/** @file
Copyright (c) 2004 - 2014, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
Module Name:
SetupInfoRecords.c
Abstract:
This is the filter driver to retrieve data hub entries.
Revision History:
--*/
#include "PlatformSetupDxe.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "Valleyview.h"
#include "VlvAccess.h"
#include "PchAccess.h"
#include "SetupMode.h"
#include "PchCommonDefinitions.h"
#include
typedef struct {
UINT8 ID;
CHAR8 String[16];
} VLV_REV;
typedef struct {
UINT8 RevId;
CHAR8 String[16];
} SB_REV;
//
// Silicon Steppings
//
SB_REV SBRevisionTable[] = {
{V_PCH_LPC_RID_0, "(A0 Stepping)"},
{V_PCH_LPC_RID_1, "(A0 Stepping)"},
{V_PCH_LPC_RID_2, "(A1 Stepping)"},
{V_PCH_LPC_RID_3, "(A1 Stepping)"},
{V_PCH_LPC_RID_4, "(B0 Stepping)"},
{V_PCH_LPC_RID_5, "(B0 Stepping)"},
{V_PCH_LPC_RID_6, "(B1 Stepping)"},
{V_PCH_LPC_RID_7, "(B1 Stepping)"},
{V_PCH_LPC_RID_8, "(B2 Stepping)"},
{V_PCH_LPC_RID_9, "(B2 Stepping)"},
{V_PCH_LPC_RID_A, "(B3 Stepping)"},
{V_PCH_LPC_RID_B, "(B3 Stepping)"},
{V_PCH_LPC_RID_C, "(C0 Stepping)"},
{V_PCH_LPC_RID_D, "(C0 Stepping)"}
};
#define LEFT_JUSTIFY 0x01
#define PREFIX_SIGN 0x02
#define PREFIX_BLANK 0x04
#define COMMA_TYPE 0x08
#define LONG_TYPE 0x10
#define PREFIX_ZERO 0x20
#define ICH_REG_REV 0x08
#define MSR_IA32_PLATFORM_ID 0x17
BOOLEAN mSetupInfoDone = FALSE;
UINT8 mUseProductKey = 0;
EFI_EXP_BASE10_DATA mProcessorFrequency;
EFI_EXP_BASE10_DATA mProcessorFsbFrequency;
EFI_GUID mProcessorProducerGuid;
EFI_HII_HANDLE mHiiHandle;
EFI_PLATFORM_CPU_INFO mPlatformCpuInfo;
SYSTEM_CONFIGURATION mSystemConfiguration;
EFI_PLATFORM_INFO_HOB *mPlatformInfo;
#define memset SetMem
UINT16 mMemorySpeed = 0xffff;
EFI_PHYSICAL_ADDRESS mMemorySizeChannelASlot0 = 0;
UINT16 mMemorySpeedChannelASlot0 = 0xffff;
EFI_PHYSICAL_ADDRESS mMemorySizeChannelASlot1 = 0;
UINT16 mMemorySpeedChannelASlot1 = 0xffff;
EFI_PHYSICAL_ADDRESS mMemorySizeChannelBSlot0 = 0;
UINT16 mMemorySpeedChannelBSlot0 = 0xffff;
EFI_PHYSICAL_ADDRESS mMemorySizeChannelBSlot1 = 0;
UINT16 mMemorySpeedChannelBSlot1 = 0xffff;
EFI_PHYSICAL_ADDRESS mMemorySizeChannelCSlot0 = 0;
UINT16 mMemorySpeedChannelCSlot0 = 0xffff;
EFI_PHYSICAL_ADDRESS mMemorySizeChannelCSlot1 = 0;
UINT16 mMemorySpeedChannelCSlot1 = 0xffff;
UINTN mMemoryMode = 0xff;
#define CHARACTER_NUMBER_FOR_VALUE 30
typedef struct {
EFI_STRING_TOKEN MemoryDeviceLocator;
EFI_STRING_TOKEN MemoryBankLocator;
EFI_STRING_TOKEN MemoryManufacturer;
EFI_STRING_TOKEN MemorySerialNumber;
EFI_STRING_TOKEN MemoryAssetTag;
EFI_STRING_TOKEN MemoryPartNumber;
EFI_INTER_LINK_DATA MemoryArrayLink;
EFI_INTER_LINK_DATA MemorySubArrayLink;
UINT16 MemoryTotalWidth;
UINT16 MemoryDataWidth;
UINT64 MemoryDeviceSize;
EFI_MEMORY_FORM_FACTOR MemoryFormFactor;
UINT8 MemoryDeviceSet;
EFI_MEMORY_ARRAY_TYPE MemoryType;
EFI_MEMORY_TYPE_DETAIL MemoryTypeDetail;
UINT16 MemorySpeed;
EFI_MEMORY_STATE MemoryState;
} EFI_MEMORY_ARRAY_LINK;
typedef struct {
EFI_PHYSICAL_ADDRESS MemoryArrayStartAddress;
EFI_PHYSICAL_ADDRESS MemoryArrayEndAddress;
EFI_INTER_LINK_DATA PhysicalMemoryArrayLink;
UINT16 MemoryArrayPartitionWidth;
} EFI_MEMORY_ARRAY_START_ADDRESS;
typedef enum {
PCH_SATA_MODE_IDE = 0,
PCH_SATA_MODE_AHCI,
PCH_SATA_MODE_RAID,
PCH_SATA_MODE_MAX
} PCH_SATA_MODE;
/**
Acquire the string associated with the Index from smbios structure and return it.
