/*++ Copyright (c) 2006 - 2010, Intel Corporation. All rights reserved.
Portions copyright (c) 2008 - 2009, Apple Inc. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. Module Name: SecMain.c Abstract: Unix emulator of SEC phase. It's really a Posix application, but this is Ok since all the other modules for NT32 are NOT Posix applications. This program processes host environment variables and figures out what the memory layout will be, how may FD's will be loaded and also what the boot mode is. The SEC registers a set of services with the SEC core. gPrivateDispatchTable is a list of PPI's produced by the SEC that are availble for usage in PEI. This code produces 128 K of temporary memory for the PEI stack by opening a host file and mapping it directly to memory addresses. The system.cmd script is used to set host environment variables that drive the configuration opitons of the SEC. --*/ #include "SecMain.h" #include #include #include #include #ifdef __APPLE__ #define MAP_ANONYMOUS MAP_ANON char *gGdbWorkingFileName = NULL; #endif // // Globals // #ifdef __APPLE__ UNIX_PEI_LOAD_FILE_PPI mSecUnixLoadFilePpi = { GasketSecUnixPeiLoadFile }; PEI_UNIX_AUTOSCAN_PPI mSecUnixAutoScanPpi = { GasketSecUnixPeiAutoScan }; PEI_UNIX_THUNK_PPI mSecUnixThunkPpi = { GasketSecUnixUnixThunkAddress }; EFI_PEI_PROGRESS_CODE_PPI mSecStatusCodePpi = { GasketSecPeiReportStatusCode }; UNIX_FWH_PPI mSecFwhInformationPpi = { GasketSecUnixFdAddress }; TEMPORARY_RAM_SUPPORT_PPI mSecTemporaryRamSupportPpi = { GasketSecTemporaryRamSupport }; #else UNIX_PEI_LOAD_FILE_PPI mSecUnixLoadFilePpi = { SecUnixPeiLoadFile }; PEI_UNIX_AUTOSCAN_PPI mSecUnixAutoScanPpi = { SecUnixPeiAutoScan }; PEI_UNIX_THUNK_PPI mSecUnixThunkPpi = { SecUnixUnixThunkAddress }; EFI_PEI_PROGRESS_CODE_PPI mSecStatusCodePpi = { SecPeiReportStatusCode }; UNIX_FWH_PPI mSecFwhInformationPpi = { SecUnixFdAddress }; TEMPORARY_RAM_SUPPORT_PPI mSecTemporaryRamSupportPpi = { SecTemporaryRamSupport }; #endif EFI_PEI_PPI_DESCRIPTOR gPrivateDispatchTable[] = { { EFI_PEI_PPI_DESCRIPTOR_PPI, &gUnixPeiLoadFilePpiGuid, &mSecUnixLoadFilePpi }, { EFI_PEI_PPI_DESCRIPTOR_PPI, &gPeiUnixAutoScanPpiGuid, &mSecUnixAutoScanPpi }, { EFI_PEI_PPI_DESCRIPTOR_PPI, &gPeiUnixThunkPpiGuid, &mSecUnixThunkPpi }, { EFI_PEI_PPI_DESCRIPTOR_PPI, &gEfiPeiStatusCodePpiGuid, &mSecStatusCodePpi }, { EFI_PEI_PPI_DESCRIPTOR_PPI, &gEfiTemporaryRamSupportPpiGuid, &mSecTemporaryRamSupportPpi }, { EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST, &gUnixFwhPpiGuid, &mSecFwhInformationPpi } }; // // Default information about where the FD is located. // This array gets filled in with information from EFI_FIRMWARE_VOLUMES // EFI_FIRMWARE_VOLUMES is a host environment variable set by system.cmd. // The number of array elements is allocated base on parsing // EFI_FIRMWARE_VOLUMES and the memory is never freed. // UINTN gFdInfoCount = 0; UNIX_FD_INFO *gFdInfo; // // Array that supports seperate memory rantes. // The memory ranges are set in system.cmd via the EFI_MEMORY_SIZE variable. // The number of array elements is allocated base on parsing // EFI_MEMORY_SIZE and the memory is never freed. // UINTN gSystemMemoryCount = 0; UNIX_SYSTEM_MEMORY *gSystemMemory; UINTN mImageContextModHandleArraySize = 0; IMAGE_CONTEXT_TO_MOD_HANDLE *mImageContextModHandleArray = NULL; VOID EFIAPI SecSwitchStack ( UINT32 TemporaryMemoryBase, UINT32 PermenentMemoryBase ); EFI_PHYSICAL_ADDRESS * MapMemory ( INTN fd, UINT64 length, INTN prot, INTN flags); EFI_STATUS MapFile ( IN CHAR8 *FileName, IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress, OUT UINT64 *Length ); EFI_STATUS EFIAPI SecNt32PeCoffRelocateImage ( IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ); int