/** @file
Internal ARCH Specific file of MM memory check library.
MM memory check library implementation. This library consumes MM_ACCESS_PROTOCOL
to get MMRAM information. In order to use this library instance, the platform should produce
all MMRAM range via MM_ACCESS_PROTOCOL, including the range for firmware (like MM Core
and MM driver) and/or specific dedicated hardware.
Copyright (c) 2015, Intel Corporation. All rights reserved.
Copyright (c) 2016 - 2018, ARM Limited. All rights reserved.
Copyright (c) Microsoft Corporation.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include
#include
#include
#include
#include
#include
#include
#include
//
// Maximum support address used to check input buffer
//
extern EFI_PHYSICAL_ADDRESS mMmMemLibInternalMaximumSupportAddress;
extern EFI_MMRAM_DESCRIPTOR *mMmMemLibInternalMmramRanges;
extern UINTN mMmMemLibInternalMmramCount;
/**
Calculate and save the maximum support address.
**/
VOID
MmMemLibInternalCalculateMaximumSupportAddress (
VOID
)
{
VOID *Hob;
UINT32 RegEax;
UINT8 PhysicalAddressBits;
//
// Get physical address bits supported.
//
Hob = GetFirstHob (EFI_HOB_TYPE_CPU);
if (Hob != NULL) {
PhysicalAddressBits = ((EFI_HOB_CPU *)Hob)->SizeOfMemorySpace;
} else {
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
if (RegEax >= 0x80000008) {
AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
PhysicalAddressBits = (UINT8)RegEax;
} else {
PhysicalAddressBits = 36;
}
}
//
// IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses.
//
ASSERT (PhysicalAddressBits <= 52);
if (PhysicalAddressBits > 48) {
PhysicalAddressBits = 48;
}
//
// Save the maximum support address in one global variable
//
mMmMemLibInternalMaximumSupportAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)(LShiftU64 (1, PhysicalAddressBits) - 1);
DEBUG ((DEBUG_INFO, "mMmMemLibInternalMaximumSupportAddress = 0x%lx\n", mMmMemLibInternalMaximumSupportAddress));
}
/**
Initialize cached Mmram Ranges from HOB.
@retval EFI_UNSUPPORTED The routine is unable to extract MMRAM information.
@retval EFI_SUCCESS MmRanges are populated successfully.
**/
EFI_STATUS
MmMemLibInternalPopulateMmramRanges (
VOID
)
{
VOID *HobStart;
EFI_HOB_GUID_TYPE *GuidHob;
MM_CORE_DATA_HOB_DATA *DataInHob;
MM_CORE_PRIVATE_DATA *MmCorePrivateData;
EFI_HOB_GUID_TYPE *MmramRangesHob;
EFI_MMRAM_HOB_DESCRIPTOR_BLOCK *MmramRangesHobData;
EFI_MMRAM_DESCRIPTOR *MmramDescriptors;
HobStart = GetHobList ();
DEBUG ((DEBUG_INFO, "%a - 0x%x\n", __FUNCTION__, HobStart));
//
// Extract MM Core Private context from the Hob. If absent search for
// a Hob containing the MMRAM ranges
//
GuidHob = GetNextGuidHob (&gMmCoreDataHobGuid, HobStart);
if (GuidHob == NULL) {
MmramRangesHob = GetFirstGuidHob (&gEfiMmPeiMmramMemoryReserveGuid);
if (MmramRangesHob == NULL) {
return EFI_UNSUPPORTED;
}
MmramRangesHobData = GET_GUID_HOB_DATA (MmramRangesHob);
if ((MmramRangesHobData == NULL) || (MmramRangesHobData->Descriptor == NULL)) {
return EFI_UNSUPPORTED;
}
mMmMemLibInternalMmramCount = MmramRangesHobData->NumberOfMmReservedRegions;
MmramDescriptors = MmramRangesHobData->Descriptor;
} else {
DataInHob = GET_GUID_HOB_DATA (GuidHob);
if (DataInHob == NULL) {
return EFI_UNSUPPORTED;
}
MmCorePrivateData = (MM_CORE_PRIVATE_DATA *)(UINTN)DataInHob->Address;
if ((MmCorePrivateData == NULL) || (MmCorePrivateData->MmramRanges == 0)) {
return EFI_UNSUPPORTED;
}
mMmMemLibInternalMmramCount = (UINTN)MmCorePrivateData->MmramRangeCount;
MmramDescriptors = (EFI_MMRAM_DESCRIPTOR *)(UINTN)MmCorePrivateData->MmramRanges;
}
mMmMemLibInternalMmramRanges = AllocatePool (mMmMemLibInternalMmramCount * sizeof (EFI_MMRAM_DESCRIPTOR));
if (mMmMemLibInternalMmramRanges) {
CopyMem (
mMmMemLibInternalMmramRanges,
MmramDescriptors,
mMmMemLibInternalMmramCount * sizeof (EFI_MMRAM_DESCRIPTOR)
);
}
return EFI_SUCCESS;
}
/**
Deinitialize cached Mmram Ranges.
**/
VOID
MmMemLibInternalFreeMmramRanges (
VOID
)
{
if (mMmMemLibInternalMmramRanges != NULL) {
FreePool (mMmMemLibInternalMmramRanges);
}
}