The caller is responsible for free the string buffer.
@param OptionalStrStart The start position to search the string
@param Index The index of the string to extract
@param String The string that is extracted
@retval EFI_SUCCESS The function returns EFI_SUCCESS always.
**/
EFI_STATUS
GetOptionalStringByIndex (
IN CHAR8 *OptionalStrStart,
IN UINT8 Index,
OUT CHAR16 **String
)
{
UINTN StrSize;
if (Index == 0) {
*String = AllocateZeroPool (sizeof (CHAR16));
return EFI_SUCCESS;
}
StrSize = 0;
do {
Index--;
OptionalStrStart += StrSize;
StrSize = AsciiStrSize (OptionalStrStart);
} while (OptionalStrStart[StrSize] != 0 && Index != 0);
if ((Index != 0) || (StrSize == 1)) {
//
// Meet the end of strings set but Index is non-zero, or
// Find an empty string
//
return EFI_NOT_FOUND;
} else {
*String = AllocatePool (StrSize * sizeof (CHAR16));
AsciiStrToUnicodeStr (OptionalStrStart, *String);
}
return EFI_SUCCESS;
}
/**
VSPrint worker function that prints a Value as a decimal number in Buffer
@param Buffer Location to place ascii decimal number string of Value.
@param Value Decimal value to convert to a string in Buffer.
@param Flags Flags to use in printing decimal string, see file header for details.
@param Width Width of hex value.
Number of characters printed.
**/
UINTN
EfiValueToString (
IN OUT CHAR16 *Buffer,
IN INT64 Value,
IN UINTN Flags,
IN UINTN Width
)
{
CHAR16 TempBuffer[CHARACTER_NUMBER_FOR_VALUE];
CHAR16 *TempStr;
CHAR16 *BufferPtr;
UINTN Count;
UINTN ValueCharNum;
UINTN Remainder;
CHAR16 Prefix;
UINTN Index;
BOOLEAN ValueIsNegative;
UINT64 TempValue;
TempStr = TempBuffer;
BufferPtr = Buffer;
Count = 0;
ValueCharNum = 0;
ValueIsNegative = FALSE;
if (Width > CHARACTER_NUMBER_FOR_VALUE - 1) {
Width = CHARACTER_NUMBER_FOR_VALUE - 1;
}
if (Value < 0) {
Value = -Value;
ValueIsNegative = TRUE;
}
do {
TempValue = Value;
Value = (INT64)DivU64x32 ((UINT64)Value, 10);
Remainder = (UINTN)((UINT64)TempValue - 10 * Value);
*(TempStr++) = (CHAR16)(Remainder + '0');
ValueCharNum++;
Count++;
if ((Flags & COMMA_TYPE) == COMMA_TYPE) {
if (ValueCharNum % 3 == 0 && Value != 0) {
*(TempStr++) = ',';
Count++;
}
}
} while (Value != 0);
if (ValueIsNegative) {
*(TempStr++) = '-';
Count++;
}
if ((Flags & PREFIX_ZERO) && !ValueIsNegative) {
Prefix = '0';
} else {
Prefix = ' ';
}
Index = Count;
if (!(Flags & LEFT_JUSTIFY)) {
for (; Index < Width; Index++) {
*(TempStr++) = Prefix;
}
}
//
// Reverse temp string into Buffer.
//
if (Width > 0 && (UINTN) (TempStr - TempBuffer) > Width) {
TempStr = TempBuffer + Width;
}
Index = 0;
while (TempStr != TempBuffer) {
*(BufferPtr++) = *(--TempStr);
Index++;
}
*BufferPtr = 0;
return Index;
}
static CHAR16 mHexStr[] = { L'0', L'1', L'2', L'3', L'4', L'5', L'6', L'7',
L'8', L'9', L'A', L'B', L'C', L'D', L'E', L'F' };
/**
VSPrint worker function that prints a Value as a hex number in Buffer
@param Buffer Location to place ascii hex string of Value.
@param Value Hex value to convert to a string in Buffer.
@param Flags Flags to use in printing Hex string, see file header for details.
@param Width Width of hex value.
@retval Number of characters printed.