main ( IN int Argc, IN char **Argv, IN char **Envp ) /*++ Routine Description: Main entry point to SEC for Unix. This is a unix program Arguments: Argc - Number of command line arguments Argv - Array of command line argument strings Envp - Array of environmemt variable strings Returns: 0 - Normal exit 1 - Abnormal exit --*/ { EFI_STATUS Status; EFI_PHYSICAL_ADDRESS InitialStackMemory; UINT64 InitialStackMemorySize; UINTN Index; UINTN Index1; UINTN Index2; UINTN PeiIndex; CHAR8 *FileName; BOOLEAN Done; VOID *PeiCoreFile; CHAR16 *MemorySizeStr; CHAR16 *FirmwareVolumesStr; UINTN *StackPointer; setbuf(stdout, 0); setbuf(stderr, 0); MemorySizeStr = (CHAR16 *) PcdGetPtr (PcdUnixMemorySizeForSecMain); FirmwareVolumesStr = (CHAR16 *) PcdGetPtr (PcdUnixFirmwareVolume); printf ("\nEDK SEC Main UNIX Emulation Environment from edk2.sourceforge.net\n"); #ifdef __APPLE__ // // We can't use dlopen on OS X, so we need a scheme to get symboles into gdb // We need to create a temp file that contains gdb commands so we can load // symbols when we load every PE/COFF image. // Index = strlen (*Argv); gGdbWorkingFileName = malloc (Index + strlen(".gdb") + 1); strcpy (gGdbWorkingFileName, *Argv); strcat (gGdbWorkingFileName, ".gdb"); #endif // // Allocate space for gSystemMemory Array // gSystemMemoryCount = CountSeperatorsInString (MemorySizeStr, '!') + 1; gSystemMemory = calloc (gSystemMemoryCount, sizeof (UNIX_SYSTEM_MEMORY)); if (gSystemMemory == NULL) { printf ("ERROR : Can not allocate memory for system. Exiting.\n"); exit (1); } // // Allocate space for gSystemMemory Array // gFdInfoCount = CountSeperatorsInString (FirmwareVolumesStr, '!') + 1; gFdInfo = calloc (gFdInfoCount, sizeof (UNIX_FD_INFO)); if (gFdInfo == NULL) { printf ("ERROR : Can not allocate memory for fd info. Exiting.\n"); exit (1); } // // Setup Boot Mode. If BootModeStr == "" then BootMode = 0 (BOOT_WITH_FULL_CONFIGURATION) // printf (" BootMode 0x%02x\n", (unsigned int)PcdGet32 (PcdUnixBootMode)); // // Open up a 128K file to emulate temp memory for PEI. // on a real platform this would be SRAM, or using the cache as RAM. // Set InitialStackMemory to zero so UnixOpenFile will allocate a new mapping // InitialStackMemorySize = STACK_SIZE; InitialStackMemory = (UINTN)MapMemory(0, (UINT32) InitialStackMemorySize, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_ANONYMOUS | MAP_PRIVATE); if (InitialStackMemory == 0) { printf ("ERROR : Can not open SecStack Exiting\n"); exit (1); } printf (" SEC passing in %u KB of temp RAM at 0x%08lx to PEI\n", (unsigned int)(InitialStackMemorySize / 1024), (unsigned long)InitialStackMemory); for (StackPointer = (UINTN*) (UINTN) InitialStackMemory; StackPointer < (UINTN*)(UINTN)((UINTN) InitialStackMemory + (UINT64) InitialStackMemorySize); StackPointer ++) { *StackPointer = 0x5AA55AA5; } // // Open All the firmware volumes and remember the info in the gFdInfo global // FileName = (CHAR8 *)malloc (StrLen (FirmwareVolumesStr) + 1); if (FileName == NULL) { printf ("ERROR : Can not allocate memory for firmware volume string\n"); exit (1); } Index2 = 0; for (Done = FALSE, Index = 0, PeiIndex = 0, PeiCoreFile = NULL; FirmwareVolumesStr[Index2] != 0; Index++) { for (Index1 = 0; (FirmwareVolumesStr[Index2] != '!') && (FirmwareVolumesStr[Index2] != 0); Index2++) FileName[Index1++] = FirmwareVolumesStr[Index2]; if (FirmwareVolumesStr[Index2] == '!') Index2++; FileName[Index1] = '\0'; // // Open the FD and remmeber where it got mapped into our processes address space // Status = MapFile ( FileName, &gFdInfo[Index].Address, &gFdInfo[Index].Size ); if (EFI_ERROR (Status)) { printf ("ERROR : Can not open Firmware Device File %s (%x). Exiting.