/**@file Serial driver for standard UARTS on an ISA bus. Copyright (c) 2006 - 2007, Intel Corporation
All rights reserved. This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "Serial.h" // // ISA Serial Driver Global Variables // EFI_DRIVER_BINDING_PROTOCOL gSerialControllerDriver = { SerialControllerDriverSupported, SerialControllerDriverStart, SerialControllerDriverStop, 0xa, NULL, NULL }; SERIAL_DEV gSerialDevTempate = { SERIAL_DEV_SIGNATURE, NULL, { // SerialIo SERIAL_IO_INTERFACE_REVISION, IsaSerialReset, IsaSerialSetAttributes, IsaSerialSetControl, IsaSerialGetControl, IsaSerialWrite, IsaSerialRead, NULL }, { // SerialMode SERIAL_PORT_DEFAULT_CONTROL_MASK, SERIAL_PORT_DEFAULT_TIMEOUT, FixedPcdGet64 (PcdUartDefaultBaudRate), // BaudRate SERIAL_PORT_DEFAULT_RECEIVE_FIFO_DEPTH, FixedPcdGet8 (PcdUartDefaultDataBits), // DataBits FixedPcdGet8 (PcdUartDefaultParity), // Parity FixedPcdGet8 (PcdUartDefaultStopBits) // StopBits }, NULL, NULL, { // UartDevicePath { MESSAGING_DEVICE_PATH, MSG_UART_DP, { (UINT8) (sizeof (UART_DEVICE_PATH)), (UINT8) ((sizeof (UART_DEVICE_PATH)) >> 8) } }, 0, FixedPcdGet64 (PcdUartDefaultBaudRate), FixedPcdGet8 (PcdUartDefaultDataBits), FixedPcdGet8 (PcdUartDefaultParity), FixedPcdGet8 (PcdUartDefaultStopBits) }, NULL, 0, //BaseAddress { 0, 0, SERIAL_MAX_BUFFER_SIZE, { 0 } }, { 0, 0, SERIAL_MAX_BUFFER_SIZE, { 0 } }, FALSE, FALSE, UART16550A, NULL }; /** The user Entry Point for module IsaSerial. The user code starts with this function. @param[in] ImageHandle The firmware allocated handle for the EFI image. @param[in] SystemTable A pointer to the EFI System Table. @retval EFI_SUCCESS The entry point is executed successfully. @retval other Some error occurs when executing this entry point. **/ EFI_STATUS EFIAPI InitializeIsaSerial ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { EFI_STATUS Status; // // Install driver model protocol(s). // Status = EfiLibInstallDriverBindingComponentName2 ( ImageHandle, SystemTable, &gSerialControllerDriver, ImageHandle, &gIsaSerialComponentName, &gIsaSerialComponentName2 ); ASSERT_EFI_ERROR (Status); return Status; } EFI_STATUS EFIAPI SerialControllerDriverSupported ( IN EFI_DRIVER_BINDING_PROTOCOL *This, IN EFI_HANDLE Controller, IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath ) /*++ Routine Description: Check to see if this driver supports the given controller Arguments: This - A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance. Controller - The handle of the controller to test. RemainingDevicePath - A pointer to the remaining portion of a device path. Returns: EFI_SUCCESS - This driver can support the given controller --*/ { EFI_STATUS Status; EFI_DEVICE_PATH_PROTOCOL *ParentDevicePath; EFI_ISA_IO_PROTOCOL *IsaIo; UART_DEVICE_PATH UartNode; // // Ignore the RemainingDevicePath // // // Open the IO Abstraction(s) needed to perform the supported test // Status = gBS->OpenProtocol ( Controller, &gEfiDevicePathProtocolGuid, (VOID **) &ParentDevicePath, This->DriverBindingHandle, Controller, EFI_OPEN_PROTOCOL_BY_DRIVER ); if (Status == EFI_ALREADY_STARTED) { return EFI_SUCCESS; } if (EFI_ERROR (Status)) { return Status; } gBS->CloseProtocol ( Controller, &gEfiDevicePathProtocolGuid, This->DriverBindingHandle, Controller ); Status = gBS->OpenProtocol ( Controller, &gEfiIsaIoProtocolGuid, (VOID **) &IsaIo, This->DriverBindingHandle, Controller, EFI_OPEN_PROTOCOL_BY_DRIVER ); if (Status == EFI_ALREADY_STARTED) { return EFI_SUCCESS; } if (EFI_ERROR (Status)) { return Status; } // // Use the ISA I/O Protocol to see if Controller is standard ISA UART that // can be managed by this driver. // Status = EFI_SUCCESS; if (IsaIo->ResourceList->Device.HID != EISA_PNP_ID (0x501)) { Status = EFI_UNSUPPORTED; goto Error; } // // Make sure RemainingDevicePath is valid // if (RemainingDevicePath != NULL) { Status = EFI_UNSUPPORTED; CopyMem ( &UartNode, (UART_DEVICE_PATH *) RemainingDevicePath, sizeof (UART_DEVICE_PATH) ); if (UartNode.Header.Type != MESSAGING_DEVICE_PATH || UartNode.Header.SubType != MSG_UART_DP || sizeof (UART_DEVICE_PATH) != DevicePathNodeLength ((EFI_DEVICE_PATH_PROTOCOL *) &UartNode) ) { goto Error; } if (UartNode.BaudRate > SERIAL_PORT_MAX_BAUD_RATE) { goto Error; } if (UartNode.Parity < NoParity || UartNode.Parity > SpaceParity) { goto Error; } if (UartNode.DataBits < 5 || UartNode.DataBits > 8) { goto Error; } if (UartNode.StopBits < OneStopBit || UartNode.StopBits > TwoStopBits) { goto Error; } if ((UartNode.DataBits == 5) && (UartNode.StopBits == TwoStopBits)) { goto Error; } if ((UartNode.DataBits >= 6) && (UartNode.DataBits <= 8) && (UartNode.StopBits == OneFiveStopBits)) { goto Error; } Status = EFI_SUCCESS; } Error: // // Close the I/O Abstraction(s) used to perform the supported test // gBS->CloseProtocol ( Controller, &gEfiIsaIoProtocolGuid, This->DriverBindingHandle, Controller ); return Status; } EFI_STATUS EFIAPI SerialControllerDriverStart ( IN EFI_DRIVER_BINDING_PROTOCOL *This, IN EFI_HANDLE Controller, IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath ) /*++ Routine Description: Start to management the controller passed in Arguments: This - A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance. Controller - The handle of the controller to test. RemainingDevicePath - A pointer to the remaining portion of a device path. Returns: EFI_SUCCESS - Driver is started successfully --*/ { EFI_STATUS Status; EFI_ISA_IO_PROTOCOL *IsaIo; SERIAL_DEV *SerialDevice; UINTN Index; UART_DEVICE_PATH Node; EFI_DEVICE_PATH_PROTOCOL *ParentDevicePath; EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenInfoBuffer; UINTN EntryCount; EFI_SERIAL_IO_PROTOCOL *SerialIo; SerialDevice = NULL; // // Get the Parent Device Path // Status = gBS->OpenProtocol ( Controller, &gEfiDevicePathProtocolGuid, (VOID **) &ParentDevicePath, This->DriverBindingHandle, Controller, EFI_OPEN_PROTOCOL_BY_DRIVER ); if (EFI_ERROR (Status) && Status != EFI_ALREADY_STARTED) { return Status; } // // Report status code enable the serial // REPORT_STATUS_CODE_WITH_DEVICE_PATH ( EFI_PROGRESS_CODE, EFI_P_PC_ENABLE | EFI_PERIPHERAL_SERIAL_PORT, ParentDevicePath ); // // Grab the IO abstraction we need to get any work done // Status = gBS->OpenProtocol ( Controller, &gEfiIsaIoProtocolGuid, (VOID **) &IsaIo, This->DriverBindingHandle, Controller, EFI_OPEN_PROTOCOL_BY_DRIVER ); if (EFI_ERROR (Status) && Status != EFI_ALREADY_STARTED) { goto Error; } if (Status == EFI_ALREADY_STARTED) { if (RemainingDevicePath == NULL) { return EFI_SUCCESS; } // // Make sure a child handle does not already exist. This driver can only // produce one child per serial port. // Status = gBS->OpenProtocolInformation ( Controller, &gEfiIsaIoProtocolGuid, &OpenInfoBuffer, &EntryCount ); if (EFI_ERROR (Status)) { return Status; } Status = EFI_ALREADY_STARTED; for (Index = 0; Index < EntryCount; Index++) { if (OpenInfoBuffer[Index].Attributes & EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER) { Status = gBS->OpenProtocol ( OpenInfoBuffer[Index].ControllerHandle, &gEfiSerialIoProtocolGuid, (VOID **) &SerialIo, This->DriverBindingHandle, Controller, EFI_OPEN_PROTOCOL_GET_PROTOCOL ); if (!EFI_ERROR (Status)) { CopyMem (&Node, RemainingDevicePath, sizeof (UART_DEVICE_PATH)); Status = SerialIo->SetAttributes ( SerialIo, Node.BaudRate, SerialIo->Mode->ReceiveFifoDepth, SerialIo->Mode->Timeout, (EFI_PARITY_TYPE) Node.Parity, Node.DataBits, (EFI_STOP_BITS_TYPE) Node.StopBits ); } break; } } gBS->FreePool (OpenInfoBuffer); return Status; } // // Initialize the serial device instance // SerialDevice = AllocateCopyPool (sizeof (SERIAL_DEV), &gSerialDevTempate); if (SerialDevice == NULL) { Status = EFI_OUT_OF_RESOURCES; goto Error; } SerialDevice->SerialIo.Mode = &(SerialDevice->SerialMode); SerialDevice->IsaIo = IsaIo; SerialDevice->ParentDevicePath = ParentDevicePath; ADD_SERIAL_NAME (SerialDevice, IsaIo); for (Index = 0; SerialDevice->IsaIo->ResourceList->ResourceItem[Index].Type != EfiIsaAcpiResourceEndOfList; Index++) { if (SerialDevice->IsaIo->ResourceList->ResourceItem[Index].Type == EfiIsaAcpiResourceIo) { SerialDevice->BaseAddress = (UINT16) SerialDevice->IsaIo->ResourceList->ResourceItem[Index].StartRange; } } // // Report status code the serial present // REPORT_STATUS_CODE_WITH_DEVICE_PATH ( EFI_PROGRESS_CODE, EFI_P_PC_PRESENCE_DETECT | EFI_PERIPHERAL_SERIAL_PORT, ParentDevicePath ); if (!IsaSerialPortPresent (SerialDevice)) { Status = EFI_DEVICE_ERROR; REPORT_STATUS_CODE_WITH_DEVICE_PATH ( EFI_ERROR_CODE, EFI_P_EC_NOT_DETECTED | EFI_PERIPHERAL_SERIAL_PORT, ParentDevicePath ); goto Error; } if (RemainingDevicePath != NULL) { // // Match the configuration of the RemainingDevicePath. IsHandleSupported() // already checked to make sure the RemainingDevicePath contains settings // that we can support. // CopyMem (&SerialDevice->UartDevicePath, RemainingDevicePath, sizeof (UART_DEVICE_PATH)); } else { // // Use the values from the gSerialDevTempate as no remaining device path was // passed in. // } // // Build the device path by appending the UART node to the ParentDevicePath // from the WinNtIo handle. The Uart setings are zero here, since // SetAttribute() will update them to match the current setings. // SerialDevice->DevicePath = AppendDevicePathNode ( ParentDevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&SerialDevice->UartDevicePath ); if (SerialDevice->DevicePath == NULL) { Status = EFI_DEVICE_ERROR; goto Error; } // // Fill in Serial I/O Mode structure based on either the RemainingDevicePath or defaults. // SerialDevice->SerialMode.BaudRate = SerialDevice->UartDevicePath.BaudRate; SerialDevice->SerialMode.DataBits = SerialDevice->UartDevicePath.DataBits; SerialDevice->SerialMode.Parity = SerialDevice->UartDevicePath.Parity; SerialDevice->SerialMode.StopBits = SerialDevice->UartDevicePath.StopBits; // // Issue a reset to initialize the COM port // Status = SerialDevice->SerialIo.Reset (&SerialDevice->SerialIo); if (EFI_ERROR (Status)) { REPORT_STATUS_CODE_WITH_DEVICE_PATH ( EFI_ERROR_CODE, EFI_P_EC_CONTROLLER_ERROR | EFI_PERIPHERAL_SERIAL_PORT, ParentDevicePath ); goto Error; } // // Install protocol interfaces for the serial device. // Status = gBS->InstallMultipleProtocolInterfaces ( &SerialDevice->Handle, &gEfiDevicePathProtocolGuid, SerialDevice->DevicePath, &gEfiSerialIoProtocolGuid, &SerialDevice->SerialIo, NULL ); if (EFI_ERROR (Status)) { goto Error; } // // Open For Child Device // Status = gBS->OpenProtocol ( Controller, &gEfiIsaIoProtocolGuid, (VOID **) &IsaIo, This->DriverBindingHandle, SerialDevice->Handle, EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER ); Error: if (EFI_ERROR (Status)) { gBS->CloseProtocol ( Controller, &gEfiDevicePathProtocolGuid, This->DriverBindingHandle, Controller ); gBS->CloseProtocol ( Controller, &gEfiIsaIoProtocolGuid, This->DriverBindingHandle, Controller ); if (SerialDevice) { if (SerialDevice->DevicePath) { gBS->FreePool (SerialDevice->DevicePath); } FreeUnicodeStringTable (SerialDevice->ControllerNameTable); gBS->FreePool (SerialDevice); } } return Status; } EFI_STATUS EFIAPI SerialControllerDriverStop ( IN EFI_DRIVER_BINDING_PROTOCOL *This, IN EFI_HANDLE Controller, IN UINTN NumberOfChildren, IN EFI_HANDLE *ChildHandleBuffer ) /*++ Routine Description: Disconnect this driver with the controller, uninstall related protocol instance Arguments: This - A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance. Controller - The handle of the controller to test. NumberOfChildren - Number of child device. RemainingDevicePath - A pointer to the remaining portion of a device path. Returns: EFI_SUCCESS - Operation successfully EFI_DEVICE_ERROR - Cannot stop the driver successfully --*/ { EFI_STATUS Status; UINTN Index; BOOLEAN AllChildrenStopped; EFI_SERIAL_IO_PROTOCOL *SerialIo; SERIAL_DEV *SerialDevice; EFI_ISA_IO_PROTOCOL *IsaIo; EFI_DEVICE_PATH_PROTOCOL *DevicePath; Status = gBS->HandleProtocol ( Controller, &gEfiDevicePathProtocolGuid, (VOID **) &DevicePath ); // // Report the status code disable the serial // REPORT_STATUS_CODE_WITH_DEVICE_PATH ( EFI_PROGRESS_CODE, EFI_P_PC_DISABLE | EFI_PERIPHERAL_SERIAL_PORT, DevicePath ); // // Complete all outstanding transactions to Controller. // Don't allow any new transaction to Controller to be started. // if (NumberOfChildren == 0) { // // Close the bus driver // Status = gBS->CloseProtocol ( Controller, &gEfiIsaIoProtocolGuid, This->DriverBindingHandle, Controller ); Status = gBS->CloseProtocol ( Controller, &gEfiDevicePathProtocolGuid, This->DriverBindingHandle, Controller ); return Status; } AllChildrenStopped = TRUE; for (Index = 0; Index < NumberOfChildren; Index++) { Status = gBS->OpenProtocol ( ChildHandleBuffer[Index], &gEfiSerialIoProtocolGuid, (VOID **) &SerialIo, This->DriverBindingHandle, Controller, EFI_OPEN_PROTOCOL_GET_PROTOCOL ); if (!EFI_ERROR (Status)) { SerialDevice = SERIAL_DEV_FROM_THIS (SerialIo); Status = gBS->CloseProtocol ( Controller, &gEfiIsaIoProtocolGuid, This->DriverBindingHandle, ChildHandleBuffer[Index] ); Status = gBS->UninstallMultipleProtocolInterfaces ( ChildHandleBuffer[Index], &gEfiDevicePathProtocolGuid, SerialDevice->DevicePath, &gEfiSerialIoProtocolGuid, &SerialDevice->SerialIo, NULL ); if (EFI_ERROR (Status)) { gBS->OpenProtocol ( Controller, &gEfiIsaIoProtocolGuid, (VOID **) &IsaIo, This->DriverBindingHandle, ChildHandleBuffer[Index], EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER ); } else { if (SerialDevice->DevicePath) { gBS->FreePool (SerialDevice->DevicePath); } FreeUnicodeStringTable (SerialDevice->ControllerNameTable); gBS->FreePool (SerialDevice); } } if (EFI_ERROR (Status)) { AllChildrenStopped = FALSE; } } if (!AllChildrenStopped) { return EFI_DEVICE_ERROR; } return EFI_SUCCESS; } BOOLEAN IsaSerialFifoFull ( IN SERIAL_DEV_FIFO *Fifo ) /*++ Routine Description: Detect whether specific FIFO is full or not Arguments: Fifo - A pointer to the Data Structure SERIAL_DEV_FIFO Returns: TRUE - the FIFO is full FALSE - the FIFO is not full --*/ { if (Fifo->Surplus == 0) { return TRUE; } return FALSE; } BOOLEAN IsaSerialFifoEmpty ( IN SERIAL_DEV_FIFO *Fifo ) /*++ Routine Description: Detect whether specific FIFO is empty or not Arguments: Fifo - A pointer to the Data Structure SERIAL_DEV_FIFO Returns: TRUE - the FIFO is empty FALSE - the FIFO is not empty --*/ { if (Fifo->Surplus == SERIAL_MAX_BUFFER_SIZE) { return TRUE; } return