**/
UINTN
EfiValueToHexStr (
IN OUT CHAR16 *Buffer,
IN UINT64 Value,
IN UINTN Flags,
IN UINTN Width
)
{
CHAR16 TempBuffer[CHARACTER_NUMBER_FOR_VALUE];
CHAR16 *TempStr;
CHAR16 Prefix;
CHAR16 *BufferPtr;
UINTN Count;
UINTN Index;
TempStr = TempBuffer;
BufferPtr = Buffer;
//
// Count starts at one since we will null terminate. Each iteration of the
// loop picks off one nibble. Oh yea TempStr ends up backwards
//
Count = 0;
if (Width > CHARACTER_NUMBER_FOR_VALUE - 1) {
Width = CHARACTER_NUMBER_FOR_VALUE - 1;
}
do {
Index = ((UINTN)Value & 0xf);
*(TempStr++) = mHexStr[Index];
Value = RShiftU64 (Value, 4);
Count++;
} while (Value != 0);
if (Flags & PREFIX_ZERO) {
Prefix = '0';
} else {
Prefix = ' ';
}
Index = Count;
if (!(Flags & LEFT_JUSTIFY)) {
for (; Index < Width; Index++) {
*(TempStr++) = Prefix;
}
}
//
// Reverse temp string into Buffer.
//
if (Width > 0 && (UINTN) (TempStr - TempBuffer) > Width) {
TempStr = TempBuffer + Width;
}
Index = 0;
while (TempStr != TempBuffer) {
*(BufferPtr++) = *(--TempStr);
Index++;
}
*BufferPtr = 0;
return Index;
}
/*++
Converts MAC address to Unicode string.
The value is 64-bit and the resulting string will be 12
digit hex number in pairs of digits separated by dashes.
@param String string that will contain the value
@param MacAddr add argument and description to function comment
@param AddrSize add argument and description to function comment
**/
CHAR16 *
StrMacToString (
OUT CHAR16 *String,
IN EFI_MAC_ADDRESS *MacAddr,
IN UINT32 AddrSize
)
{
UINT32 i;
for (i = 0; i < AddrSize; i++) {
EfiValueToHexStr (
&String[2 * i],
MacAddr->Addr[i] & 0xFF,
PREFIX_ZERO,
2
);
}
//
// Terminate the string.
//
String[2 * AddrSize] = L'\0';
return String;
}
VOID UpdateLatestBootTime() {
UINTN VarSize;
EFI_STATUS Status;
UINT64 TimeValue;
CHAR16 Buffer[40];
if (mSystemConfiguration.LogBootTime != 1) {
return;
}
VarSize = sizeof(TimeValue);
Status = gRT->GetVariable(
BOOT_TIME_NAME,
&gEfiNormalSetupGuid,
NULL,
&VarSize,
&TimeValue
);
if (EFI_ERROR(Status)) {
return;
}
UnicodeSPrint (Buffer, sizeof (Buffer), L"%d ms", (UINT32)TimeValue);
HiiSetString(mHiiHandle,STRING_TOKEN(STR_LOG_BOOT_TIME_VALUE), Buffer, NULL);
}
/**
Get Cache Type for the specified Cache. This function is invoked when there is data records
available in the Data Hub.
Get Cache Type function arguments:
@param Instance The instance number of the subclass with the same ProducerName..
@param SubInstance The instance number of the RecordType for the same Instance.
@param CacheType Cache type, see definition of EFI_CACHE_TYPE_DATA.
@retval EFI_STATUS
**/
EFI_STATUS
GetCacheType(
IN UINT16 Instance,
IN UINT16 SubInstance,
IN EFI_CACHE_TYPE_DATA* CacheType)
{
EFI_STATUS Status;
EFI_DATA_HUB_PROTOCOL *DataHub;
EFI_DATA_RECORD_HEADER *Record;
UINT64 MonotonicCount;
EFI_CACHE_VARIABLE_RECORD* CacheVariableRecord;
EFI_SUBCLASS_TYPE1_HEADER *DataHeader;
Status = gBS->LocateProtocol (
&gEfiDataHubProtocolGuid,
NULL,
(void **)&DataHub
);
ASSERT_EFI_ERROR(Status);
//
// Get all available data records from data hub
//
MonotonicCount = 0;
Record = NULL;
do {
Status = DataHub->GetNextRecord (
DataHub,
&MonotonicCount,
NULL,
&Record
);
if (!EFI_ERROR(Status)) {
if (Record->DataRecordClass == EFI_DATA_RECORD_CLASS_DATA) {
DataHeader = (EFI_SUBCLASS_TYPE1_HEADER *)(Record + 1);
if(CompareGuid(&Record->DataRecordGuid, &gEfiCacheSubClassGuid) &&
(DataHeader->RecordType == CacheTypeRecordType) &&
(DataHeader->Instance == Instance) &&
(DataHeader->SubInstance == SubInstance)) {
CacheVariableRecord = (EFI_CACHE_VARIABLE_RECORD *)(DataHeader + 1);
if(CacheType){
*CacheType = CacheVariableRecord->CacheType;
return EFI_SUCCESS;
}
}
}
}
} while(!EFI_ERROR(Status) && (MonotonicCount != 0));
return EFI_NOT_FOUND;
}
/**
Setup data filter function. This function is invoked when there is data records
available in the Data Hub.
Standard event notification function arguments:
@param Event The event that is signaled.
@param Context Not used here.