\n", FileName, (unsigned int)Status); exit (1); } printf (" FD loaded from %s at 0x%08lx", FileName, (unsigned long)gFdInfo[Index].Address); if (PeiCoreFile == NULL) { // // Assume the beginning of the FD is an FV and look for the PEI Core. // Load the first one we find. // Status = SecFfsFindPeiCore ((EFI_FIRMWARE_VOLUME_HEADER *) (UINTN) gFdInfo[Index].Address, &PeiCoreFile); if (!EFI_ERROR (Status)) { PeiIndex = Index; printf (" contains SEC Core"); } } printf ("\n"); } // // Calculate memory regions and store the information in the gSystemMemory // global for later use. The autosizing code will use this data to // map this memory into the SEC process memory space. // Index1 = 0; Index = 0; while (1) { UINTN val = 0; // // Save the size of the memory. // while (MemorySizeStr[Index1] >= '0' && MemorySizeStr[Index1] <= '9') { val = val * 10 + MemorySizeStr[Index1] - '0'; Index1++; } gSystemMemory[Index++].Size = val * 0x100000; if (MemorySizeStr[Index1] == 0) break; Index1++; } printf ("\n"); // // Hand off to PEI Core // SecLoadFromCore ((UINTN) InitialStackMemory, (UINTN) InitialStackMemorySize, (UINTN) gFdInfo[0].Address, PeiCoreFile); // // If we get here, then the PEI Core returned. This is an error as PEI should // always hand off to DXE. // printf ("ERROR : PEI Core returned\n"); exit (1); } EFI_PHYSICAL_ADDRESS * MapMemory ( INTN fd, UINT64 length, INTN prot, INTN flags) { STATIC UINTN base = 0x40000000; CONST UINTN align = (1 << 24); VOID *res = NULL; BOOLEAN isAligned = 0; // // Try to get an aligned block somewhere in the address space of this // process. // while((!isAligned) && (base != 0)) { res = mmap ((void *)base, length, prot, flags, fd, 0); if (res == MAP_FAILED) { return NULL; } if ((((UINTN)res) & ~(align-1)) == (UINTN)res) { isAligned=1; } else { munmap(res, length); base += align; } } return res; } EFI_STATUS MapFile ( IN CHAR8 *FileName, IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress, OUT UINT64 *Length ) /*++ Routine Description: Opens and memory maps a file using Unix services. If BaseAddress is non zero the process will try and allocate the memory starting at BaseAddress. Arguments: FileName - The name of the file to open and map MapSize - The amount of the file to map in bytes CreationDisposition - The flags to pass to CreateFile(). Use to create new files for memory emulation, and exiting files for firmware volume emulation BaseAddress - The base address of the mapped file in the user address space. If passed in as NULL the a new memory region is used. If passed in as non NULL the request memory region is used for the mapping of the file into the process space. Length - The size of the mapped region in bytes Returns: EFI_SUCCESS - The file was opened and mapped. EFI_NOT_FOUND - FileName was not found in the current directory EFI_DEVICE_ERROR - An error occured attempting to map the opened file --*/ { int fd; VOID *res; UINTN FileSize; fd = open (FileName, O_RDONLY); if (fd < 0) return EFI_NOT_FOUND; FileSize = lseek (fd, 0, SEEK_END); #if 0 if (IsMain) { /* Read entry address. */ lseek (fd, FileSize - 0x20, SEEK_SET); if (read (fd, &EntryAddress, 4) != 4) { close (fd); return EFI_DEVICE_ERROR; } } #endif res = MapMemory(fd, FileSize, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE); close (fd); if (res == MAP_FAILED) return EFI_DEVICE_ERROR; *Length = (UINT64) FileSize; *BaseAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) res; return EFI_SUCCESS; } #define BYTES_PER_RECORD 512 EFI_STATUS EFIAPI SecPeiReportStatusCode ( IN CONST EFI_PEI_SERVICES **PeiServices, IN EFI_STATUS_CODE_TYPE CodeType, IN EFI_STATUS_CODE_VALUE Value, IN UINT32 Instance, IN CONST EFI_GUID *CallerId, IN CONST EFI_STATUS_CODE_DATA *Data OPTIONAL ) /*++ Routine Description: This routine produces the ReportStatusCode PEI service. It's passed up to the PEI Core via a PPI. T This code currently uses the UNIX clib printf. This does not work the same way as the EFI Print (), as %t, %g, %s as Unicode are not supported. Arguments: (see EFI_PEI_REPORT_STATUS_CODE) Returns: EFI_SUCCESS - Always return success --*/ // TODO: PeiServices - add argument and description to function comment // TODO: CodeType - add argument and description to function comment // TODO: Value - add argument and description to function comment // TODO: Instance - add argument and description to function comment // TODO: CallerId - add argument and description to function comment // TODO: Data - add argument and description to function comment { CHAR8 *Format; BASE_LIST Marker; CHAR8 PrintBuffer[BYTES_PER_RECORD * 2]; CHAR8 *Filename; CHAR8 *Description; UINT32 LineNumber; UINT32 ErrorLevel; if (Data == NULL) { } else if (ReportStatusCodeExtractAssertInfo (CodeType, Value, Data, &Filename, &Description, &LineNumber)) { // // Processes ASSERT () // printf ("ASSERT %s(%d): %s\n", Filename, (int)LineNumber, Description); } else if (ReportStatusCodeExtractDebugInfo (Data, &ErrorLevel, &Marker, &Format)) { // // Process DEBUG () macro // AsciiBSPrint (PrintBuffer, BYTES_PER_RECORD, Format, Marker); printf ("%s", PrintBuffer); } return EFI_SUCCESS; } VOID EFIAPI PeiSwitchStacks ( IN SWITCH_STACK_ENTRY_POINT EntryPoint, IN VOID *Context1, OPTIONAL IN VOID *Context2, OPTIONAL IN VOID *Context3, OPTIONAL IN VOID *NewStack ); VOID SecLoadFromCore ( IN UINTN LargestRegion, IN UINTN LargestRegionSize, IN UINTN BootFirmwareVolumeBase, IN VOID *PeiCorePe32File ) /*++ Routine Description: This is the service to load the PEI Core from the Firmware Volume Arguments: LargestRegion - Memory to use for PEI. LargestRegionSize - Size of Memory to use for PEI BootFirmwareVolumeBase - Start of the Boot FV PeiCorePe32File - PEI Core PE32 Returns: Success means control is transfered and thus we should never return --*/ { EFI_STATUS Status; EFI_PHYSICAL_ADDRESS TopOfMemory; VOID *TopOfStack; UINT64 PeiCoreSize; EFI_PHYSICAL_ADDRESS PeiCoreEntryPoint; EFI_PHYSICAL_ADDRESS PeiImageAddress; EFI_SEC_PEI_HAND_OFF *SecCoreData; UINTN PeiStackSize; // // Compute Top Of Memory for Stack and PEI Core Allocations // TopOfMemory = LargestRegion + LargestRegionSize; PeiStackSize = (UINTN)RShiftU64((UINT64)STACK_SIZE,1); // // |-----------| <---- TemporaryRamBase + TemporaryRamSize // | Heap | // | | // |-----------| <---- StackBase / PeiTemporaryMemoryBase // | | // | Stack | // |-----------| <---- TemporaryRamBase // TopOfStack = (VOID *)(LargestRegion + PeiStackSize); TopOfMemory = LargestRegion + PeiStackSize; // // Reservet space for storing PeiCore's parament in stack. // TopOfStack = (VOID *)((UINTN)TopOfStack - sizeof (EFI_SEC_PEI_HAND_OFF) - CPU_STACK_ALIGNMENT); TopOfStack = ALIGN_POINTER (TopOfStack, CPU_STACK_ALIGNMENT); // // Bind this information into the SEC hand-off state // SecCoreData = (EFI_SEC_PEI_HAND_OFF*)(UINTN) TopOfStack; SecCoreData->DataSize = sizeof(EFI_SEC_PEI_HAND_OFF); SecCoreData->BootFirmwareVolumeBase = (VOID*)BootFirmwareVolumeBase; SecCoreData->BootFirmwareVolumeSize = PcdGet32 (PcdUnixFirmwareFdSize); SecCoreData->TemporaryRamBase = (VOID*)(UINTN)LargestRegion; SecCoreData->TemporaryRamSize = STACK_SIZE; SecCoreData->StackBase = SecCoreData->TemporaryRamBase; SecCoreData->StackSize = PeiStackSize; SecCoreData->PeiTemporaryRamBase = (VOID*) ((UINTN) SecCoreData->TemporaryRamBase + PeiStackSize); SecCoreData->PeiTemporaryRamSize = STACK_SIZE - PeiStackSize; // // Load the PEI Core from a Firmware Volume // Status = SecUnixPeiLoadFile ( PeiCorePe32File, &PeiImageAddress, &PeiCoreSize, &PeiCoreEntryPoint ); if (EFI_ERROR (Status)) { return ; } // // Transfer control to the PEI Core // PeiSwitchStacks ( (SWITCH_STACK_ENTRY_POINT) (UINTN) PeiCoreEntryPoint, SecCoreData, (VOID *) (UINTN) ((EFI_PEI_PPI_DESCRIPTOR *) &gPrivateDispatchTable), NULL, TopOfStack ); // // If we get here, then the PEI Core returned. This is an error // return ; } EFI_STATUS EFIAPI SecUnixPeiAutoScan ( IN UINTN Index, OUT EFI_PHYSICAL_ADDRESS *MemoryBase, OUT UINT64 *MemorySize ) /*++ Routine Description: This service is called from Index == 0 until it returns EFI_UNSUPPORTED. It allows discontiguous memory regions to be supported by the emulator. It uses gSystemMemory[] and gSystemMemoryCount that were created by parsing the host environment variable EFI_MEMORY_SIZE. The size comes from the varaible and the address comes from the call to UnixOpenFile. Arguments: Index - Which memory region to use MemoryBase - Return Base address of memory region MemorySize - Return size in bytes of the memory region Returns: EFI_SUCCESS - If memory region was mapped EFI_UNSUPPORTED - If Index is not supported --*/ { void *res; if (Index >= gSystemMemoryCount) { return EFI_UNSUPPORTED; } *MemoryBase = 0; res = MapMemory(0, gSystemMemory[Index].Size, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE | MAP_ANONYMOUS); if (res == MAP_FAILED) return EFI_DEVICE_ERROR; *MemorySize = gSystemMemory[Index].Size; *MemoryBase = (UINTN)res; gSystemMemory[Index].Memory = *MemoryBase; return EFI_SUCCESS; } VOID * EFIAPI SecUnixUnixThunkAddress ( VOID ) /*++ Routine Description: Since the SEC is the only Unix program in stack it must export an interface to do POSIX calls. gUnix is initailized in UnixThunk.c. Arguments: InterfaceSize - sizeof (EFI_WIN_NT_THUNK_PROTOCOL); InterfaceBase - Address of the gUnix global Returns: EFI_SUCCESS - Data returned --*/ { return gUnix; } EFI_STATUS SecUnixPeiLoadFile ( IN VOID *Pe32Data, OUT EFI_PHYSICAL_ADDRESS *ImageAddress, OUT UINT64 *ImageSize, OUT EFI_PHYSICAL_ADDRESS *EntryPoint ) /*++ Routine Description: Loads and relocates a PE/COFF image into memory. Arguments: Pe32Data - The base address of the PE/COFF file that is to be loaded and relocated ImageAddress - The base address of the relocated PE/COFF image ImageSize - The size of the relocated PE/COFF image EntryPoint - The entry point of the relocated PE/COFF image Returns: EFI_SUCCESS - The file was loaded and relocated EFI_OUT_OF_RESOURCES - There was not enough memory to load and relocate the PE/COFF file --*/ { EFI_STATUS Status; PE_COFF_LOADER_IMAGE_CONTEXT ImageContext; ZeroMem (&ImageContext, sizeof (ImageContext)); ImageContext.Handle = Pe32Data; ImageContext.ImageRead = (PE_COFF_LOADER_READ_FILE) SecImageRead; Status = PeCoffLoaderGetImageInfo (&ImageContext); if (EFI_ERROR (Status)) { return Status; } // // Allocate space in UNIX (not emulator) memory. Extra space is for alignment // ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) MapMemory ( 0, (UINT32) (ImageContext.ImageSize + (ImageContext.SectionAlignment * 2)), PROT_READ | PROT_WRITE | PROT_EXEC, MAP_ANONYMOUS | MAP_PRIVATE ); if (ImageContext.ImageAddress == 0) { return EFI_OUT_OF_RESOURCES; } // // Align buffer on section boundry // ImageContext.ImageAddress += ImageContext.SectionAlignment - 1; ImageContext.ImageAddress &= ~((EFI_PHYSICAL_ADDRESS)(ImageContext.SectionAlignment - 1)); Status = PeCoffLoaderLoadImage (&ImageContext); if (EFI_ERROR (Status)) { return Status; } Status = PeCoffLoaderRelocateImage (&ImageContext); if (EFI_ERROR (Status)) { return Status; } SecPeCoffRelocateImageExtraAction (&ImageContext); // // BugBug: Flush Instruction Cache Here when CPU Lib is ready // *ImageAddress = ImageContext.ImageAddress; *ImageSize = ImageContext.ImageSize; *EntryPoint = ImageContext.EntryPoint; return EFI_SUCCESS; } RETURN_STATUS EFIAPI SecPeCoffGetEntryPoint ( IN VOID *Pe32Data, IN OUT VOID **EntryPoint ) { EFI_STATUS Status; EFI_PHYSICAL_ADDRESS ImageAddress; UINT64 ImageSize; EFI_PHYSICAL_ADDRESS PhysEntryPoint; Status = SecUnixPeiLoadFile (Pe32Data, &ImageAddress, &ImageSize, &PhysEntryPoint); *EntryPoint = (VOID *)(UINTN)PhysEntryPoint; return Status; } EFI_STATUS EFIAPI SecUnixFdAddress ( IN UINTN Index, IN OUT EFI_PHYSICAL_ADDRESS *FdBase, IN OUT UINT64 *FdSize, IN OUT EFI_PHYSICAL_ADDRESS *FixUp ) /*++ Routine Description: Return the FD Size and base address. Since the FD is loaded from a file into host memory only the SEC will know it's address. Arguments: Index - Which FD, starts at zero. FdSize - Size of the FD in bytes FdBase - Start address of the FD. Assume it points to an FV Header FixUp - Difference between actual FD address and build address Returns: EFI_SUCCESS - Return the Base address and size of the FV EFI_UNSUPPORTED - Index does nto map to an FD in the system --*/ { if (Index >= gFdInfoCount) { return EFI_UNSUPPORTED; } *FdBase = gFdInfo[Index].Address; *FdSize = gFdInfo[Index].Size; *FixUp = 0; if (*FdBase == 0 && *FdSize == 0) { return EFI_UNSUPPORTED; } if (Index == 0) { // // FD 0 has XIP code and well known PCD values // If the memory buffer could not be allocated at the FD build address // the Fixup is the difference. // *FixUp = *FdBase - PcdGet64 (PcdUnixFdBaseAddress); } return EFI_SUCCESS; } EFI_STATUS EFIAPI SecImageRead ( IN VOID *FileHandle, IN UINTN FileOffset, IN OUT UINTN *ReadSize, OUT VOID *Buffer ) /*++ Routine Description: Support routine for the PE/COFF Loader that reads a buffer from a PE/COFF file Arguments: FileHandle - The handle to the PE/COFF file FileOffset - The offset, in bytes, into the file to read ReadSize - The number of bytes to read from the file starting at FileOffset Buffer - A pointer to the buffer to read the data into. Returns: EFI_SUCCESS - ReadSize bytes of data were read into Buffer from the PE/COFF file starting at FileOffset --*/ { CHAR8 *Destination8; CHAR8 *Source8; UINTN Length; Destination8 = Buffer; Source8 = (CHAR8 *) ((UINTN) FileHandle + FileOffset); Length = *ReadSize; while (Length--) { *(Destination8++) = *(Source8++); } return EFI_SUCCESS; } UINTN CountSeperatorsInString ( IN const CHAR16 *String, IN CHAR16 Seperator ) /*++ Routine Description: Count the number of seperators in String Arguments: String - String to process Seperator - Item to count Returns: Number of Seperator in String --*/ { UINTN Count; for (Count = 0; *String != '\0'; String++) { if (*String == Seperator) { Count++; } } return Count; } EFI_STATUS AddHandle ( IN PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext, IN VOID *ModHandle ) /*++ Routine Description: Store the ModHandle in an array indexed by the Pdb File name. The ModHandle is needed to unload the image. Arguments: ImageContext - Input data returned from PE Laoder Library. Used to find the .PDB file name of the PE Image. ModHandle - Returned from LoadLibraryEx() and stored for call to FreeLibrary(). Returns: EFI_SUCCESS - ModHandle was stored. --*/ { UINTN Index; IMAGE_CONTEXT_TO_MOD_HANDLE *Array; UINTN PreviousSize; Array = mImageContextModHandleArray; for (Index = 0; Index < mImageContextModHandleArraySize; Index++, Array++) { if (Array->ImageContext == NULL) { // // Make a copy of the stirng and store the ModHandle // Array->ImageContext = ImageContext; Array->ModHandle = ModHandle; return EFI_SUCCESS; } } // // No free space in mImageContextModHandleArray so grow it by // IMAGE_CONTEXT_TO_MOD_HANDLE entires. realloc will // copy