/** @file Ia32-specific functionality for DxeLoad. Copyright (c) 2006 - 2015, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "DxeIpl.h" #include "VirtualMemory.h" #define IDT_ENTRY_COUNT 32 typedef struct _X64_IDT_TABLE { // // Reserved 4 bytes preceding PeiService and IdtTable, // since IDT base address should be 8-byte alignment. // UINT32 Reserved; CONST EFI_PEI_SERVICES **PeiService; X64_IDT_GATE_DESCRIPTOR IdtTable[IDT_ENTRY_COUNT]; } X64_IDT_TABLE; // // Global Descriptor Table (GDT) // GLOBAL_REMOVE_IF_UNREFERENCED IA32_GDT gGdtEntries[] = { /* selector { Global Segment Descriptor } */ /* 0x00 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, //null descriptor /* 0x08 */ {{0xffff, 0, 0, 0x2, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //linear data segment descriptor /* 0x10 */ {{0xffff, 0, 0, 0xf, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //linear code segment descriptor /* 0x18 */ {{0xffff, 0, 0, 0x3, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //system data segment descriptor /* 0x20 */ {{0xffff, 0, 0, 0xa, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //system code segment descriptor /* 0x28 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, //spare segment descriptor /* 0x30 */ {{0xffff, 0, 0, 0x2, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //system data segment descriptor /* 0x38 */ {{0xffff, 0, 0, 0xa, 1, 0, 1, 0xf, 0, 1, 0, 1, 0}}, //system code segment descriptor /* 0x40 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, //spare segment descriptor }; // // IA32 Gdt register // GLOBAL_REMOVE_IF_UNREFERENCED CONST IA32_DESCRIPTOR gGdt = { sizeof (gGdtEntries) - 1, (UINTN) gGdtEntries }; GLOBAL_REMOVE_IF_UNREFERENCED IA32_DESCRIPTOR gLidtDescriptor = { sizeof (X64_IDT_GATE_DESCRIPTOR) * IDT_ENTRY_COUNT - 1, 0 }; /** Allocates and fills in the Page Directory and Page Table Entries to establish a 4G page table. @param[in] StackBase Stack base address. @param[in] StackSize Stack size. @return The address of page table. **/ UINTN Create4GPageTablesIa32Pae ( IN EFI_PHYSICAL_ADDRESS StackBase, IN UINTN StackSize ) { UINT8 PhysicalAddressBits; EFI_PHYSICAL_ADDRESS PhysicalAddress; UINTN IndexOfPdpEntries; UINTN IndexOfPageDirectoryEntries; UINT32 NumberOfPdpEntriesNeeded; PAGE_MAP_AND_DIRECTORY_POINTER *PageMap; PAGE_MAP_AND_DIRECTORY_POINTER *PageDirectoryPointerEntry; PAGE_TABLE_ENTRY *PageDirectoryEntry; UINTN TotalPagesNum; UINTN PageAddress; PhysicalAddressBits = 32; // // Calculate the table entries needed. // NumberOfPdpEntriesNeeded = (UINT32) LShiftU64 (1, (PhysicalAddressBits - 30)); TotalPagesNum = NumberOfPdpEntriesNeeded + 1; PageAddress = (UINTN) AllocatePages (TotalPagesNum); ASSERT (PageAddress != 0); PageMap = (VOID *) PageAddress; PageAddress += SIZE_4KB; PageDirectoryPointerEntry = PageMap; PhysicalAddress = 0; for (IndexOfPdpEntries = 0; IndexOfPdpEntries < NumberOfPdpEntriesNeeded; IndexOfPdpEntries++, PageDirectoryPointerEntry++) { // // Each Directory Pointer entries points to a page of Page Directory entires. // So allocate space for them and fill them in in the IndexOfPageDirectoryEntries loop. // PageDirectoryEntry = (VOID *) PageAddress; PageAddress += SIZE_4KB; // // Fill in a Page Directory Pointer Entries // PageDirectoryPointerEntry->Uint64 = (UINT64) (UINTN) PageDirectoryEntry; PageDirectoryPointerEntry->Bits.Present = 1; for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PhysicalAddress += SIZE_2MB) { if ((PhysicalAddress < StackBase + StackSize) && ((PhysicalAddress + SIZE_2MB) > StackBase)) { // // Need to split this 2M page that covers stack range. // Split2MPageTo4K (PhysicalAddress, (UINT64 *) PageDirectoryEntry, StackBase, StackSize); } else { // // Fill in the Page Directory entries // PageDirectoryEntry->Uint64 = (UINT64) PhysicalAddress; PageDirectoryEntry->Bits.ReadWrite = 1; PageDirectoryEntry->Bits.Present = 1; PageDirectoryEntry->Bits.MustBe1 = 1; } } } for (; IndexOfPdpEntries < 512; IndexOfPdpEntries++, PageDirectoryPointerEntry++) { ZeroMem ( PageDirectoryPointerEntry, sizeof (PAGE_MAP_AND_DIRECTORY_POINTER) ); } return (UINTN) PageMap; } /** The function will check if IA32 PAE is supported. @retval TRUE IA32 PAE is supported. @retval FALSE IA32 PAE is not supported. **/ BOOLEAN IsIa32PaeSupport ( VOID ) { UINT32 RegEax; UINT32 RegEdx; BOOLEAN Ia32PaeSupport; Ia32PaeSupport = FALSE; AsmCpuid (0x0, &RegEax, NULL, NULL, NULL); if (RegEax >= 0x1) { AsmCpuid (0x1, NULL, NULL, NULL, &RegEdx); if ((RegEdx & BIT6) != 0) { Ia32PaeSupport = TRUE; } } return Ia32PaeSupport; } /** The function will check if Execute Disable Bit is available. @retval TRUE Execute Disable Bit is available. @retval FALSE Execute Disable Bit is not available. **/ BOOLEAN IsExecuteDisableBitAvailable ( VOID ) { UINT32 RegEax; UINT32 RegEdx; BOOLEAN Available; Available = FALSE; AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL); if (RegEax >= 0x80000001) { AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx); if ((RegEdx & BIT20) != 0) { // // Bit 20: Execute Disable Bit available. // Available = TRUE; } } return Available; } /** Transfers control to DxeCore. This function performs a CPU architecture specific operations to execute the entry point of DxeCore with the parameters of HobList. It also installs EFI_END_OF_PEI_PPI to signal the end of PEI phase. @param DxeCoreEntryPoint The entry point of DxeCore. @param HobList The start of HobList passed to DxeCore. **/ VOID HandOffToDxeCore ( IN EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint, IN EFI_PEI_HOB_POINTERS HobList ) { EFI_STATUS Status; EFI_PHYSICAL_ADDRESS BaseOfStack; EFI_PHYSICAL_ADDRESS TopOfStack; UINTN PageTables; X64_IDT_GATE_DESCRIPTOR *IdtTable; UINTN SizeOfTemplate; VOID *TemplateBase; EFI_PHYSICAL_ADDRESS VectorAddress; UINT32 Index; X64_IDT_TABLE *IdtTableForX64; EFI_VECTOR_HANDOFF_INFO *VectorInfo; EFI_PEI_VECTOR_HANDOFF_INFO_PPI *VectorHandoffInfoPpi; BOOLEAN BuildPageTablesIa32Pae; Status = PeiServicesAllocatePages (EfiBootServicesData, EFI_SIZE_TO_PAGES (STACK_SIZE), &BaseOfStack); ASSERT_EFI_ERROR (Status); if (FeaturePcdGet(PcdDxeIplSwitchToLongMode)) { // // Compute the top of the stack we were allocated, which is used to load X64 dxe core. // Pre-allocate a 32 bytes which confroms to x64 calling convention. // // The first four parameters to a function are passed in rcx, rdx, r8 and r9. // Any further parameters are pushed on the stack. Furthermore, space (4 * 8bytes) for the // register parameters is reserved on the stack, in case the called function // wants to spill them; this is important if the function is variadic. // TopOfStack = BaseOfStack + EFI_SIZE_TO_PAGES (STACK_SIZE) * EFI_PAGE_SIZE - 32; // // x64 Calling Conventions requires that the stack must be aligned to 16 bytes // TopOfStack = (EFI_PHYSICAL_ADDRESS) (UINTN) ALIGN_POINTER (TopOfStack, 16); // // Load the GDT of Go64. Since the GDT of 32-bit Tiano locates in the BS_DATA // memory, it may be corrupted when copying FV to high-end memory // AsmWriteGdtr (&gGdt); // // Create page table and save PageMapLevel4 to CR3 // PageTables = CreateIdentityMappingPageTables (BaseOfStack, STACK_SIZE); // // End of PEI phase signal // Status = PeiServicesInstallPpi (&gEndOfPeiSignalPpi); ASSERT_EFI_ERROR (Status); AsmWriteCr3 (PageTables); // // Update the contents of BSP stack HOB to reflect the real stack info passed to DxeCore. // UpdateStackHob (BaseOfStack, STACK_SIZE); SizeOfTemplate = AsmGetVectorTemplatInfo (&TemplateBase); Status = PeiServicesAllocatePages ( EfiBootServicesData, EFI_SIZE_TO_PAGES(sizeof (X64_IDT_TABLE) + SizeOfTemplate * IDT_ENTRY_COUNT), &VectorAddress ); ASSERT_EFI_ERROR (Status); // // Store EFI_PEI_SERVICES** in the 4 bytes immediately preceding IDT to avoid that // it may not be gotten correctly after IDT register is re-written. // IdtTableForX64 = (X64_IDT_TABLE *) (UINTN) VectorAddress; IdtTableForX64->PeiService = GetPeiServicesTablePointer (); VectorAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) (IdtTableForX64 + 1); IdtTable = IdtTableForX64->IdtTable; for (Index = 0; Index < IDT_ENTRY_COUNT; Index++) { IdtTable[Index].Ia32IdtEntry.Bits.GateType = 0x8e; IdtTable[Index].Ia32IdtEntry.Bits.Reserved_0 = 0; IdtTable[Index].Ia32IdtEntry.Bits.Selector = SYS_CODE64_SEL; IdtTable[Index].Ia32IdtEntry.Bits.OffsetLow = (UINT16) VectorAddress; IdtTable[Index].Ia32IdtEntry.Bits.OffsetHigh = (UINT16) (RShiftU64 (VectorAddress, 16)); IdtTable[Index].Offset32To63 = (UINT32) (RShiftU64 (VectorAddress, 32)); IdtTable[Index].Reserved = 0; CopyMem ((VOID *) (UINTN) VectorAddress, TemplateBase, SizeOfTemplate); AsmVectorFixup ((VOID *) (UINTN) VectorAddress, (UINT8) Index); VectorAddress += SizeOfTemplate; } gLidtDescriptor.Base = (UINTN) IdtTable; // // Disable interrupt of Debug timer, since new IDT table cannot handle it. // SaveAndSetDebugTimerInterrupt (FALSE); AsmWriteIdtr (&gLidtDescriptor); DEBUG (( DEBUG_INFO, "%a() Stack Base: 0x%lx, Stack Size: 0x%x\n", __FUNCTION__, BaseOfStack, STACK_SIZE )); // // Go to Long Mode and transfer control to DxeCore. // Interrupts will not get turned on until the CPU AP is loaded. // Call x64 drivers passing in single argument, a pointer to the HOBs. // AsmEnablePaging64 ( SYS_CODE64_SEL, DxeCoreEntryPoint, (EFI_PHYSICAL_ADDRESS)(UINTN)(HobList.Raw), 0, TopOfStack ); } else { // // Get Vector Hand-off Info PPI and build Guided HOB // Status = PeiServicesLocatePpi ( &gEfiVectorHandoffInfoPpiGuid, 0, NULL, (VOID **)&VectorHandoffInfoPpi ); if (Status == EFI_SUCCESS) { DEBUG ((EFI_D_INFO, "Vector Hand-off Info PPI is gotten, GUIDed HOB is created!\n")); VectorInfo = VectorHandoffInfoPpi->Info; Index = 1; while (VectorInfo->Attribute != EFI_VECTOR_HANDOFF_LAST_ENTRY) { VectorInfo ++; Index ++; } BuildGuidDataHob ( &gEfiVectorHandoffInfoPpiGuid, VectorHandoffInfoPpi->Info, sizeof (EFI_VECTOR_HANDOFF_INFO) * Index ); } // // Compute the top of the stack we were allocated. Pre-allocate a UINTN // for safety. // TopOfStack = BaseOfStack + EFI_SIZE_TO_PAGES (STACK_SIZE) * EFI_PAGE_SIZE - CPU_STACK_ALIGNMENT; TopOfStack = (EFI_PHYSICAL_ADDRESS) (UINTN) ALIGN_POINTER (TopOfStack, CPU_STACK_ALIGNMENT); PageTables = 0; BuildPageTablesIa32Pae = (BOOLEAN) (PcdGetBool (PcdSetNxForStack) && IsIa32PaeSupport () && IsExecuteDisableBitAvailable ()); if (BuildPageTablesIa32Pae) { PageTables = Create4GPageTablesIa32Pae (BaseOfStack, STACK_SIZE); EnableExecuteDisableBit (); } // // End of PEI phase signal // Status = PeiServicesInstallPpi (&gEndOfPeiSignalPpi); ASSERT_EFI_ERROR (Status); if (BuildPageTablesIa32Pae) { AsmWriteCr3 (PageTables); // // Set Physical Address Extension (bit 5 of CR4). // AsmWriteCr4 (AsmReadCr4 () | BIT5); } // // Update the contents of BSP stack HOB to reflect the real stack info passed to DxeCore. // UpdateStackHob (BaseOfStack, STACK_SIZE); DEBUG (( DEBUG_INFO, "%a() Stack Base: 0x%lx, Stack Size: 0x%x\n", __FUNCTION__, BaseOfStack, STACK_SIZE )); // // Transfer the control to the entry point of DxeCore. // if (BuildPageTablesIa32Pae) { AsmEnablePaging32 ( (SWITCH_STACK_ENTRY_POINT)(UINTN)DxeCoreEntryPoint, HobList.Raw, NULL, (VOID *) (UINTN) TopOfStack ); } else { SwitchStack ( (SWITCH_STACK_ENTRY_POINT)(UINTN)DxeCoreEntryPoint, HobList.Raw, NULL, (VOID *) (UINTN) TopOfStack ); } } }