@retval EFI_STATUS
**/
VOID
PrepareSetupInformation (
)
{
EFI_STATUS Status;
EFI_DATA_HUB_PROTOCOL *DataHub;
EFI_DATA_RECORD_HEADER *Record;
UINT8 *SrcData;
EFI_SUBCLASS_TYPE1_HEADER *DataHeader;
CHAR16 *NewString;
CHAR16 *NewString2;
CHAR16 *NewStringToken;
STRING_REF TokenToUpdate;
EFI_PROCESSOR_VERSION_DATA *ProcessorVersion;
UINTN Index;
UINTN DataOutput;
EFI_PROCESSOR_MICROCODE_REVISION_DATA *CpuUcodeRevisionData;
EFI_MEMORY_ARRAY_START_ADDRESS *MemoryArray;
EFI_MEMORY_ARRAY_LINK *MemoryArrayLink;
UINT64 MonotonicCount;
CHAR16 Version[100]; //Assuming that strings are < 100 UCHAR
CHAR16 ReleaseDate[100]; //Assuming that strings are < 100 UCHAR
CHAR16 ReleaseTime[100]; //Assuming that strings are < 100 UCHAR
NewString = AllocateZeroPool (0x100);
NewString2 = AllocateZeroPool (0x100);
SetMem(Version, sizeof(Version), 0);
SetMem(ReleaseDate, sizeof(ReleaseDate), 0);
SetMem(ReleaseTime, sizeof(ReleaseTime), 0);
//
// Get the Data Hub Protocol. Assume only one instance
//
Status = gBS->LocateProtocol (&gEfiDataHubProtocolGuid, NULL, (void **)&DataHub);
ASSERT_EFI_ERROR(Status);
//
// Get all available data records from data hub
//
MonotonicCount = 0;
Record = NULL;
do {
Status = DataHub->GetNextRecord (DataHub, &MonotonicCount, NULL, &Record);
if (!EFI_ERROR(Status)) {
if (Record->DataRecordClass == EFI_DATA_RECORD_CLASS_DATA) {
DataHeader = (EFI_SUBCLASS_TYPE1_HEADER *)(Record + 1);
SrcData = (UINT8 *)(DataHeader + 1);
//
// Processor
//
if (CompareGuid(&Record->DataRecordGuid, &gEfiProcessorSubClassGuid)) {
CopyMem (&mProcessorProducerGuid, &Record->ProducerName, sizeof(EFI_GUID));
switch (DataHeader->RecordType) {
case ProcessorCoreFrequencyRecordType:
CopyMem(&mProcessorFrequency, SrcData, sizeof(EFI_EXP_BASE10_DATA));
Index = EfiValueToString (
NewString,
ConvertBase10ToRaw ((EFI_EXP_BASE10_DATA *)SrcData)/1000000000,
PREFIX_ZERO,
0
);
StrCat (NewString, L".");
EfiValueToString (
NewString + Index + 1,
((ConvertBase10ToRaw ((EFI_EXP_BASE10_DATA *)SrcData)%1000000000)/10000000),
PREFIX_ZERO,
0
);
StrCat (NewString, L" GHz");
TokenToUpdate = (STRING_REF)STR_PROCESSOR_SPEED_VALUE;
HiiSetString(mHiiHandle, TokenToUpdate, NewString, NULL);
break;
case ProcessorVersionRecordType:
ProcessorVersion = (EFI_PROCESSOR_VERSION_DATA *)SrcData;
NewStringToken = HiiGetPackageString(&mProcessorProducerGuid, *ProcessorVersion, NULL);
TokenToUpdate = (STRING_REF)STR_PROCESSOR_VERSION_VALUE;
HiiSetString(mHiiHandle, TokenToUpdate, NewStringToken, NULL);
break;
case CpuUcodeRevisionDataRecordType:
CpuUcodeRevisionData = (EFI_PROCESSOR_MICROCODE_REVISION_DATA *) SrcData;
if (CpuUcodeRevisionData->ProcessorMicrocodeRevisionNumber != 0) {
EfiValueToHexStr (
NewString,
CpuUcodeRevisionData->ProcessorMicrocodeRevisionNumber,
PREFIX_ZERO,
8
);
TokenToUpdate = (STRING_REF)STR_PROCESSOR_MICROCODE_VALUE;
HiiSetString(mHiiHandle, TokenToUpdate, NewString, NULL);
}
break;
default:
break;
}
//
// Cache
//
} else if (CompareGuid(&Record->DataRecordGuid, &gEfiCacheSubClassGuid) &&
(DataHeader->RecordType == CacheSizeRecordType)) {
if (DataHeader->SubInstance == EFI_CACHE_L1) {
EFI_CACHE_TYPE_DATA CacheType;
if (EFI_SUCCESS == GetCacheType(DataHeader->Instance, DataHeader->SubInstance,&CacheType)){
if (CacheType == EfiCacheTypeData) {
TokenToUpdate = (STRING_REF)STR_PROCESSOR_L1_DATA_CACHE_VALUE;
} else if (CacheType == EfiCacheTypeInstruction) {
TokenToUpdate = (STRING_REF)STR_PROCESSOR_L1_INSTR_CACHE_VALUE;
} else {
continue;
}
} else {
continue;
}
}
else if (DataHeader->SubInstance == EFI_CACHE_L2) {
TokenToUpdate = (STRING_REF)STR_PROCESSOR_L2_CACHE_VALUE;
} else {
continue;
}
if (ConvertBase2ToRaw((EFI_EXP_BASE2_DATA *)SrcData)) {
DataOutput = ConvertBase2ToRaw((EFI_EXP_BASE2_DATA *)SrcData) >> 10;
EfiValueToString (NewString, DataOutput, PREFIX_ZERO, 0);
StrCat (NewString, L" KB");
if (DataHeader->SubInstance == EFI_CACHE_L3) {
