/*++ Copyright (c) 2009, Hewlett-Packard Company. All rights reserved.
Portions copyright (c) 2010, Apple Inc. All rights reserved.
Portions copyright (c) 2011-2013, ARM Ltd. All rights reserved.
Copyright (c) 2017, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. --*/ #include #include "CpuDxe.h" #define TT_ATTR_INDX_INVALID ((UINT32)~0) STATIC UINT64 GetFirstPageAttribute ( IN UINT64 *FirstLevelTableAddress, IN UINTN TableLevel ) { UINT64 FirstEntry; // Get the first entry of the table FirstEntry = *FirstLevelTableAddress; if ((TableLevel != 3) && (FirstEntry & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY) { // Only valid for Levels 0, 1 and 2 // Get the attribute of the subsequent table return GetFirstPageAttribute ((UINT64*)(FirstEntry & TT_ADDRESS_MASK_DESCRIPTION_TABLE), TableLevel + 1); } else if (((FirstEntry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY) || ((TableLevel == 3) && ((FirstEntry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY_LEVEL3))) { return FirstEntry & TT_ATTR_INDX_MASK; } else { return TT_ATTR_INDX_INVALID; } } STATIC UINT64 GetNextEntryAttribute ( IN UINT64 *TableAddress, IN UINTN EntryCount, IN UINTN TableLevel, IN UINT64 BaseAddress, IN OUT UINT32 *PrevEntryAttribute, IN OUT UINT64 *StartGcdRegion ) { UINTN Index; UINT64 Entry; UINT32 EntryAttribute; UINT32 EntryType; EFI_STATUS Status; UINTN NumberOfDescriptors; EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap; // Get the memory space map from GCD MemorySpaceMap = NULL; Status = gDS->GetMemorySpaceMap (&NumberOfDescriptors, &MemorySpaceMap); ASSERT_EFI_ERROR (Status); // We cannot get more than 3-level page table ASSERT (TableLevel <= 3); // While the top level table might not contain TT_ENTRY_COUNT entries; // the subsequent ones should be filled up for (Index = 0; Index < EntryCount; Index++) { Entry = TableAddress[Index]; EntryType = Entry & TT_TYPE_MASK; EntryAttribute = Entry & TT_ATTR_INDX_MASK; // If Entry is a Table Descriptor type entry then go through the sub-level table if ((EntryType == TT_TYPE_BLOCK_ENTRY) || ((TableLevel == 3) && (EntryType == TT_TYPE_BLOCK_ENTRY_LEVEL3))) { if ((*PrevEntryAttribute == TT_ATTR_INDX_INVALID) || (EntryAttribute != *PrevEntryAttribute)) { if (*PrevEntryAttribute != TT_ATTR_INDX_INVALID) { // Update GCD with the last region SetGcdMemorySpaceAttributes (MemorySpaceMap, NumberOfDescriptors, *StartGcdRegion, (BaseAddress + (Index * TT_ADDRESS_AT_LEVEL(TableLevel))) - *StartGcdRegion, PageAttributeToGcdAttribute (*PrevEntryAttribute)); } // Start of the new region *StartGcdRegion = BaseAddress + (Index * TT_ADDRESS_AT_LEVEL(TableLevel)); *PrevEntryAttribute = EntryAttribute; } else { continue; } } else if (EntryType == TT_TYPE_TABLE_ENTRY) { // Table Entry type is only valid for Level 0, 1, 2 ASSERT (TableLevel < 3); // Increase the level number and scan the sub-level table GetNextEntryAttribute ((UINT64*)(Entry & TT_ADDRESS_MASK_DESCRIPTION_TABLE), TT_ENTRY_COUNT, TableLevel + 1, (BaseAddress + (Index * TT_ADDRESS_AT_LEVEL(TableLevel))), PrevEntryAttribute, StartGcdRegion); } else { if (*PrevEntryAttribute != TT_ATTR_INDX_INVALID) { // Update GCD with the last region SetGcdMemorySpaceAttributes (MemorySpaceMap, NumberOfDescriptors, *StartGcdRegion, (BaseAddress + (Index * TT_ADDRESS_AT_LEVEL(TableLevel))) - *StartGcdRegion, PageAttributeToGcdAttribute (*PrevEntryAttribute)); // Start of the new region *StartGcdRegion = BaseAddress + (Index * TT_ADDRESS_AT_LEVEL(TableLevel)); *PrevEntryAttribute = TT_ATTR_INDX_INVALID; } } } FreePool (MemorySpaceMap); return BaseAddress + (EntryCount * TT_ADDRESS_AT_LEVEL(TableLevel)); } EFI_STATUS SyncCacheConfig ( IN EFI_CPU_ARCH_PROTOCOL *CpuProtocol ) { EFI_STATUS Status; UINT32 PageAttribute = 0; UINT64 *FirstLevelTableAddress; UINTN TableLevel; UINTN TableCount; UINTN NumberOfDescriptors; EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap; UINTN Tcr; UINTN T0SZ; UINT64 BaseAddressGcdRegion; UINT64 EndAddressGcdRegion; // This code assumes MMU is enabled and filed with section translations ASSERT (ArmMmuEnabled ()); // // Get the memory space map from GCD // MemorySpaceMap = NULL; Status = gDS->GetMemorySpaceMap (&NumberOfDescriptors, &MemorySpaceMap); ASSERT_EFI_ERROR (Status); // The GCD implementation maintains its own copy of the state of memory space attributes. GCD needs // to know what the initial memory space attributes are. The CPU Arch. Protocol does not provide a // GetMemoryAttributes function for GCD to get this so we must resort to calling GCD (as if we were // a client) to update its copy of the attributes. This is bad architecture and should be replaced // with a way for GCD to query the CPU Arch. driver of the existing memory space attributes instead. // Obtain page table base FirstLevelTableAddress = (UINT64*)(ArmGetTTBR0BaseAddress ()); // Get Translation Control Register value Tcr = ArmGetTCR (); // Get Address Region Size T0SZ = Tcr & TCR_T0SZ_MASK; // Get the level of the first table for the indicated Address Region Size GetRootTranslationTableInfo (T0SZ, &TableLevel, &TableCount); // First Attribute of the Page Tables PageAttribute = GetFirstPageAttribute (FirstLevelTableAddress, TableLevel); // We scan from the start of the memory map (ie: at the address 0x0) BaseAddressGcdRegion = 0x0; EndAddressGcdRegion = GetNextEntryAttribute (FirstLevelTableAddress, TableCount, TableLevel, BaseAddressGcdRegion, &PageAttribute, &BaseAddressGcdRegion); // Update GCD with the last region if valid if (PageAttribute != TT_ATTR_INDX_INVALID) { SetGcdMemorySpaceAttributes (MemorySpaceMap, NumberOfDescriptors, BaseAddressGcdRegion, EndAddressGcdRegion - BaseAddressGcdRegion, PageAttributeToGcdAttribute (PageAttribute)); } FreePool (MemorySpaceMap); return EFI_SUCCESS; } UINT64 EfiAttributeToArmAttribute ( IN UINT64 EfiAttributes ) { UINT64 ArmAttributes; switch (EfiAttributes & EFI_MEMORY_CACHETYPE_MASK) { case EFI_MEMORY_UC: if (ArmReadCurrentEL () == AARCH64_EL2) { ArmAttributes = TT_ATTR_INDX_DEVICE_MEMORY | TT_XN_MASK; } else { ArmAttributes = TT_ATTR_INDX_DEVICE_MEMORY | TT_UXN_MASK | TT_PXN_MASK; } break; case EFI_MEMORY_WC: ArmAttributes = TT_ATTR_INDX_MEMORY_NON_CACHEABLE; break; case EFI_MEMORY_WT: ArmAttributes = TT_ATTR_INDX_MEMORY_WRITE_THROUGH | TT_SH_INNER_SHAREABLE; break; case EFI_MEMORY_WB: ArmAttributes = TT_ATTR_INDX_MEMORY_WRITE_BACK | TT_SH_INNER_SHAREABLE; break; default: ArmAttributes = TT_ATTR_INDX_MASK; } // Set the access flag to match the block attributes ArmAttributes |= TT_AF; // Determine protection attributes if (EfiAttributes & EFI_MEMORY_RO) { ArmAttributes |= TT_AP_RO_RO; } // Process eXecute Never attribute if (EfiAttributes & EFI_MEMORY_XP) { ArmAttributes |= TT_PXN_MASK; } return ArmAttributes; } // This function will recursively go down the page table to find the first block address linked to 'BaseAddress'. // And then the function will identify the size of the region that has the same page table attribute. EFI_STATUS GetMemoryRegionRec ( IN UINT64 *TranslationTable, IN UINTN TableLevel, IN UINT64 *LastBlockEntry, IN OUT UINTN *BaseAddress, OUT UINTN *RegionLength, OUT UINTN *RegionAttributes ) { EFI_STATUS Status; UINT64 *NextTranslationTable; UINT64 *BlockEntry; UINT64 BlockEntryType; UINT64 EntryType; if (TableLevel != 3) { BlockEntryType = TT_TYPE_BLOCK_ENTRY; } else { BlockEntryType = TT_TYPE_BLOCK_ENTRY_LEVEL3; } // Find the block entry linked to the Base Address BlockEntry = (UINT64*)TT_GET_ENTRY_FOR_ADDRESS (TranslationTable, TableLevel, *BaseAddress); EntryType = *BlockEntry & TT_TYPE_MASK; if ((TableLevel < 3) && (EntryType == TT_TYPE_TABLE_ENTRY)) { NextTranslationTable = (UINT64*)(*BlockEntry & TT_ADDRESS_MASK_DESCRIPTION_TABLE); // The entry is a page table, so we go to the next level Status = GetMemoryRegionRec ( NextTranslationTable, // Address of the next level page table TableLevel + 1, // Next Page Table level (UINTN*)TT_LAST_BLOCK_ADDRESS(NextTranslationTable, TT_ENTRY_COUNT), BaseAddress, RegionLength, RegionAttributes); // In case of 'Success', it means the end of the block region has been found into the upper // level translation table if (!EFI_ERROR(Status)) { return EFI_SUCCESS; } // Now we processed the table move to the next entry BlockEntry++; } else if (EntryType == BlockEntryType) { // We have found the BlockEntry attached to the address. We save its start address (the start // address might be before the 'BaseAdress') and attributes *BaseAddress = *BaseAddress & ~(TT_ADDRESS_AT_LEVEL(TableLevel) - 1); *RegionLength = 0; *RegionAttributes = *BlockEntry & TT_ATTRIBUTES_MASK; } else { // We have an 'Invalid' entry return EFI_UNSUPPORTED; } while (BlockEntry <= LastBlockEntry) { if ((*BlockEntry & TT_ATTRIBUTES_MASK) == *RegionAttributes) { *RegionLength = *RegionLength + TT_BLOCK_ENTRY_SIZE_AT_LEVEL(TableLevel); } else { // In case we have found the end of the region we return success return EFI_SUCCESS; } BlockEntry++; } // If we have reached the end of the TranslationTable and we have not found the end of the region then // we return EFI_NOT_FOUND. // The caller will continue to look for the memory region at its level return EFI_NOT_FOUND; } EFI_STATUS GetMemoryRegion ( IN OUT UINTN *BaseAddress, OUT UINTN *RegionLength, OUT UINTN *RegionAttributes ) { EFI_STATUS Status; UINT64 *TranslationTable; UINTN TableLevel; UINTN EntryCount; UINTN T0SZ; ASSERT ((BaseAddress != NULL) && (RegionLength != NULL) && (RegionAttributes != NULL)); TranslationTable = ArmGetTTBR0BaseAddress (); T0SZ = ArmGetTCR () & TCR_T0SZ_MASK; // Get the Table info from T0SZ GetRootTranslationTableInfo (T0SZ, &TableLevel, &EntryCount); Status = GetMemoryRegionRec (TranslationTable, TableLevel, (UINTN*)TT_LAST_BLOCK_ADDRESS(TranslationTable, EntryCount), BaseAddress, RegionLength, RegionAttributes); // If the region continues up to the end of the root table then GetMemoryRegionRec() // will return EFI_NOT_FOUND if (Status == EFI_NOT_FOUND) { return EFI_SUCCESS; } else { return Status; } }