FALSE; } EFI_STATUS IsaSerialFifoAdd ( IN SERIAL_DEV_FIFO *Fifo, IN UINT8 Data ) /*++ Routine Description: Add data to specific FIFO Arguments: Fifo - A pointer to the Data Structure SERIAL_DEV_FIFO Data - the data added to FIFO Returns: EFI_SUCCESS - Add data to specific FIFO successfully EFI_OUT_OF_RESOURCE - Failed to add data because FIFO is already full --*/ { // // if FIFO full can not add data // if (IsaSerialFifoFull (Fifo)) { return EFI_OUT_OF_RESOURCES; } // // FIFO is not full can add data // Fifo->Data[Fifo->Last] = Data; Fifo->Surplus--; Fifo->Last++; if (Fifo->Last == SERIAL_MAX_BUFFER_SIZE) { Fifo->Last = 0; } return EFI_SUCCESS; } EFI_STATUS IsaSerialFifoRemove ( IN SERIAL_DEV_FIFO *Fifo, OUT UINT8 *Data ) /*++ Routine Description: Remove data from specific FIFO Arguments: Fifo - A pointer to the Data Structure SERIAL_DEV_FIFO Data - the data removed from FIFO Returns: EFI_SUCCESS - Remove data from specific FIFO successfully EFI_OUT_OF_RESOURCE - Failed to remove data because FIFO is empty --*/ { // // if FIFO is empty, no data can remove // if (IsaSerialFifoEmpty (Fifo)) { return EFI_OUT_OF_RESOURCES; } // // FIFO is not empty, can remove data // *Data = Fifo->Data[Fifo->First]; Fifo->Surplus++; Fifo->First++; if (Fifo->First == SERIAL_MAX_BUFFER_SIZE) { Fifo->First = 0; } return EFI_SUCCESS; } EFI_STATUS IsaSerialReceiveTransmit ( IN SERIAL_DEV *SerialDevice ) /*++ Routine Description: Reads and writes all avaliable data. Arguments: SerialDevice - The device to flush Returns: EFI_SUCCESS - Data was read/written successfully. EFI_OUT_OF_RESOURCE - Failed because software receive FIFO is full. Note, when this happens, pending writes are not done. --*/ { SERIAL_PORT_LSR Lsr; UINT8 Data; BOOLEAN ReceiveFifoFull; SERIAL_PORT_MSR Msr; SERIAL_PORT_MCR Mcr; UINTN TimeOut; Data = 0; // // Begin the read or write // if (SerialDevice->SoftwareLoopbackEnable) { do { ReceiveFifoFull = IsaSerialFifoFull (&SerialDevice->Receive); if (!IsaSerialFifoEmpty (&SerialDevice->Transmit)) { IsaSerialFifoRemove (&SerialDevice->Transmit, &Data); if (ReceiveFifoFull) { return EFI_OUT_OF_RESOURCES; } IsaSerialFifoAdd (&SerialDevice->Receive, Data); } } while (!IsaSerialFifoEmpty (&SerialDevice->Transmit)); } else { ReceiveFifoFull = IsaSerialFifoFull (&SerialDevice->Receive); do { Lsr.Data = READ_LSR (SerialDevice->IsaIo, SerialDevice->BaseAddress); if (FeaturePcdGet (PcdNtEmulatorEnable)) { // // This is required for NT to avoid a forever-spin... // This would be better if READ_LSR was a polling operation // that would timeout. // Lsr.Bits.THRE = 1; } // // Flush incomming data to prevent a an overrun during a long write // if (Lsr.Bits.DR && !ReceiveFifoFull) { ReceiveFifoFull = IsaSerialFifoFull (&SerialDevice->Receive); if (!ReceiveFifoFull) { if (Lsr.Bits.FIFOE || Lsr.Bits.OE || Lsr.Bits.PE || Lsr.Bits.FE || Lsr.Bits.BI) { REPORT_STATUS_CODE_WITH_DEVICE_PATH ( EFI_ERROR_CODE, EFI_P_EC_INPUT_ERROR | EFI_PERIPHERAL_SERIAL_PORT, SerialDevice->DevicePath ); if (Lsr.Bits.FIFOE || Lsr.Bits.PE || Lsr.Bits.FE || Lsr.Bits.BI) { Data = READ_RBR (SerialDevice->IsaIo, SerialDevice->BaseAddress); continue; } } // // Make sure the receive data will not be missed, Assert DTR // if (SerialDevice->HardwareFlowControl) { Mcr.Data = READ_MCR (SerialDevice->IsaIo, SerialDevice->BaseAddress); Mcr.Bits.DTRC &= 0; WRITE_MCR (SerialDevice->IsaIo, SerialDevice->BaseAddress, Mcr.Data); } Data = READ_RBR (SerialDevice->IsaIo, SerialDevice->BaseAddress); // // Deassert DTR // if (SerialDevice->HardwareFlowControl) { Mcr.Data = READ_MCR (SerialDevice->IsaIo, SerialDevice->BaseAddress); Mcr.Bits.DTRC |= 1; WRITE_MCR (SerialDevice->IsaIo, SerialDevice->BaseAddress, Mcr.Data); } IsaSerialFifoAdd (&SerialDevice->Receive, Data); continue; } else { REPORT_STATUS_CODE_WITH_DEVICE_PATH ( EFI_PROGRESS_CODE, EFI_P_SERIAL_PORT_PC_CLEAR_BUFFER | EFI_PERIPHERAL_SERIAL_PORT, SerialDevice->DevicePath ); } } // // Do the write // if (Lsr.Bits.THRE && !IsaSerialFifoEmpty (&SerialDevice->Transmit)) { // // Make sure the transmit data will not be missed // if (SerialDevice->HardwareFlowControl) { // // Send RTS // Mcr.Data = READ_MCR (SerialDevice->IsaIo, SerialDevice->BaseAddress); Mcr.Bits.RTS |= 1; WRITE_MCR (SerialDevice->IsaIo, SerialDevice->BaseAddress, Mcr.Data); // // Wait for CTS // TimeOut = 0; Msr.Data = READ_MSR (SerialDevice->IsaIo, SerialDevice->BaseAddress); while (!Msr.Bits.CTS) { gBS->Stall (TIMEOUT_STALL_INTERVAL); TimeOut++; if (TimeOut > 5) { break; } Msr.Data = READ_MSR (SerialDevice->IsaIo, SerialDevice->BaseAddress); } if (Msr.Bits.CTS) { IsaSerialFifoRemove (&SerialDevice->Transmit, &Data); WRITE_THR (SerialDevice->IsaIo, SerialDevice->BaseAddress, Data); } } // // write the data out // if (!SerialDevice->HardwareFlowControl) { IsaSerialFifoRemove (&SerialDevice->Transmit, &Data); WRITE_THR (SerialDevice->IsaIo, SerialDevice->BaseAddress, Data); } // // Make sure the transmit data will not be missed // if (SerialDevice->HardwareFlowControl) { // // Assert RTS // Mcr.Data = READ_MCR (SerialDevice->IsaIo, SerialDevice->BaseAddress); Mcr.Bits.RTS &= 0; WRITE_MCR (SerialDevice->IsaIo, SerialDevice->BaseAddress, Mcr.Data); } } } while (Lsr.Bits.THRE && !IsaSerialFifoEmpty (&SerialDevice->Transmit)); } return EFI_SUCCESS; } // // Interface Functions // EFI_STATUS EFIAPI IsaSerialReset ( IN EFI_SERIAL_IO_PROTOCOL *This ) /*++ Routine Description: Reset serial device Arguments: This - Pointer to EFI_SERIAL_IO_PROTOCOL Returns: EFI_SUCCESS - Reset successfully EFI_DEVICE_ERROR - Failed to reset --*/ { EFI_STATUS Status; SERIAL_DEV *SerialDevice; SERIAL_PORT_LCR Lcr; SERIAL_PORT_IER Ier; SERIAL_PORT_MCR Mcr; SERIAL_PORT_FCR Fcr; EFI_TPL Tpl; SerialDevice = SERIAL_DEV_FROM_THIS (This); // // Report the status code reset the serial // REPORT_STATUS_CODE_WITH_DEVICE_PATH ( EFI_PROGRESS_CODE, EFI_P_PC_RESET | EFI_PERIPHERAL_SERIAL_PORT, SerialDevice->DevicePath ); Tpl = gBS->RaiseTPL (TPL_NOTIFY); // // Make sure DLAB is 0. // Lcr.Data = READ_LCR (SerialDevice->IsaIo, SerialDevice->BaseAddress); Lcr.Bits.DLAB = 0; WRITE_LCR (SerialDevice->IsaIo, SerialDevice->BaseAddress, Lcr.Data); // // Turn off all interrupts // Ier.Data = READ_IER (SerialDevice->IsaIo, SerialDevice->BaseAddress); Ier.Bits.RAVIE = 0; Ier.Bits.THEIE = 0; Ier.Bits.RIE = 0; Ier.Bits.MIE = 0; WRITE_IER (SerialDevice->IsaIo, SerialDevice->BaseAddress, Ier.Data); // // Disable the FIFO. // Fcr.Bits.TRFIFOE = 0; WRITE_FCR (SerialDevice->IsaIo, SerialDevice->BaseAddress, Fcr.Data); // // Turn off loopback and disable device interrupt. // Mcr.Data = READ_MCR (SerialDevice->IsaIo, SerialDevice->BaseAddress); Mcr.Bits.OUT1 = 0; Mcr.Bits.OUT2 = 0; Mcr.Bits.LME = 0; WRITE_MCR (SerialDevice->IsaIo, SerialDevice->BaseAddress, Mcr.Data); // // Clear the scratch pad register // WRITE_SCR (SerialDevice->IsaIo, SerialDevice->BaseAddress, 0); // // Go set the current attributes // Status = This->SetAttributes ( This, This->Mode->BaudRate, This->Mode->ReceiveFifoDepth, This->Mode->Timeout, (EFI_PARITY_TYPE) This->Mode->Parity, (UINT8) This->Mode->DataBits, (EFI_STOP_BITS_TYPE) This->Mode->StopBits ); if (EFI_ERROR (Status)) { gBS->RestoreTPL (Tpl); return EFI_DEVICE_ERROR; } // // Go set the current control bits // Status = This->SetControl ( This, This->Mode->ControlMask ); if (EFI_ERROR (Status)) { gBS->RestoreTPL (Tpl); return EFI_DEVICE_ERROR; } // // for 16550A enable FIFO, 16550 disable FIFO // Fcr.Bits.TRFIFOE = 1; Fcr.Bits.RESETRF = 1; Fcr.Bits.RESETTF = 1; WRITE_FCR (SerialDevice->IsaIo, SerialDevice->BaseAddress, Fcr.Data); // // Reset the software FIFO // SerialDevice->Receive.First = 0; SerialDevice->Receive.Last = 0; SerialDevice->Receive.Surplus = SERIAL_MAX_BUFFER_SIZE; SerialDevice->Transmit.First = 0; SerialDevice->Transmit.Last = 0; SerialDevice->Transmit.Surplus = SERIAL_MAX_BUFFER_SIZE; gBS->RestoreTPL (Tpl); // // Device reset is complete // return EFI_SUCCESS; } EFI_STATUS EFIAPI IsaSerialSetAttributes ( IN EFI_SERIAL_IO_PROTOCOL *This, IN UINT64 BaudRate, IN UINT32 ReceiveFifoDepth, IN UINT32 Timeout, IN EFI_PARITY_TYPE Parity, IN UINT8 DataBits, IN EFI_STOP_BITS_TYPE StopBits ) /*++ Routine Description: Set new attributes to a serial device Arguments: This - Pointer to EFI_SERIAL_IO_PROTOCOL BaudRate - The baudrate of the serial device ReceiveFifoDepth - The depth of receive FIFO buffer Timeout - The request timeout for a single char Parity - The type of parity used in serial device DataBits - Number of databits used in serial device StopBits - Number of stopbits used in serial device Returns: EFI_SUCCESS - The new attributes were set EFI_INVALID_PARAMETERS - One or more attributes have an unsupported value EFI_UNSUPPORTED - Data Bits can not set to 5 or 6 EFI_DEVICE_ERROR - The serial device is not functioning correctly (no return) --*/ { EFI_STATUS Status; SERIAL_DEV *SerialDevice; UINT32 Divisor; UINT32 Remained; SERIAL_PORT_LCR Lcr; EFI_DEVICE_PATH_PROTOCOL *NewDevicePath; EFI_TPL Tpl; SerialDevice = SERIAL_DEV_FROM_THIS (This); // // Check for default settings and fill in actual values. // if (BaudRate == 0) { BaudRate = FixedPcdGet64 (PcdUartDefaultBaudRate); } if (ReceiveFifoDepth == 0) { ReceiveFifoDepth = SERIAL_PORT_DEFAULT_RECEIVE_FIFO_DEPTH; } if (Timeout == 0) { Timeout = SERIAL_PORT_DEFAULT_TIMEOUT; } if (Parity == DefaultParity) { Parity = (EFI_PARITY_TYPE)FixedPcdGet8 (PcdUartDefaultParity); } if (DataBits == 0) { DataBits = FixedPcdGet8 (PcdUartDefaultDataBits); } if (StopBits == DefaultStopBits) { StopBits = (EFI_STOP_BITS_TYPE) FixedPcdGet8 (PcdUartDefaultStopBits); } // // 