HiiSetString(mHiiHandle, TokenToUpdate, NewString, NULL);
} else if(DataHeader->SubInstance == EFI_CACHE_L2 && mPlatformCpuInfo.CpuPackage.CoresPerPhysicalPackage > 1){
//
// Show XxL2 string
//
EfiValueToString (
NewString2,
mPlatformCpuInfo.CpuPackage.CoresPerPhysicalPackage,
PREFIX_ZERO,
0
);
StrCat(NewString2, L"x ");
StrCat(NewString2, NewString);
HiiSetString(mHiiHandle, TokenToUpdate, NewString2, NULL);
} else {
HiiSetString(mHiiHandle, TokenToUpdate, NewString, NULL);
}
}
//
// Memory
//
} else if (CompareGuid(&Record->DataRecordGuid, &gEfiMemorySubClassGuid)) {
switch (DataHeader->RecordType) {
case EFI_MEMORY_ARRAY_LINK_RECORD_NUMBER:
MemoryArrayLink = (EFI_MEMORY_ARRAY_LINK *)SrcData;
if (MemoryArrayLink->MemorySpeed > 0) {
//
// Save the lowest speed memory module
//
if (MemoryArrayLink->MemorySpeed < mMemorySpeed) {
mMemorySpeed = MemoryArrayLink->MemorySpeed;
}
switch (DataHeader->SubInstance) {
case 1:
mMemorySpeedChannelASlot0 = MemoryArrayLink->MemorySpeed;
mMemorySizeChannelASlot0 = MemoryArrayLink->MemoryDeviceSize;
break;
case 2:
mMemorySpeedChannelASlot1 = MemoryArrayLink->MemorySpeed;
mMemorySizeChannelASlot1 = MemoryArrayLink->MemoryDeviceSize;
break;
case 3:
mMemorySpeedChannelBSlot0 = MemoryArrayLink->MemorySpeed;
mMemorySizeChannelBSlot0 = MemoryArrayLink->MemoryDeviceSize;
break;
case 4:
mMemorySpeedChannelBSlot1 = MemoryArrayLink->MemorySpeed;
mMemorySizeChannelBSlot1 = MemoryArrayLink->MemoryDeviceSize;
break;
case 5:
mMemorySpeedChannelCSlot0 = MemoryArrayLink->MemorySpeed;
mMemorySizeChannelCSlot0 = MemoryArrayLink->MemoryDeviceSize;
break;
case 6:
mMemorySpeedChannelCSlot1 = MemoryArrayLink->MemorySpeed;
mMemorySizeChannelCSlot1 = MemoryArrayLink->MemoryDeviceSize;
break;
default:
break;
}
}
break;
case EFI_MEMORY_ARRAY_START_ADDRESS_RECORD_NUMBER:
MemoryArray = (EFI_MEMORY_ARRAY_START_ADDRESS *)SrcData;
if (MemoryArray->MemoryArrayEndAddress - MemoryArray->MemoryArrayStartAddress) {
DataOutput = (UINTN)RShiftU64((MemoryArray->MemoryArrayEndAddress - MemoryArray->MemoryArrayStartAddress + 1), 20);
EfiValueToString (NewString, DataOutput / 1024, PREFIX_ZERO, 0);
if(DataOutput % 1024) {
StrCat (NewString, L".");
DataOutput = ((DataOutput % 1024) * 1000) / 1024;
while(!(DataOutput % 10))
DataOutput = DataOutput / 10;
EfiValueToString (NewString2, DataOutput, PREFIX_ZERO, 0);
StrCat (NewString, NewString2);
}
StrCat (NewString, L" GB");
TokenToUpdate = (STRING_REF)STR_TOTAL_MEMORY_SIZE_VALUE;
HiiSetString(mHiiHandle, TokenToUpdate, NewString, NULL);
}
break;
default:
break;
}
}
}
}
} while (!EFI_ERROR(Status) && (MonotonicCount != 0));
Status = GetBiosVersionDateTime (
Version,
ReleaseDate,
ReleaseTime
);
DEBUG ((EFI_D_ERROR, "GetBiosVersionDateTime :%s %s %s \n", Version, ReleaseDate, ReleaseTime));
if (!EFI_ERROR (Status)) {
UINTN Length = 0;
CHAR16 *BuildDateTime;
Length = StrLen(ReleaseDate) + StrLen(ReleaseTime);
BuildDateTime = AllocateZeroPool ((Length+2) * sizeof(CHAR16));
StrCpy (BuildDateTime, ReleaseDate);
StrCat (BuildDateTime, L" ");
StrCat (BuildDateTime, ReleaseTime);
TokenToUpdate = (STRING_REF)STR_BIOS_VERSION_VALUE;
DEBUG ((EFI_D_ERROR, "update STR_BIOS_VERSION_VALUE\n"));
HiiSetString(mHiiHandle, TokenToUpdate, Version, NULL);
TokenToUpdate = (STRING_REF)STR_BIOS_BUILD_TIME_VALUE;
DEBUG ((EFI_D_ERROR, "update STR_BIOS_BUILD_TIME_VALUE\n"));
HiiSetString(mHiiHandle, TokenToUpdate, BuildDateTime, NULL);
}
//
// Calculate and update memory speed display in Main Page
//
//
// Update the overall memory speed
//
if (mMemorySpeed != 0xffff) {
EfiValueToString (NewString, mMemorySpeed, PREFIX_ZERO, 0);
StrCat (NewString, L" MHz");
TokenToUpdate = (STRING_REF)STR_SYSTEM_MEMORY_SPEED_VALUE;
HiiSetString(mHiiHandle, TokenToUpdate, NewString, NULL);
}
gBS->FreePool(NewString);
gBS->FreePool(NewString2);
return;
}
/**
Routine Description: update the SETUP info for "Additional Information" which is SMBIOS info.
