/** @file The SdDxe driver is used to manage the SD memory card device. It produces BlockIo and BlockIo2 protocols to allow upper layer access the SD memory card device. Copyright (c) 2015 - 2017, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "SdDxe.h" // // SdDxe Driver Binding Protocol Instance // EFI_DRIVER_BINDING_PROTOCOL gSdDxeDriverBinding = { SdDxeDriverBindingSupported, SdDxeDriverBindingStart, SdDxeDriverBindingStop, 0x10, NULL, NULL }; // // Template for SD_DEVICE data structure. // SD_DEVICE mSdDeviceTemplate = { SD_DEVICE_SIGNATURE, // Signature NULL, // Handle NULL, // DevicePath 0xFF, // Slot FALSE, // SectorAddressing { // BlockIo EFI_BLOCK_IO_PROTOCOL_REVISION, NULL, SdReset, SdReadBlocks, SdWriteBlocks, SdFlushBlocks }, { // BlockIo2 NULL, SdResetEx, SdReadBlocksEx, SdWriteBlocksEx, SdFlushBlocksEx }, { // BlockMedia 0, // MediaId FALSE, // RemovableMedia TRUE, // MediaPresent FALSE, // LogicPartition FALSE, // ReadOnly FALSE, // WritingCache 0x200, // BlockSize 0, // IoAlign 0 // LastBlock }, { // EraseBlock EFI_ERASE_BLOCK_PROTOCOL_REVISION, 1, SdEraseBlocks }, { // DiskInfo EFI_DISK_INFO_SD_MMC_INTERFACE_GUID, SdDiskInfoInquiry, SdDiskInfoIdentify, SdDiskInfoSenseData, SdDiskInfoWhichIde }, { // Queue NULL, NULL }, { // Csd 0, }, { // Cid 0, }, NULL, // ControllerNameTable { // ModelName 0, }, NULL // Private }; /** Decode and print SD CSD Register content. @param[in] Csd Pointer to SD_CSD data structure. @retval EFI_SUCCESS The function completed successfully **/ EFI_STATUS DumpCsd ( IN SD_CSD *Csd ) { SD_CSD2 *Csd2; DEBUG((DEBUG_INFO, "== Dump Sd Csd Register==\n")); DEBUG((DEBUG_INFO, " CSD structure 0x%x\n", Csd->CsdStructure)); DEBUG((DEBUG_INFO, " Data read access-time 1 0x%x\n", Csd->Taac)); DEBUG((DEBUG_INFO, " Data read access-time 2 0x%x\n", Csd->Nsac)); DEBUG((DEBUG_INFO, " Max. bus clock frequency 0x%x\n", Csd->TranSpeed)); DEBUG((DEBUG_INFO, " Device command classes 0x%x\n", Csd->Ccc)); DEBUG((DEBUG_INFO, " Max. read data block length 0x%x\n", Csd->ReadBlLen)); DEBUG((DEBUG_INFO, " Partial blocks for read allowed 0x%x\n", Csd->ReadBlPartial)); DEBUG((DEBUG_INFO, " Write block misalignment 0x%x\n", Csd->WriteBlkMisalign)); DEBUG((DEBUG_INFO, " Read block misalignment 0x%x\n", Csd->ReadBlkMisalign)); DEBUG((DEBUG_INFO, " DSR implemented 0x%x\n", Csd->DsrImp)); if (Csd->CsdStructure == 0) { DEBUG((DEBUG_INFO, " Device size 0x%x\n", Csd->CSizeLow | (Csd->CSizeHigh << 2))); DEBUG((DEBUG_INFO, " Max. read current @ VDD min 0x%x\n", Csd->VddRCurrMin)); DEBUG((DEBUG_INFO, " Max. read current @ VDD max 0x%x\n", Csd->VddRCurrMax)); DEBUG((DEBUG_INFO, " Max. write current @ VDD min 0x%x\n", Csd->VddWCurrMin)); DEBUG((DEBUG_INFO, " Max. write current @ VDD max 0x%x\n", Csd->VddWCurrMax)); } else { Csd2 = (SD_CSD2*)(VOID*)Csd; DEBUG((DEBUG_INFO, " Device size 0x%x\n", Csd2->CSizeLow | (Csd->CSizeHigh << 16))); } DEBUG((DEBUG_INFO, " Erase sector size 0x%x\n", Csd->SectorSize)); DEBUG((DEBUG_INFO, " Erase single block enable 0x%x\n", Csd->EraseBlkEn)); DEBUG((DEBUG_INFO, " Write protect group size 0x%x\n", Csd->WpGrpSize)); DEBUG((DEBUG_INFO, " Write protect group enable 0x%x\n", Csd->WpGrpEnable)); DEBUG((DEBUG_INFO, " Write speed factor 0x%x\n", Csd->R2WFactor)); DEBUG((DEBUG_INFO, " Max. write data block length 0x%x\n", Csd->WriteBlLen)); DEBUG((DEBUG_INFO, " Partial blocks for write allowed 