the old values to the new locaiton. But it does // not zero the new memory area. // PreviousSize = mImageContextModHandleArraySize * sizeof (IMAGE_CONTEXT_TO_MOD_HANDLE); mImageContextModHandleArraySize += MAX_IMAGE_CONTEXT_TO_MOD_HANDLE_ARRAY_SIZE; mImageContextModHandleArray = realloc (mImageContextModHandleArray, mImageContextModHandleArraySize * sizeof (IMAGE_CONTEXT_TO_MOD_HANDLE)); if (mImageContextModHandleArray == NULL) { ASSERT (FALSE); return EFI_OUT_OF_RESOURCES; } memset (mImageContextModHandleArray + PreviousSize, 0, MAX_IMAGE_CONTEXT_TO_MOD_HANDLE_ARRAY_SIZE * sizeof (IMAGE_CONTEXT_TO_MOD_HANDLE)); return AddHandle (ImageContext, ModHandle); } VOID * RemoveHandle ( IN PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ) /*++ Routine Description: Return the ModHandle and delete the entry in the array. Arguments: ImageContext - Input data returned from PE Laoder Library. Used to find the .PDB file name of the PE Image. Returns: ModHandle - ModHandle assoicated with ImageContext is returned NULL - No ModHandle associated with ImageContext --*/ { UINTN Index; IMAGE_CONTEXT_TO_MOD_HANDLE *Array; if (ImageContext->PdbPointer == NULL) { // // If no PDB pointer there is no ModHandle so return NULL // return NULL; } Array = mImageContextModHandleArray; for (Index = 0; Index < mImageContextModHandleArraySize; Index++, Array++) { if ((Array->ImageContext == ImageContext)) { // // If you find a match return it and delete the entry // Array->ImageContext = NULL; return Array->ModHandle; } } return NULL; } // // Target for gdb breakpoint in a script that uses gGdbWorkingFileName to source a // add-symbol-file command. Hey what can you say scripting in gdb is not that great.... // // Put .gdbinit in the CWD where you do gdb SecMain.dll for source level debug // // cat .gdbinit // b SecGdbScriptBreak // command // silent // source SecMain.dll.gdb // c // end // VOID SecGdbScriptBreak ( VOID ) { } VOID SecUnixLoaderBreak ( VOID ) { } BOOLEAN IsPdbFile ( IN CHAR8 *PdbFileName ) { UINTN Len; if (PdbFileName == NULL) { return FALSE; } Len = strlen (PdbFileName); if ((Len < 5)|| (PdbFileName[Len - 4] != '.')) { return FALSE; } if ((PdbFileName[Len - 3] == 'P' || PdbFileName[Len - 3] == 'p') && (PdbFileName[Len - 2] == 'D' || PdbFileName[Len - 2] == 'd') && (PdbFileName[Len - 1] == 'B' || PdbFileName[Len - 1] == 'b')) { return TRUE; } return FALSE; } #define MAX_SPRINT_BUFFER_SIZE 0x200 void PrintLoadAddress ( IN PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ) { if (ImageContext->PdbPointer == NULL) { fprintf (stderr, "0x%08lx Loading NO DEBUG with entry point 0x%08lx\n", (unsigned long)(ImageContext->ImageAddress), (unsigned long)ImageContext->EntryPoint ); } else { fprintf (stderr, "0x%08lx Loading %s with entry point 0x%08lx\n", (unsigned long)(ImageContext->ImageAddress + ImageContext->SizeOfHeaders), ImageContext->PdbPointer, (unsigned long)ImageContext->EntryPoint ); } // Keep output synced up fflush (stderr); } VOID EFIAPI SecPeCoffRelocateImageExtraAction ( IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ) { #ifdef __APPLE__ PrintLoadAddress (ImageContext); // // In mach-o (OS X executable) dlopen() can only load files in the MH_DYLIB of MH_BUNDLE format. // To convert to PE/COFF we need to construct a mach-o with the MH_PRELOAD format. We create // .dSYM files for the PE/COFF images that can be used by gdb for source level debugging. // FILE *GdbTempFile; // // In the Mach-O to PE/COFF conversion the size of the PE/COFF headers is not accounted for. // Thus we need to skip over the PE/COFF header when giving load addresses for our symbol table. // if (ImageContext->PdbPointer != NULL && !IsPdbFile (ImageContext->PdbPointer)) { // // Now we