@retval EFI_STATUS
**/
EFI_STATUS
UpdateAdditionalInformation (
)
{
EFI_STATUS Status;
UINT64 MonotonicCount;
EFI_DATA_HUB_PROTOCOL *DataHub;
EFI_DATA_RECORD_HEADER *Record;
EFI_SUBCLASS_TYPE1_HEADER *DataHeader;
EFI_SMBIOS_PROTOCOL *Smbios;
EFI_SMBIOS_HANDLE SmbiosHandle;
EFI_SMBIOS_TABLE_HEADER *SmbiosRecord;
SMBIOS_TABLE_TYPE0 *Type0Record;
UINT8 StrIndex;
CHAR16 *BiosVersion = NULL;
CHAR16 *IfwiVersion = NULL;
UINT16 SearchIndex;
EFI_STRING_ID TokenToUpdate;
#if defined( RVP_SUPPORT ) && RVP_SUPPORT
EFI_MISC_SYSTEM_MANUFACTURER *SystemManufacturer;
#endif
Status = gBS->LocateProtocol (
&gEfiDataHubProtocolGuid,
NULL,
(void **)&DataHub
);
ASSERT_EFI_ERROR(Status);
MonotonicCount = 0;
Record = NULL;
do {
Status = DataHub->GetNextRecord (
DataHub,
&MonotonicCount,
NULL,
&Record
);
if (Record->DataRecordClass == EFI_DATA_RECORD_CLASS_DATA) {
DataHeader = (EFI_SUBCLASS_TYPE1_HEADER *)(Record + 1);
if (CompareGuid(&Record->DataRecordGuid, &gEfiMiscSubClassGuid) &&
(DataHeader->RecordType == EFI_MISC_SYSTEM_MANUFACTURER_RECORD_NUMBER)) {
#if defined( RVP_SUPPORT ) && RVP_SUPPORT
//
// System Information
//
SystemManufacturer = (EFI_MISC_SYSTEM_MANUFACTURER *)(DataHeader + 1);
//
// UUID (System Information)
//
SMBIOSString = EfiLibAllocateZeroPool (0x100);
GuidToString ( &SystemManufacturer->SystemUuid, SMBIOSString, 0x00 );
TokenToUpdate = (STRING_REF)STR_SYSTEM_UUID_VALUE;
HiiSetString(mHiiHandle, TokenToUpdate, SMBIOSString, NULL);
gBS->FreePool(SMBIOSString);
#endif
}
}
} while (!EFI_ERROR(Status) && (MonotonicCount != 0));
Status = gBS->LocateProtocol (
&gEfiSmbiosProtocolGuid,
NULL,
(VOID **) &Smbios
);
ASSERT_EFI_ERROR (Status);
SmbiosHandle = SMBIOS_HANDLE_PI_RESERVED;
do {
Status = Smbios->GetNext (
Smbios,
&SmbiosHandle,
NULL,
&SmbiosRecord,
NULL
);
if (SmbiosRecord->Type == EFI_SMBIOS_TYPE_BIOS_INFORMATION) {
Type0Record = (SMBIOS_TABLE_TYPE0 *) SmbiosRecord;
StrIndex = Type0Record->BiosVersion;
GetOptionalStringByIndex ((CHAR8*)((UINT8*)Type0Record + Type0Record->Hdr.Length), StrIndex, &BiosVersion);
TokenToUpdate = STRING_TOKEN (STR_BIOS_VERSION_VALUE);
for (SearchIndex = 0x0; SearchIndex < SMBIOS_STRING_MAX_LENGTH; SearchIndex++) {
if (BiosVersion[SearchIndex] == 0x0020) {
BiosVersion[SearchIndex] = 0x0000;
IfwiVersion = (CHAR16 *)(&BiosVersion[SearchIndex+1]);
break;
} else if (BiosVersion[SearchIndex] == 0x0000) {
break;
}
}
HiiSetString (mHiiHandle, TokenToUpdate, BiosVersion, NULL);
//
// Check IfwiVersion, to avoid no IFWI version in SMBIOS Type 0 strucntion
//
if(IfwiVersion) {
TokenToUpdate = STRING_TOKEN (STR_IFWI_VERSION_VALUE);
HiiSetString (mHiiHandle, TokenToUpdate, IfwiVersion, NULL);
}
}
} while (!EFI_ERROR(Status));
UpdateLatestBootTime();
return EFI_SUCCESS;
}
VOID
UpdateCPUInformation ()
{
CHAR16 Buffer[40];
UINT16 FamilyId;
UINT8 Model;
UINT8 SteppingId;
UINT8 ProcessorType;
EFI_STATUS Status;
EFI_MP_SERVICES_PROTOCOL *MpService;
UINTN MaximumNumberOfCPUs;
UINTN NumberOfEnabledCPUs;