5 and 6 data bits can not be verified on a 16550A UART // Return EFI_INVALID_PARAMETER if an attempt is made to use these settings. // if ((DataBits == 5) || (DataBits == 6)) { return EFI_INVALID_PARAMETER; } // // Make sure all parameters are valid // if ((BaudRate > SERIAL_PORT_MAX_BAUD_RATE) || (BaudRate < SERIAL_PORT_MIN_BAUD_RATE)) { return EFI_INVALID_PARAMETER; } // // 50,75,110,134,150,300,600,1200,1800,2000,2400,3600,4800,7200,9600,19200, // 38400,57600,115200 // if (BaudRate < 75) { BaudRate = 50; } else if (BaudRate < 110) { BaudRate = 75; } else if (BaudRate < 134) { BaudRate = 110; } else if (BaudRate < 150) { BaudRate = 134; } else if (BaudRate < 300) { BaudRate = 150; } else if (BaudRate < 600) { BaudRate = 300; } else if (BaudRate < 1200) { BaudRate = 600; } else if (BaudRate < 1800) { BaudRate = 1200; } else if (BaudRate < 2000) { BaudRate = 1800; } else if (BaudRate < 2400) { BaudRate = 2000; } else if (BaudRate < 3600) { BaudRate = 2400; } else if (BaudRate < 4800) { BaudRate = 3600; } else if (BaudRate < 7200) { BaudRate = 4800; } else if (BaudRate < 9600) { BaudRate = 7200; } else if (BaudRate < 19200) { BaudRate = 9600; } else if (BaudRate < 38400) { BaudRate = 19200; } else if (BaudRate < 57600) { BaudRate = 38400; } else if (BaudRate < 115200) { BaudRate = 57600; } else if (BaudRate <= SERIAL_PORT_MAX_BAUD_RATE) { BaudRate = 115200; } if ((ReceiveFifoDepth < 1) || (ReceiveFifoDepth > SERIAL_PORT_MAX_RECEIVE_FIFO_DEPTH)) { return EFI_INVALID_PARAMETER; } if ((Timeout < SERIAL_PORT_MIN_TIMEOUT) || (Timeout > SERIAL_PORT_MAX_TIMEOUT)) { return EFI_INVALID_PARAMETER; } if ((Parity < NoParity) || (Parity > SpaceParity)) { return EFI_INVALID_PARAMETER; } if ((DataBits < 5) || (DataBits > 8)) { return EFI_INVALID_PARAMETER; } if ((StopBits < OneStopBit) || (StopBits > TwoStopBits)) { return EFI_INVALID_PARAMETER; } // // for DataBits = 5, StopBits can not set TwoStopBits // // if ((DataBits == 5) && (StopBits == TwoStopBits)) { // return EFI_INVALID_PARAMETER; // } // // for DataBits = 6,7,8, StopBits can not set OneFiveStopBits // if ((DataBits >= 6) && (DataBits <= 8) && (StopBits == OneFiveStopBits)) { return EFI_INVALID_PARAMETER; } // // Compute divisor use to program the baud rate using a round determination // Divisor = (UINT32) DivU64x32Remainder ( SERIAL_PORT_INPUT_CLOCK, ((UINT32) BaudRate * 16), &Remained ); if (Remained) { Divisor += 1; } if ((Divisor == 0) || (Divisor & 0xffff0000)) { return EFI_INVALID_PARAMETER; } Tpl = gBS->RaiseTPL (TPL_NOTIFY); // // Compute the actual baud rate that the serial port will be programmed for. // BaudRate = SERIAL_PORT_INPUT_CLOCK / Divisor / 16; // // Put serial port on Divisor Latch Mode // Lcr.Data = READ_LCR (SerialDevice->IsaIo, SerialDevice->BaseAddress); Lcr.Bits.DLAB = 1; WRITE_LCR (SerialDevice->IsaIo, SerialDevice->BaseAddress, Lcr.Data); // // Write the divisor to the serial port // WRITE_DLL (SerialDevice->IsaIo, SerialDevice->BaseAddress, (UINT8) (Divisor & 0xff)); WRITE_DLM (SerialDevice->IsaIo, SerialDevice->BaseAddress, (UINT8) ((Divisor >> 8) & 0xff)); // // Put serial port back in normal mode and set remaining attributes. // Lcr.Bits.DLAB = 0; switch (Parity) { case NoParity: Lcr.Bits.PAREN = 0; Lcr.Bits.EVENPAR = 0; Lcr.Bits.STICPAR = 0; break; case EvenParity: Lcr.Bits.PAREN = 1; Lcr.Bits.EVENPAR = 1; Lcr.Bits.STICPAR = 0; break; case OddParity: Lcr.Bits.PAREN = 1; Lcr.Bits.EVENPAR = 0; Lcr.Bits.STICPAR = 0; break; case SpaceParity: Lcr.Bits.PAREN = 1; Lcr.Bits.EVENPAR = 1; Lcr.Bits.STICPAR = 1; break; case MarkParity: Lcr.Bits.PAREN = 1; Lcr.Bits.EVENPAR = 0; Lcr.Bits.STICPAR = 1; break; default: break; } switch (StopBits) { case OneStopBit: Lcr.Bits.STOPB = 0; break; case OneFiveStopBits: case TwoStopBits: Lcr.Bits.STOPB = 1; break; default: break; } // // DataBits // Lcr.Bits.SERIALDB = (UINT8) ((DataBits - 5) & 0x03); WRITE_LCR (SerialDevice->IsaIo, SerialDevice->BaseAddress, Lcr.Data); // // Set the Serial I/O mode // This->Mode->BaudRate = BaudRate; This->Mode->ReceiveFifoDepth = ReceiveFifoDepth; This->Mode->Timeout = Timeout; This->Mode->Parity = Parity; This->Mode->DataBits = DataBits; This->Mode->StopBits = StopBits; // // See if Device Path Node has actually changed // if (SerialDevice->UartDevicePath.BaudRate == BaudRate && SerialDevice->UartDevicePath.DataBits == DataBits && SerialDevice->UartDevicePath.Parity == Parity && SerialDevice->UartDevicePath.StopBits == StopBits ) { gBS->RestoreTPL (Tpl); return EFI_SUCCESS; } // // Update the device path // SerialDevice->UartDevicePath.BaudRate = BaudRate; SerialDevice->UartDevicePath.DataBits = DataBits; SerialDevice->UartDevicePath.Parity = (UINT8) Parity; SerialDevice->UartDevicePath.StopBits = (UINT8) StopBits; NewDevicePath = AppendDevicePathNode ( SerialDevice->ParentDevicePath, (EFI_DEVICE_PATH_PROTOCOL *) &SerialDevice->UartDevicePath ); if (NewDevicePath == NULL) { gBS->RestoreTPL (Tpl); return EFI_DEVICE_ERROR; } if (SerialDevice->Handle != NULL) { Status = gBS->ReinstallProtocolInterface ( SerialDevice->Handle, &gEfiDevicePathProtocolGuid, SerialDevice->DevicePath, NewDevicePath ); if (EFI_ERROR (Status)) { gBS->RestoreTPL (Tpl); return Status; } } if (SerialDevice->DevicePath) { gBS->FreePool (SerialDevice->DevicePath); } SerialDevice->DevicePath = NewDevicePath; gBS->RestoreTPL (Tpl); return EFI_SUCCESS; } EFI_STATUS EFIAPI IsaSerialSetControl ( IN EFI_SERIAL_IO_PROTOCOL *This, IN UINT32 Control ) /*++ Routine Description: Set Control Bits Arguments: This - Pointer to EFI_SERIAL_IO_PROTOCOL Control - Control bits that can be settable Returns: EFI_SUCCESS - New Control bits were set successfully EFI_UNSUPPORTED - The Control bits wanted to set are not supported --*/ { SERIAL_DEV *SerialDevice; SERIAL_PORT_MCR Mcr; EFI_TPL Tpl; // // The control bits that can be set are : // EFI_SERIAL_DATA_TERMINAL_READY: 0x0001 // WO // EFI_SERIAL_REQUEST_TO_SEND: 0x0002 // WO // EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE: 0x1000 // RW // EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE: 0x2000 // RW // SerialDevice = SERIAL_DEV_FROM_THIS (This); // // first determine the parameter is invalid // if (Control & 0xffff8ffc) { return EFI_UNSUPPORTED; } Tpl = gBS->RaiseTPL (TPL_NOTIFY); Mcr.Data = READ_MCR (SerialDevice->IsaIo, SerialDevice->BaseAddress); Mcr.Bits.DTRC = 0; Mcr.Bits.RTS = 0; Mcr.Bits.LME = 0; SerialDevice->SoftwareLoopbackEnable = FALSE; SerialDevice->HardwareFlowControl = FALSE; if (Control & EFI_SERIAL_DATA_TERMINAL_READY) { Mcr.Bits.DTRC = 1; } if (Control & EFI_SERIAL_REQUEST_TO_SEND) { Mcr.Bits.RTS = 1; } if (Control & EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE) { Mcr.Bits.LME = 1; } if (Control & EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE) { SerialDevice->HardwareFlowControl = TRUE; } WRITE_MCR (SerialDevice->IsaIo, SerialDevice->BaseAddress, Mcr.Data); if (Control & EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE) { SerialDevice->SoftwareLoopbackEnable = TRUE; } gBS->RestoreTPL (Tpl); return EFI_SUCCESS; } EFI_STATUS EFIAPI IsaSerialGetControl ( IN EFI_SERIAL_IO_PROTOCOL *This, OUT UINT32 *Control ) /*++ Routine Description: Get ControlBits Arguments: This - Pointer to EFI_SERIAL_IO_PROTOCOL Control - Control signals of the serial device Returns: EFI_SUCCESS - Get Control signals successfully --*/ { SERIAL_DEV *SerialDevice; SERIAL_PORT_MSR Msr; SERIAL_PORT_MCR Mcr; EFI_TPL Tpl; Tpl = gBS->RaiseTPL (TPL_NOTIFY); SerialDevice = SERIAL_DEV_FROM_THIS (This); *Control = 0; // // Read the Modem Status Register // Msr.Data = READ_MSR (SerialDevice->IsaIo, SerialDevice->BaseAddress); if (Msr.Bits.CTS) { *Control |= EFI_SERIAL_CLEAR_TO_SEND; } if (Msr.Bits.DSR) { *Control |= EFI_SERIAL_DATA_SET_READY; } if (Msr.Bits.RI) { *Control |= EFI_SERIAL_RING_INDICATE; } if (Msr.Bits.DCD) { *Control |= EFI_SERIAL_CARRIER_DETECT; } // // Read the Modem Control Register // Mcr.Data = READ_MCR (SerialDevice->IsaIo, SerialDevice->BaseAddress); if (Mcr.Bits.DTRC) { *Control |= EFI_SERIAL_DATA_TERMINAL_READY; } if (Mcr.Bits.RTS) { *Control |= EFI_SERIAL_REQUEST_TO_SEND; } if (Mcr.Bits.LME) { *Control |= EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE; } if (SerialDevice->HardwareFlowControl) { *Control |= EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE; } // // See if the Transmit FIFO is empty // IsaSerialReceiveTransmit (SerialDevice); if (IsaSerialFifoEmpty (&SerialDevice->Transmit)) { *Control |= EFI_SERIAL_OUTPUT_BUFFER_EMPTY; } // // See if the Receive FIFO is empty. // IsaSerialReceiveTransmit (SerialDevice); if (IsaSerialFifoEmpty (&SerialDevice->Receive)) { *Control |= EFI_SERIAL_INPUT_BUFFER_EMPTY; } if (SerialDevice->SoftwareLoopbackEnable) { *Control |= EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE; } gBS->RestoreTPL (Tpl); return EFI_SUCCESS; } EFI_STATUS EFIAPI IsaSerialWrite ( IN EFI_SERIAL_IO_PROTOCOL *This, IN OUT UINTN *BufferSize, IN VOID *Buffer ) /*++ Routine Description: Write the specified number of bytes to serial device Arguments: This - Pointer to EFI_SERIAL_IO_PROTOCOL BufferSize - On input the size of Buffer, on output the amount of data actually written Buffer - The buffer of data to write Returns: EFI_SUCCESS - The data were written successfully EFI_DEVICE_ERROR - The device reported an error EFI_TIMEOUT - The write operation was stopped due to timeout --*/ { SERIAL_DEV *SerialDevice; UINT8 *CharBuffer; UINT32 Index; UINTN Elapsed; UINTN ActualWrite; EFI_TPL Tpl; SerialDevice = SERIAL_DEV_FROM_THIS (This); Elapsed = 0; ActualWrite = 0; if (*BufferSize == 0) { return