have a database of the images that are currently loaded // // // 'symbol-file' will clear out currnet symbol mappings in gdb. // you can do a 'add-symbol-file filename address' for every image we loaded to get source // level debug in gdb. Note Sec, being a true application will work differently. // // We add the PE/COFF header size into the image as the mach-O does not have a header in // loaded into system memory. // // This gives us a data base of gdb commands and after something is unloaded that entry will be // removed. We don't yet have the scheme of how to comunicate with gdb, but we have the // data base of info ready to roll. // // We could use qXfer:libraries:read, but OS X GDB does not currently support it. // // // ImageContext->PdbPointer // // ImageContext->ImageAddress + ImageContext->SizeOfHeaders // // // // // Write the file we need for the gdb script // GdbTempFile = fopen (gGdbWorkingFileName, "w"); if (GdbTempFile != NULL) { fprintf (GdbTempFile, "add-symbol-file %s 0x%08lx\n", ImageContext->PdbPointer, (long unsigned int)(ImageContext->ImageAddress + ImageContext->SizeOfHeaders)); fclose (GdbTempFile); // // Target for gdb breakpoint in a script that uses gGdbWorkingFileName to set a breakpoint. // Hey what can you say scripting in gdb is not that great.... // SecGdbScriptBreak (); } AddHandle (ImageContext, ImageContext->PdbPointer); } #else void *Handle = NULL; void *Entry = NULL; fprintf (stderr, "Loading %s 0x%08lx - entry point 0x%08lx\n", ImageContext->PdbPointer, (unsigned long)ImageContext->ImageAddress, (unsigned long)ImageContext->EntryPoint); Handle = dlopen (ImageContext->PdbPointer, RTLD_NOW); if (Handle) { Entry = dlsym (Handle, "_ModuleEntryPoint"); } else { printf("%s\n", dlerror()); } if (Entry != NULL) { ImageContext->EntryPoint = (UINTN)Entry; printf("Change %s Entrypoint to :0x%08lx\n", ImageContext->PdbPointer, (unsigned long)Entry); } SecUnixLoaderBreak (); #endif return; } VOID EFIAPI SecPeCoffLoaderUnloadImageExtraAction ( IN PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext ) { VOID *Handle; Handle = RemoveHandle (ImageContext); #ifdef __APPLE__ FILE *GdbTempFile; if (Handle != NULL) { // // Need to skip .PDB files created from VC++ // if (!IsPdbFile (ImageContext->PdbPointer)) { // // Write the file we need for the gdb script // GdbTempFile = fopen (gGdbWorkingFileName, "w"); if (GdbTempFile != NULL) { fprintf (GdbTempFile, "remove-symbol-file %s\n", ImageContext->PdbPointer); fclose (GdbTempFile); // // Target for gdb breakpoint in a script that uses gGdbWorkingFileName to set a breakpoint. // Hey what can you say scripting in gdb is not that great.... // SecGdbScriptBreak (); } } } #else // // Don't want to confuse gdb with symbols for something that got unloaded // if (Handle != NULL) { dlclose (Handle); } #endif return; } VOID ModuleEntryPoint ( VOID ) { } EFI_STATUS EFIAPI SecTemporaryRamSupport ( IN CONST EFI_PEI_SERVICES **PeiServices, IN EFI_PHYSICAL_ADDRESS TemporaryMemoryBase, IN EFI_PHYSICAL_ADDRESS PermanentMemoryBase, IN UINTN CopySize ) { // // Migrate the whole temporary memory to permenent memory. // CopyMem ( (VOID*)(UINTN)PermanentMemoryBase, (VOID*)(UINTN)TemporaryMemoryBase, CopySize ); // // SecSwitchStack function must be invoked after the memory migration // immediatly, also we need fixup the stack change caused by new call into // permenent memory. // SecSwitchStack ( (UINT32) TemporaryMemoryBase, (UINT32) PermanentMemoryBase ); // // We need *not* fix the return address because currently, // The PeiCore is excuted in flash. // // // Simulate to invalid temporary memory, terminate temporary memory // //ZeroMem ((VOID*)(UINTN)TemporaryMemoryBase, CopySize); return EFI_SUCCESS; }