UINT32 Buffer32 = 0xFFFFFFFF; // Keep buffer with unknown device
EfiCpuVersion (&FamilyId, &Model, &SteppingId, &ProcessorType);
//
//we need raw Model data
//
Model = Model & 0xf;
//
//Family/Model/Step
//
UnicodeSPrint (Buffer, sizeof (Buffer), L"%d/%d/%d", FamilyId, Model, SteppingId);
HiiSetString(mHiiHandle,STRING_TOKEN(STR_PROCESSOR_ID_VALUE), Buffer, NULL);
Status = gBS->LocateProtocol (
&gEfiMpServiceProtocolGuid,
NULL,
(void **)&MpService
);
if (!EFI_ERROR (Status)) {
//
// Determine the number of processors
//
MpService->GetNumberOfProcessors (
MpService,
&MaximumNumberOfCPUs,
&NumberOfEnabledCPUs
);
UnicodeSPrint (Buffer, sizeof (Buffer), L"%d", MaximumNumberOfCPUs);
HiiSetString(mHiiHandle,STRING_TOKEN(STR_PROCESSOR_CORE_VALUE), Buffer, NULL);
}
//
// Update Mobile / Desktop / Tablet SKU
//
Buffer32 =(UINT32) RShiftU64 (EfiReadMsr (MSR_IA32_PLATFORM_ID), 50) & 0x07;
switch(Buffer32){
case 0x0:
UnicodeSPrint (Buffer, sizeof (Buffer), L"(%d) - ISG SKU SOC", Buffer32);
break;
case 0x01:
UnicodeSPrint (Buffer, sizeof (Buffer), L"(%d) - Mobile SKU SOC", Buffer32);
break;
case 0x02:
UnicodeSPrint (Buffer, sizeof (Buffer), L"(%d) - Desktop SKU SOC", Buffer32);
break;
case 0x03:
UnicodeSPrint (Buffer, sizeof (Buffer), L"(%d) - Mobile SKU SOC", Buffer32);
break;
default:
UnicodeSPrint (Buffer, sizeof (Buffer), L"(%d) - Unknown SKU SOC", Buffer32);
break;
}
HiiSetString(mHiiHandle,STRING_TOKEN(STR_PROCESSOR_SKU_VALUE), Buffer, NULL);
}
EFI_STATUS
SearchChildHandle(
EFI_HANDLE Father,
EFI_HANDLE *Child
)
{
EFI_STATUS Status;
UINTN HandleIndex;
EFI_GUID **ProtocolGuidArray = NULL;
UINTN ArrayCount;
UINTN ProtocolIndex;
UINTN OpenInfoCount;
UINTN OpenInfoIndex;
EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenInfo = NULL;
UINTN mHandleCount;
EFI_HANDLE *mHandleBuffer= NULL;
//
// Retrieve the list of all handles from the handle database
//
Status = gBS->LocateHandleBuffer (
AllHandles,
NULL,
NULL,
&mHandleCount,
&mHandleBuffer
);
for (HandleIndex = 0; HandleIndex < mHandleCount; HandleIndex++)
{
//
// Retrieve the list of all the protocols on each handle
//
Status = gBS->ProtocolsPerHandle (
mHandleBuffer[HandleIndex],
&ProtocolGuidArray,
&ArrayCount
);
if (!EFI_ERROR (Status))
{
for (ProtocolIndex = 0; ProtocolIndex < ArrayCount; ProtocolIndex++)
{
Status = gBS->OpenProtocolInformation (
mHandleBuffer[HandleIndex],
ProtocolGuidArray[ProtocolIndex],
&OpenInfo,
&OpenInfoCount
);
if (!EFI_ERROR (Status))
{
for (OpenInfoIndex = 0; OpenInfoIndex < OpenInfoCount; OpenInfoIndex++)
{
if(OpenInfo[OpenInfoIndex].AgentHandle == Father)
{
if ((OpenInfo[OpenInfoIndex].Attributes & EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER) == EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER)
{
*Child = mHandleBuffer[HandleIndex];
Status = EFI_SUCCESS;
goto TryReturn;
}
}
}
Status = EFI_NOT_FOUND;
}
}
if(OpenInfo != NULL)
{
FreePool(OpenInfo);
OpenInfo = NULL;
}
}
FreePool (ProtocolGuidArray);
ProtocolGuidArray = NULL;
}
TryReturn:
