I/O Submission Queue (SqBuffer[2]) = [%016X]\n", Private->SqBuffer[2])); DEBUG ((DEBUG_INFO, "Async I/O Completion Queue (CqBuffer[2]) = [%016X]\n", Private->CqBuffer[2])); // // Program admin queue attributes. // Status = WriteNvmeAdminQueueAttributes (Private, &Aqa); if (EFI_ERROR(Status)) { return Status; } // // Program admin submission queue address. // Status = WriteNvmeAdminSubmissionQueueBaseAddress (Private, &Asq); if (EFI_ERROR(Status)) { return Status; } // // Program admin completion queue address. // Status = WriteNvmeAdminCompletionQueueBaseAddress (Private, &Acq); if (EFI_ERROR(Status)) { return Status; } Status = NvmeEnableController (Private); if (EFI_ERROR(Status)) { return Status; } // // Allocate buffer for Identify Controller data // if (Private->ControllerData == NULL) { Private->ControllerData = (NVME_ADMIN_CONTROLLER_DATA *)AllocateZeroPool (sizeof(NVME_ADMIN_CONTROLLER_DATA)); if (Private->ControllerData == NULL) { return EFI_OUT_OF_RESOURCES; } } // // Get current Identify Controller Data // Status = NvmeIdentifyController (Private, Private->ControllerData); if (EFI_ERROR(Status)) { FreePool(Private->ControllerData); Private->ControllerData = NULL; return EFI_NOT_FOUND; } // // Dump NvmExpress Identify Controller Data // CopyMem (Sn, Private->ControllerData->Sn, sizeof (Private->ControllerData->Sn)); Sn[20] = 0; CopyMem (Mn, Private->ControllerData->Mn, sizeof (Private->ControllerData->Mn)); Mn[40] = 0; DEBUG ((DEBUG_INFO, " == NVME IDENTIFY CONTROLLER DATA ==\n")); DEBUG ((DEBUG_INFO, " PCI VID : 0x%x\n", Private->ControllerData->Vid)); DEBUG ((DEBUG_INFO, " PCI SSVID : 0x%x\n", Private->ControllerData->Ssvid)); DEBUG ((DEBUG_INFO, " SN : %a\n", Sn)); DEBUG ((DEBUG_INFO, " MN : %a\n", Mn)); DEBUG ((DEBUG_INFO, " FR : 0x%x\n", *((UINT64*)Private->ControllerData->Fr))); DEBUG ((DEBUG_INFO, " TNVMCAP (high 8-byte) : 0x%lx\n", *((UINT64*)(Private->ControllerData->Tnvmcap + 8)))); DEBUG ((DEBUG_INFO, " TNVMCAP (low 8-byte) : 0x%lx\n", *((UINT64*)Private->ControllerData->Tnvmcap))); DEBUG ((DEBUG_INFO, " RAB : 0x%x\n", Private->ControllerData->Rab)); DEBUG ((DEBUG_INFO, " IEEE : 0x%x\n", *(UINT32*)Private->ControllerData->Ieee_oui)); DEBUG ((DEBUG_INFO, " AERL : 0x%x\n", Private->ControllerData->Aerl)); DEBUG ((DEBUG_INFO, " SQES : 0x%x\n", Private->ControllerData->Sqes)); DEBUG ((DEBUG_INFO, " CQES : 0x%x\n", Private->ControllerData->Cqes)); DEBUG ((DEBUG_INFO, " NN : 0x%x\n", Private->ControllerData->Nn)); // // Create two I/O completion queues. // One for blocking I/O, one for non-blocking I/O. // Status = NvmeCreateIoCompletionQueue (Private); if (EFI_ERROR(Status)) { return Status; } // // Create two I/O Submission queues. // One for blocking I/O, one for non-blocking I/O. // Status = NvmeCreateIoSubmissionQueue (Private); return Status; } /** This routine is called to properly shutdown the Nvm Express controller per NVMe spec. @param[in] ResetType The type of reset to perform. @param[in] ResetStatus The status code for the reset. @param[in] DataSize The size, in bytes, of ResetData. @param[in] ResetData For a ResetType of EfiResetCold, EfiResetWarm, or EfiResetShutdown the data buffer starts with a Null-terminated string, optionally followed by additional binary data. The string is a description that the caller may use to further indicate the reason for the system reset. For a ResetType of EfiResetPlatformSpecific the data buffer also starts with a Null-terminated string that is followed by an EFI_GUID that describes the specific type of reset to perform. **/ VOID EFIAPI NvmeShutdownAllControllers ( IN EFI_RESET_TYPE ResetType, IN EFI_STATUS ResetStatus, IN UINTN DataSize, IN VOID *ResetData OPTIONAL ) { EFI_STATUS