EFI_SUCCESS; } if (!Buffer) { REPORT_STATUS_CODE_WITH_DEVICE_PATH ( EFI_ERROR_CODE, EFI_P_EC_OUTPUT_ERROR | EFI_PERIPHERAL_SERIAL_PORT, SerialDevice->DevicePath ); return EFI_DEVICE_ERROR; } Tpl = gBS->RaiseTPL (TPL_NOTIFY); CharBuffer = (UINT8 *) Buffer; for (Index = 0; Index < *BufferSize; Index++) { IsaSerialFifoAdd (&SerialDevice->Transmit, CharBuffer[Index]); while (IsaSerialReceiveTransmit (SerialDevice) != EFI_SUCCESS || !IsaSerialFifoEmpty (&SerialDevice->Transmit)) { // // Unsuccessful write so check if timeout has expired, if not, // stall for a bit, increment time elapsed, and try again // if (Elapsed >= This->Mode->Timeout) { *BufferSize = ActualWrite; gBS->RestoreTPL (Tpl); return EFI_TIMEOUT; } gBS->Stall (TIMEOUT_STALL_INTERVAL); Elapsed += TIMEOUT_STALL_INTERVAL; } ActualWrite++; // // Successful write so reset timeout // Elapsed = 0; } gBS->RestoreTPL (Tpl); return EFI_SUCCESS; } EFI_STATUS EFIAPI IsaSerialRead ( IN EFI_SERIAL_IO_PROTOCOL *This, IN OUT UINTN *BufferSize, OUT VOID *Buffer ) /*++ Routine Description: Read the specified number of bytes from serial device Arguments: This - Pointer to EFI_SERIAL_IO_PROTOCOL BufferSize - On input the size of Buffer, on output the amount of data returned in buffer Buffer - The buffer to return the data into Returns: EFI_SUCCESS - The data were read successfully EFI_DEVICE_ERROR - The device reported an error EFI_TIMEOUT - The read operation was stopped due to timeout --*/ { SERIAL_DEV *SerialDevice; UINT32 Index; UINT8 *CharBuffer; UINTN Elapsed; EFI_STATUS Status; EFI_TPL Tpl; SerialDevice = SERIAL_DEV_FROM_THIS (This); Elapsed = 0; if (*BufferSize == 0) { return EFI_SUCCESS; } if (!Buffer) { return EFI_DEVICE_ERROR; } Tpl = gBS->RaiseTPL (TPL_NOTIFY); Status = IsaSerialReceiveTransmit (SerialDevice); if (EFI_ERROR (Status)) { *BufferSize = 0; REPORT_STATUS_CODE_WITH_DEVICE_PATH ( EFI_ERROR_CODE, EFI_P_EC_INPUT_ERROR | EFI_PERIPHERAL_SERIAL_PORT, SerialDevice->DevicePath ); gBS->RestoreTPL (Tpl); return EFI_DEVICE_ERROR; } CharBuffer = (UINT8 *) Buffer; for (Index = 0; Index < *BufferSize; Index++) { while (IsaSerialFifoRemove (&SerialDevice->Receive, &(CharBuffer[Index])) != EFI_SUCCESS) { // // Unsuccessful read so check if timeout has expired, if not, // stall for a bit, increment time elapsed, and try again // Need this time out to get conspliter to work. // if (Elapsed >= This->Mode->Timeout) { *BufferSize = Index; gBS->RestoreTPL (Tpl); return EFI_TIMEOUT; } gBS->Stall (TIMEOUT_STALL_INTERVAL); Elapsed += TIMEOUT_STALL_INTERVAL; Status = IsaSerialReceiveTransmit (SerialDevice); if (Status == EFI_DEVICE_ERROR) { *BufferSize = Index; gBS->RestoreTPL (Tpl); return EFI_DEVICE_ERROR; } } // // Successful read so reset timeout // Elapsed = 0; } IsaSerialReceiveTransmit (SerialDevice); gBS->RestoreTPL (Tpl); return EFI_SUCCESS; } BOOLEAN IsaSerialPortPresent ( IN SERIAL_DEV *SerialDevice ) /*++ Routine Description: Use scratchpad register to test if this serial port is present Arguments: SerialDevice - Pointer to serial device structure Returns: TRUE - The serial port is present FALSE - The serial port is NOT present --*/ { UINT8 Temp; BOOLEAN Status; Status = TRUE; // // Save SCR reg // Temp = READ_SCR (SerialDevice->IsaIo, SerialDevice->BaseAddress); WRITE_SCR (SerialDevice->IsaIo, SerialDevice->BaseAddress, 0xAA); if (READ_SCR (SerialDevice->IsaIo, SerialDevice->BaseAddress) != 0xAA) { if (!FeaturePcdGet (PcdNtEmulatorEnable)) { Status = FALSE; } } WRITE_SCR (SerialDevice->IsaIo, SerialDevice->BaseAddress, 0x55); if (READ_SCR (SerialDevice->IsaIo, SerialDevice->BaseAddress) != 0x55) { if (!FeaturePcdGet (PcdNtEmulatorEnable)) { Status = FALSE; } } // // Restore SCR // WRITE_SCR (SerialDevice->IsaIo, SerialDevice->BaseAddress, Temp); return Status; } UINT8 IsaSerialReadPort ( IN EFI_ISA_IO_PROTOCOL *IsaIo, IN UINT16 BaseAddress, IN UINT32 Offset ) /*++ Routine Description: Use IsaIo protocol to read serial port Arguments: IsaIo - Pointer to EFI_ISA_IO_PROTOCOL instance BaseAddress - Serial port register group base address Offset - Offset in register group Returns: Data read from serial port --*/ { UINT8 Data; // // Use IsaIo to access IO // IsaIo->Io.Read ( IsaIo, EfiIsaIoWidthUint8, BaseAddress + Offset, 1, &Data ); return Data; } VOID IsaSerialWritePort ( IN EFI_ISA_IO_PROTOCOL *IsaIo, IN UINT16 BaseAddress, IN UINT32 Offset, IN UINT8 Data ) /*++ Routine Description: Use IsaIo protocol to write serial port Arguments: IsaIo - Pointer to EFI_ISA_IO_PROTOCOL instance BaseAddress - Serial port register group base address Offset - Offset in register group Data - data which is to be written to some serial port register Returns: None --*/ { // // Use IsaIo to access IO // IsaIo->Io.Write ( IsaIo, EfiIsaIoWidthUint8, BaseAddress + Offset, 1, &Data ); }