0x%x\n", Csd->WriteBlPartial)); DEBUG((DEBUG_INFO, " File format group 0x%x\n", Csd->FileFormatGrp)); DEBUG((DEBUG_INFO, " Copy flag (OTP) 0x%x\n", Csd->Copy)); DEBUG((DEBUG_INFO, " Permanent write protection 0x%x\n", Csd->PermWriteProtect)); DEBUG((DEBUG_INFO, " Temporary write protection 0x%x\n", Csd->TmpWriteProtect)); DEBUG((DEBUG_INFO, " File format 0x%x\n", Csd->FileFormat)); return EFI_SUCCESS; } /** Get SD device model name. @param[in, out] Device The pointer to the SD_DEVICE data structure. @param[in] Cid Pointer to SD_CID data structure. @retval EFI_SUCCESS The function completed successfully **/ EFI_STATUS GetSdModelName ( IN OUT SD_DEVICE *Device, IN SD_CID *Cid ) { CHAR8 String[SD_MODEL_NAME_MAX_LEN]; ZeroMem (String, sizeof (String)); CopyMem (String, Cid->OemId, sizeof (Cid->OemId)); String[sizeof (Cid->OemId)] = ' '; CopyMem (String + sizeof (Cid->OemId) + 1, Cid->ProductName, sizeof (Cid->ProductName)); String[sizeof (Cid->OemId) + sizeof (Cid->ProductName)] = ' '; CopyMem (String + sizeof (Cid->OemId) + sizeof (Cid->ProductName) + 1, Cid->ProductSerialNumber, sizeof (Cid->ProductSerialNumber)); AsciiStrToUnicodeStrS (String, Device->ModelName, sizeof (Device->ModelName) / sizeof (Device->ModelName[0])); return EFI_SUCCESS; } /** Discover user area partition in the SD device. @param[in] Device The pointer to the SD_DEVICE data structure. @retval EFI_SUCCESS The user area partition in the SD device is successfully identified. @return Others Some error occurs when identifying the user area. **/ EFI_STATUS DiscoverUserArea ( IN SD_DEVICE *Device ) { EFI_STATUS Status; SD_CSD *Csd; SD_CSD2 *Csd2; SD_CID *Cid; UINT64 Capacity; UINT32 DevStatus; UINT16 Rca; UINT32 CSize; UINT32 CSizeMul; UINT32 ReadBlLen; // // Deselect the device to force it enter stby mode. // Note here we don't judge return status as some SD devices return // error but the state has been stby. // SdSelect (Device, 0); Status = SdSetRca (Device, &Rca); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "DiscoverUserArea(): Assign new Rca = 0x%x fails with %r\n", Rca, Status)); return Status; } Csd = &Device->Csd; Status = SdGetCsd (Device, Rca, Csd); if (EFI_ERROR (Status)) { return Status; } DumpCsd (Csd); Cid = &Device->Cid; Status = SdGetCid (Device, Rca, Cid); if (EFI_ERROR (Status)) { return Status; } GetSdModelName (Device, Cid); Status = SdSelect (Device, Rca); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "DiscoverUserArea(): Reselect the device 0x%x fails with %r\n", Rca, Status)); return Status; } Status = SdSendStatus (Device, Rca, &DevStatus); if (EFI_ERROR (Status)) { return Status; } if (Csd->CsdStructure == 0) { Device->SectorAddressing = FALSE; CSize = (Csd->CSizeHigh << 2 | Csd->CSizeLow) + 1; CSizeMul = (1 << (Csd->CSizeMul + 2)); ReadBlLen = (1 << (Csd->ReadBlLen)); Capacity = MultU64x32 (MultU64x32 ((UINT64)CSize, CSizeMul), ReadBlLen); } else { Device->SectorAddressing = TRUE; Csd2 = (SD_CSD2*)(VOID*)Csd; CSize = (Csd2->CSizeHigh << 16 | Csd2->CSizeLow) + 1; Capacity = MultU64x32 ((UINT64)CSize, SIZE_512KB); } Device->BlockIo.Media = &Device->BlockMedia; Device->BlockIo2.Media = &Device->BlockMedia; Device->BlockMedia.IoAlign = Device->Private->PassThru->IoAlign; Device->BlockMedia.BlockSize = 0x200; Device->BlockMedia.LastBlock = 0x00; Device->BlockMedia.RemovableMedia = TRUE; Device->BlockMedia.MediaPresent = TRUE; Device->BlockMedia.LogicalPartition = FALSE; Device->BlockMedia.LastBlock = DivU64x32 (Capacity, Device->BlockMedia.BlockSize) - 1; if (Csd->EraseBlkEn) { Device->EraseBlock.EraseLengthGranularity = 1; } else { Device->EraseBlock.EraseLengthGranularity = (Csd->SectorSize + 1) * (1 << (Csd->WriteBlLen - 9)); } return Status; } /** Scan SD Bus to discover the device. @param[in] Private The SD driver private data structure. @param[in] Slot The slot number to check device present. @retval EFI_SUCCESS Successfully to discover the device and attach SdMmcIoProtocol to it. @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources. @retval EFI_ALREADY_STARTED The device was discovered before. @retval Others Fail to discover the device. **/ EFI_STATUS EFIAPI DiscoverSdDevice ( IN SD_DRIVER_PRIVATE_DATA *Private, IN UINT8 Slot ) { EFI_STATUS Status; SD_DEVICE *Device; EFI_DEVICE_PATH_PROTOCOL *DevicePath; EFI_DEVICE_PATH_PROTOCOL *NewDevicePath; EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath; EFI_HANDLE DeviceHandle; EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru; Device = NULL; DevicePath = NULL; NewDevicePath = NULL; RemainingDevicePath = NULL; PassThru = Private->PassThru; // // Build Device Path // Status = PassThru->BuildDevicePath ( PassThru, Slot, &DevicePath ); if (EFI_ERROR(Status)) { return Status; } if (DevicePath->SubType != MSG_SD_DP) { Status = EFI_UNSUPPORTED; goto Error; } NewDevicePath = AppendDevicePathNode ( Private->ParentDevicePath, DevicePath ); if (NewDevicePath == NULL) { Status = EFI_OUT_OF_RESOURCES; goto Error; } DeviceHandle = NULL; RemainingDevicePath = NewDevicePath; Status = gBS->LocateDevicePath (&gEfiDevicePathProtocolGuid, &RemainingDevicePath, &DeviceHandle); if (!EFI_ERROR (Status) && (DeviceHandle != NULL) && IsDevicePathEnd(RemainingDevicePath)) { // // The device has been started, directly return to fast boot. // Status = EFI_ALREADY_STARTED; goto Error; } // // Allocate buffer to store SD_DEVICE private data. // Device = AllocateCopyPool (sizeof (SD_DEVICE), &mSdDeviceTemplate); if (Device == NULL) { Status = EFI_OUT_OF_RESOURCES; goto Error; } Device->DevicePath = NewDevicePath; Device->Slot = Slot; Device->Private = Private; InitializeListHead (&Device->Queue); // // Expose user area in the Sd memory card to upper layer. // Status = DiscoverUserArea (Device); if (EFI_ERROR(Status)) { goto Error; } Device->ControllerNameTable = NULL; AddUnicodeString2 ( "eng", gSdDxeComponentName.SupportedLanguages, &Device->ControllerNameTable, Device->ModelName, TRUE ); AddUnicodeString2 ( "en", gSdDxeComponentName.SupportedLanguages, &Device->ControllerNameTable, Device->ModelName, FALSE ); Status = gBS->InstallMultipleProtocolInterfaces ( &Device->Handle, &gEfiDevicePathProtocolGuid, Device->DevicePath, &gEfiBlockIoProtocolGuid, &Device->BlockIo, &gEfiBlockIo2ProtocolGuid, &Device->BlockIo2, &gEfiEraseBlockProtocolGuid, &Device->EraseBlock, &gEfiDiskInfoProtocolGuid, &Device->DiskInfo, NULL ); if (!EFI_ERROR (Status)) { gBS->OpenProtocol ( Private->Controller, &gEfiSdMmcPassThruProtocolGuid, (VOID **) &(Private->PassThru), Private->DriverBindingHandle, Device->Handle, EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER ); } Error: FreePool (DevicePath); if (EFI_ERROR (Status) && (NewDevicePath != NULL)) { FreePool (NewDevicePath); } if (EFI_ERROR (Status) && (Device != NULL)) { FreePool (Device); } return Status; } /** Tests