Status; EFI_HANDLE *Handles; UINTN HandleCount; UINTN HandleIndex; EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenInfos; UINTN OpenInfoCount; UINTN OpenInfoIndex; EFI_NVM_EXPRESS_PASS_THRU_PROTOCOL *NvmePassThru; NVME_CC Cc; NVME_CSTS Csts; UINTN Index; NVME_CONTROLLER_PRIVATE_DATA *Private; Status = gBS->LocateHandleBuffer ( ByProtocol, &gEfiPciIoProtocolGuid, NULL, &HandleCount, &Handles ); if (EFI_ERROR (Status)) { HandleCount = 0; } for (HandleIndex = 0; HandleIndex < HandleCount; HandleIndex++) { Status = gBS->OpenProtocolInformation ( Handles[HandleIndex], &gEfiPciIoProtocolGuid, &OpenInfos, &OpenInfoCount ); if (EFI_ERROR (Status)) { continue; } for (OpenInfoIndex = 0; OpenInfoIndex < OpenInfoCount; OpenInfoIndex++) { // // Find all the NVME controller managed by this driver. // gImageHandle equals to DriverBinding handle for this driver. // if (((OpenInfos[OpenInfoIndex].Attributes & EFI_OPEN_PROTOCOL_BY_DRIVER) != 0) && (OpenInfos[OpenInfoIndex].AgentHandle == gImageHandle)) { Status = gBS->OpenProtocol ( OpenInfos[OpenInfoIndex].ControllerHandle, &gEfiNvmExpressPassThruProtocolGuid, (VOID **) &NvmePassThru, NULL, NULL, EFI_OPEN_PROTOCOL_GET_PROTOCOL ); if (EFI_ERROR (Status)) { continue; } Private = NVME_CONTROLLER_PRIVATE_DATA_FROM_PASS_THRU (NvmePassThru); // // Read Controller Configuration Register. // Status = ReadNvmeControllerConfiguration (Private, &Cc); if (EFI_ERROR(Status)) { continue; } // // The host should set the Shutdown Notification (CC.SHN) field to 01b // to indicate a normal shutdown operation. // Cc.Shn = NVME_CC_SHN_NORMAL_SHUTDOWN; Status = WriteNvmeControllerConfiguration (Private, &Cc); if (EFI_ERROR(Status)) { continue; } // // The controller indicates when shutdown processing is completed by updating the // Shutdown Status (CSTS.SHST) field to 10b. // Wait up to 45 seconds (break down to 4500 x 10ms) for the shutdown to complete. // for (Index = 0; Index < NVME_SHUTDOWN_PROCESS_TIMEOUT * 100; Index++) { Status = ReadNvmeControllerStatus (Private, &Csts); if (!EFI_ERROR(Status) && (Csts.Shst == NVME_CSTS_SHST_SHUTDOWN_COMPLETED)) { DEBUG((DEBUG_INFO, "NvmeShutdownController: shutdown processing is completed after %dms.\n", Index * 10)); break; } // // Stall for 10ms // gBS->Stall (10 * 1000); } if (Index == NVME_SHUTDOWN_PROCESS_TIMEOUT * 100) { DEBUG((DEBUG_ERROR, "NvmeShutdownController: shutdown processing is timed out\n")); } } } } } /** Register the shutdown notification through the ResetNotification protocol. Register the shutdown notification when mNvmeControllerNumber increased from 0 to 1. **/ VOID NvmeRegisterShutdownNotification ( VOID ) { EFI_STATUS Status; EFI_RESET_NOTIFICATION_PROTOCOL *ResetNotify; mNvmeControllerNumber++; if (mNvmeControllerNumber == 1) { Status = gBS->LocateProtocol (&gEfiResetNotificationProtocolGuid, NULL, (VOID **) &ResetNotify); if (!EFI_ERROR (Status)) { Status = ResetNotify->RegisterResetNotify (ResetNotify, NvmeShutdownAllControllers); ASSERT_EFI_ERROR (Status); } else { DEBUG ((DEBUG_WARN, "NVME: ResetNotification absent! Shutdown notification cannot be performed!\n")); } } } /** Unregister the shutdown notification through the ResetNotification protocol. Unregister the shutdown notification when mNvmeControllerNumber decreased from 1 to 0. **/ VOID NvmeUnregisterShutdownNotification ( VOID ) { EFI_STATUS Status; EFI_RESET_NOTIFICATION_PROTOCOL *ResetNotify; mNvmeControllerNumber--; if (mNvmeControllerNumber == 0) { Status = gBS->LocateProtocol (&gEfiResetNotificationProtocolGuid, NULL, (VOID **) &ResetNotify); if (!EFI_ERROR (Status)) { Status = ResetNotify->UnregisterResetNotify (ResetNotify, NvmeShutdownAllControllers); ASSERT_EFI_ERROR (Status); } } }