to see if this driver supports a given controller. If a child device is provided, it further tests to see if this driver supports creating a handle for the specified child device. This function checks to see if the driver specified by This supports the device specified by ControllerHandle. Drivers will typically use the device path attached to ControllerHandle and/or the services from the bus I/O abstraction attached to ControllerHandle to determine if the driver supports ControllerHandle. This function may be called many times during platform initialization. In order to reduce boot times, the tests performed by this function must be very small, and take as little time as possible to execute. This function must not change the state of any hardware devices, and this function must be aware that the device specified by ControllerHandle may already be managed by the same driver or a different driver. This function must match its calls to AllocatePages() with FreePages(), AllocatePool() with FreePool(), and OpenProtocol() with CloseProtocol(). Since ControllerHandle may have been previously started by the same driver, if a protocol is already in the opened state, then it must not be closed with CloseProtocol(). This is required to guarantee the state of ControllerHandle is not modified by this function. @param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance. @param[in] ControllerHandle The handle of the controller to test. This handle must support a protocol interface that supplies an I/O abstraction to the driver. @param[in] RemainingDevicePath A pointer to the remaining portion of a device path. This parameter is ignored by device drivers, and is optional for bus drivers. For bus drivers, if this parameter is not NULL, then the bus driver must determine if the bus controller specified by ControllerHandle and the child controller specified by RemainingDevicePath are both supported by this bus driver. @retval EFI_SUCCESS The device specified by ControllerHandle and RemainingDevicePath is supported by the driver specified by This. @retval EFI_ALREADY_STARTED The device specified by ControllerHandle and RemainingDevicePath is already being managed by the driver specified by This. @retval EFI_ACCESS_DENIED The device specified by ControllerHandle and RemainingDevicePath is already being managed by a different driver or an application that requires exclusive access. Currently not implemented. @retval EFI_UNSUPPORTED The device specified by ControllerHandle and RemainingDevicePath is not supported by the driver specified by This. **/ EFI_STATUS EFIAPI SdDxeDriverBindingSupported ( IN EFI_DRIVER_BINDING_PROTOCOL *This, IN EFI_HANDLE Controller, IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath ) { EFI_STATUS Status; EFI_DEVICE_PATH_PROTOCOL *ParentDevicePath; EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru; UINT8 Slot; // // Test EFI_SD_MMC_PASS_THRU_PROTOCOL on the controller handle. // Status = gBS->OpenProtocol ( Controller, &gEfiSdMmcPassThruProtocolGuid, (VOID**) &PassThru, This->DriverBindingHandle, Controller, EFI_OPEN_PROTOCOL_BY_DRIVER ); if (Status == EFI_ALREADY_STARTED) { return EFI_SUCCESS; } if (EFI_ERROR (Status)) { return Status; } // // Test RemainingDevicePath is valid or not. // if ((RemainingDevicePath != NULL) && !IsDevicePathEnd (RemainingDevicePath)) { Status = PassThru->GetSlotNumber (PassThru, RemainingDevicePath, &Slot); if (EFI_ERROR (Status)) { // // Close the I/O Abstraction(s) used to perform the supported test // gBS->CloseProtocol ( Controller, &gEfiSdMmcPassThruProtocolGuid, This->DriverBindingHandle, Controller ); return Status; } } // // Close the I/O Abstraction(s) used to perform the supported test // gBS->CloseProtocol ( Controller, &gEfiSdMmcPassThruProtocolGuid, This->DriverBindingHandle, Controller ); // // Open the EFI Device Path protocol needed to perform the supported test // Status = gBS->OpenProtocol ( Controller, &gEfiDevicePathProtocolGuid, (VOID **) &ParentDevicePath, This->DriverBindingHandle, Controller, EFI_OPEN_PROTOCOL_GET_PROTOCOL ); return Status; } /** Starts a device controller or a bus controller. The Start() function is designed to be invoked from the EFI boot service ConnectController(). As a result, much of the error checking on the parameters to Start() has been moved into this common boot service. It is legal to call Start() from other locations, but the following calling restrictions must be followed or the system behavior will not be deterministic. 1. ControllerHandle must be a valid EFI_HANDLE. 2. If RemainingDevicePath is not NULL, then it must be a pointer to a naturally aligned EFI_DEVICE_PATH_PROTOCOL. 3. Prior to calling Start(), the Supported() function for the driver specified by This must have been called with the same calling parameters, and Supported() must have returned EFI_SUCCESS. @param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance. @param[in] ControllerHandle The handle of the controller to start. This handle must support a protocol interface that supplies an I/O abstraction to the driver. @param[in] RemainingDevicePath A pointer to the remaining portion of a device path. This parameter is ignored by device drivers, and is optional for bus drivers. For a bus driver, if this parameter is NULL, then handles for all the children of Controller are created by this driver. If this parameter is not NULL and the first Device Path Node is not the End of Device Path Node, then only the handle for the child device specified by the first Device Path Node of RemainingDevicePath is created by this driver. If the first Device Path Node of RemainingDevicePath is the End of Device Path Node, no child handle is created by this driver. @retval EFI_SUCCESS The device was started. @retval EFI_DEVICE_ERROR The device could not be started due to a device error.Currently not implemented. @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources. @retval Others The driver failded to start the device. **/ EFI_STATUS EFIAPI SdDxeDriverBindingStart ( IN EFI_DRIVER_BINDING_PROTOCOL *This, IN EFI_HANDLE Controller, IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath ) { EFI_STATUS Status; EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru; EFI_DEVICE_PATH_PROTOCOL *ParentDevicePath; SD_DRIVER_PRIVATE_DATA *Private; UINT8 Slot; Private = NULL; PassThru = NULL; Status = gBS->OpenProtocol ( Controller, &gEfiSdMmcPassThruProtocolGuid, (VOID **) &PassThru, This->DriverBindingHandle, Controller, EFI_OPEN_PROTOCOL_BY_DRIVER ); if ((EFI_ERROR (Status)) && (Status != EFI_ALREADY_STARTED)) { return Status; } // // Check EFI_ALREADY_STARTED to reuse the original SD_DRIVER_PRIVATE_DATA. // if (Status != EFI_ALREADY_STARTED) { Private = AllocateZeroPool (sizeof (SD_DRIVER_PRIVATE_DATA)); if (Private == NULL) { Status = EFI_OUT_OF_RESOURCES; goto Error; } Status = gBS->OpenProtocol ( Controller, &gEfiDevicePathProtocolGuid, (VOID **) &ParentDevicePath, This->DriverBindingHandle, Controller, EFI_OPEN_PROTOCOL_GET_PROTOCOL ); ASSERT_EFI_ERROR (Status); Private->PassThru = PassThru; Private->Controller = Controller; Private->ParentDevicePath = ParentDevicePath; Private->DriverBindingHandle = This->DriverBindingHandle; Status = gBS->InstallProtocolInterface ( &Controller, &gEfiCallerIdGuid, EFI_NATIVE_INTERFACE, Private ); if (EFI_ERROR (Status)) { goto Error; } } else { Status = gBS->OpenProtocol ( Controller, &gEfiCallerIdGuid, (VOID **) &Private, This->DriverBindingHandle, Controller, EFI_OPEN_PROTOCOL_GET_PROTOCOL ); if (EFI_ERROR (Status)) { goto Error; } } if (RemainingDevicePath == NULL) { Slot = 0xFF; while (TRUE) { Status = PassThru->GetNextSlot (PassThru, &Slot); if (EFI_ERROR (Status)) { // // Cannot find more legal slots. // Status = EFI_SUCCESS; break; } Status = DiscoverSdDevice (Private, Slot); if (EFI_ERROR (Status) && (Status != EFI_ALREADY_STARTED)) { break; } } } else if (!IsDevicePathEnd (RemainingDevicePath)) { Status = PassThru->GetSlotNumber (PassThru, RemainingDevicePath, &Slot); if (!EFI_ERROR (Status)) { Status = DiscoverSdDevice (Private, Slot); } } Error: if (EFI_ERROR (Status) && (Status != EFI_ALREADY_STARTED)) { gBS->CloseProtocol ( Controller, &gEfiSdMmcPassThruProtocolGuid, This->DriverBindingHandle, Controller ); if (Private != NULL) { gBS->UninstallMultipleProtocolInterfaces ( Controller, &gEfiCallerIdGuid, Private, NULL ); FreePool (Private); } } return Status; } /** Stops a device controller or a bus controller. The Stop() function is designed to be invoked from the EFI boot service DisconnectController(). As a result, much of the error checking on the parameters to Stop() has been moved into this common boot service. It is legal to call Stop() from other locations, but the following calling restrictions must be followed or the system behavior will not be deterministic. 1. ControllerHandle must be a valid EFI_HANDLE that was used on a previous call to this same driver's Start() function. 2. The first NumberOfChildren handles of ChildHandleBuffer must all be a valid EFI_HANDLE. In addition, all of these handles must have been created in this driver's Start() function, and the Start() function must have called OpenProtocol() on ControllerHandle with an Attribute of EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER. @param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance. @param[in] ControllerHandle A handle to the device being stopped. The handle must support a bus specific I/O protocol for the driver to use to stop the device. @param[in] NumberOfChildren The number of child device handles in ChildHandleBuffer. @param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL if NumberOfChildren is 0. @retval EFI_SUCCESS The device was stopped. @retval EFI_DEVICE_ERROR The device could not be stopped due to a device error. **/ EFI_STATUS EFIAPI SdDxeDriverBindingStop ( IN EFI_DRIVER_BINDING_PROTOCOL *This, IN EFI_HANDLE Controller, IN UINTN NumberOfChildren, IN EFI_HANDLE *ChildHandleBuffer ) { EFI_STATUS Status; BOOLEAN AllChildrenStopped; UINTN Index; SD_DRIVER_PRIVATE_DATA *Private; SD_DEVICE *Device; EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru; EFI_BLOCK_IO2_PROTOCOL *BlockIo2; EFI_BLOCK_IO_PROTOCOL *BlockIo; LIST_ENTRY *Link; LIST_ENTRY *NextLink; SD_REQUEST *Request; EFI_TPL OldTpl; if (NumberOfChildren == 0) { Status = gBS->OpenProtocol ( Controller, &gEfiCallerIdGuid, (VOID **) &Private, This->DriverBindingHandle, Controller, EFI_OPEN_PROTOCOL_GET_PROTOCOL ); if (EFI_ERROR (Status)) { return EFI_DEVICE_ERROR; } gBS->UninstallProtocolInterface ( Controller, &gEfiCallerIdGuid, Private ); gBS->CloseProtocol ( Controller, &gEfiSdMmcPassThruProtocolGuid, This->DriverBindingHandle, Controller ); FreePool (Private); return EFI_SUCCESS; } AllChildrenStopped = TRUE; for (Index = 0; Index < NumberOfChildren; Index++) { BlockIo = NULL; BlockIo2 = NULL; Status = gBS->OpenProtocol ( ChildHandleBuffer[Index], &gEfiBlockIoProtocolGuid, (VOID **) &BlockIo, This->DriverBindingHandle, Controller, EFI_OPEN_PROTOCOL_GET_PROTOCOL ); if (EFI_ERROR (Status)) { Status = gBS->OpenProtocol ( ChildHandleBuffer[Index], &gEfiBlockIo2ProtocolGuid, (VOID **) &BlockIo2, This->DriverBindingHandle, Controller, EFI_OPEN_PROTOCOL_GET_PROTOCOL ); if (EFI_ERROR (Status)) { AllChildrenStopped = FALSE; continue; } } if (BlockIo != NULL) { Device = SD_DEVICE_DATA_FROM_BLKIO (BlockIo); } else { ASSERT (BlockIo2 != NULL); Device = SD_DEVICE_DATA_FROM_BLKIO2 (BlockIo2); } // // Free all on-going async tasks. // OldTpl = gBS->RaiseTPL (TPL_NOTIFY); for (Link = GetFirstNode (&Device->Queue); !IsNull (&Device->Queue, Link); Link = NextLink) { NextLink = GetNextNode (&Device->Queue, Link); RemoveEntryList (Link); Request = SD_REQUEST_FROM_LINK (Link); gBS->CloseEvent (Request->Event); Request->Token->TransactionStatus = EFI_ABORTED; if (Request->IsEnd) { gBS->SignalEvent (Request->Token->Event); } FreePool (Request); } gBS->RestoreTPL (OldTpl); // // Close the child handle // Status = gBS->CloseProtocol ( Controller, &gEfiSdMmcPassThruProtocolGuid, This->DriverBindingHandle, ChildHandleBuffer[Index] ); Status = gBS->UninstallMultipleProtocolInterfaces ( ChildHandleBuffer[Index], &gEfiDevicePathProtocolGuid, Device->DevicePath, &gEfiBlockIoProtocolGuid, &Device->BlockIo, &gEfiBlockIo2ProtocolGuid, &Device->BlockIo2, &gEfiEraseBlockProtocolGuid, &Device->EraseBlock, &gEfiDiskInfoProtocolGuid, &Device->DiskInfo, NULL ); if (EFI_ERROR (Status)) { AllChildrenStopped = FALSE; gBS->OpenProtocol ( Controller, &gEfiSdMmcPassThruProtocolGuid, (VOID **)&PassThru, This->DriverBindingHandle, ChildHandleBuffer[Index], EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER ); } else { FreePool (Device->DevicePath); FreeUnicodeStringTable (Device->ControllerNameTable); FreePool (Device); } } if (!AllChildrenStopped) { return EFI_DEVICE_ERROR; } return EFI_SUCCESS; } /** The user Entry Point for module SdDxe. The user code starts with this function. @param[in] ImageHandle The firmware allocated handle for the EFI image. @param[in] SystemTable A pointer to the EFI System Table. @retval EFI_SUCCESS The entry point is executed successfully. @retval other Some errors occur when executing this entry point. **/ EFI_STATUS EFIAPI InitializeSdDxe ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { EFI_STATUS Status; // // Install driver model protocol(s). // Status = EfiLibInstallDriverBindingComponentName2 ( ImageHandle, SystemTable, &gSdDxeDriverBinding, ImageHandle, &gSdDxeComponentName, &gSdDxeComponentName2 ); ASSERT_EFI_ERROR (Status); return Status; }