if(OpenInfo != NULL)
{
FreePool (OpenInfo);
OpenInfo = NULL;
}
if(ProtocolGuidArray != NULL)
{
FreePool(ProtocolGuidArray);
ProtocolGuidArray = NULL;
}
if(mHandleBuffer != NULL)
{
FreePool (mHandleBuffer);
mHandleBuffer = NULL;
}
return Status;
}
EFI_STATUS
JudgeHandleIsPCIDevice(
EFI_HANDLE Handle,
UINT8 Device,
UINT8 Funs
)
{
EFI_STATUS Status;
EFI_DEVICE_PATH *DPath;
Status = gBS->HandleProtocol (
Handle,
&gEfiDevicePathProtocolGuid,
(VOID **) &DPath
);
if(!EFI_ERROR(Status))
{
while(!IsDevicePathEnd(DPath))
{
if((DPath->Type == HARDWARE_DEVICE_PATH) && (DPath->SubType == HW_PCI_DP))
{
PCI_DEVICE_PATH *PCIPath;
PCIPath = (PCI_DEVICE_PATH*) DPath;
DPath = NextDevicePathNode(DPath);
if(IsDevicePathEnd(DPath) && (PCIPath->Device == Device) && (PCIPath->Function == Funs))
{
return EFI_SUCCESS;
}
}
else
{
DPath = NextDevicePathNode(DPath);
}
}
}
return EFI_UNSUPPORTED;
}
EFI_STATUS
GetDriverName(
EFI_HANDLE Handle,
CHAR16 *Name
)
{
EFI_DRIVER_BINDING_PROTOCOL *BindHandle = NULL;
EFI_STATUS Status;
UINT32 Version;
UINT16 *Ptr;
Status = gBS->OpenProtocol(
Handle,
&gEfiDriverBindingProtocolGuid,
(VOID**)&BindHandle,
NULL,
NULL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR(Status))
{
return EFI_NOT_FOUND;
}
Version = BindHandle->Version;
Ptr = (UINT16*)&Version;
UnicodeSPrint(Name, 40, L"%d.%d.%d", Version >> 24 , (Version >>16)& 0x0f ,*(Ptr));
return EFI_SUCCESS;
}
EFI_STATUS
GetGOPDriverName(
CHAR16 *Name
)
{
UINTN HandleCount;
EFI_HANDLE *Handles= NULL;
UINTN Index;
EFI_STATUS Status;
EFI_HANDLE Child = 0;
Status = gBS->LocateHandleBuffer(
ByProtocol,
&gEfiDriverBindingProtocolGuid,
NULL,
&HandleCount,
&Handles
);
for (Index = 0; Index < HandleCount ; Index++)
{
Status = SearchChildHandle(Handles[Index], &Child);
if(!EFI_ERROR(Status))
{
Status = JudgeHandleIsPCIDevice(
Child,
0x02,
0x00
);
if(!EFI_ERROR(Status))
{
return GetDriverName(Handles[Index], Name);
}
}
}
return EFI_UNSUPPORTED;
}
EFI_STATUS
UpdatePlatformInformation (
)
{
UINT32 MicroCodeVersion;
CHAR16 Buffer[40];
UINT8 IgdVBIOSRevH;
UINT8 IgdVBIOSRevL;
UINT16 EDX;
EFI_IA32_REGISTER_SET RegSet;
EFI_LEGACY_BIOS_PROTOCOL *LegacyBios = NULL;
EFI_STATUS Status;
UINT8 CpuFlavor=0;
EFI_PEI_HOB_POINTERS GuidHob;
UINTN NumHandles;
EFI_HANDLE *HandleBuffer;
UINTN Index;
DXE_PCH_PLATFORM_POLICY_PROTOCOL *PchPlatformPolicy;
UINTN PciD31F0RegBase;
UINT8 count;
UINT8 Data8;
UINT8 PIDData8;
CHAR16 Name[40];
UINT32 MrcVersion;
//
// Get the HOB list. If it is not present, then ASSERT.
//
GuidHob.Raw = GetHobList ();
if (GuidHob.Raw != NULL) {
if ((GuidHob.Raw = GetNextGuidHob (&gEfiPlatformInfoGuid, GuidHob.Raw)) != NULL) {
mPlatformInfo = GET_GUID_HOB_DATA (GuidHob.Guid);
}
}
//
//VBIOS version
//
Status = gBS->LocateProtocol(
&gEfiLegacyBiosProtocolGuid,
NULL,
(void **)&LegacyBios
);
if (!EFI_ERROR (Status)) {
RegSet.X.AX = 0x5f01;
Status = LegacyBios->Int86 (LegacyBios, 0x10, &RegSet);
ASSERT_EFI_ERROR(Status);
//
// simulate AMI int15 (ax=5f01) handler
// check NbInt15.asm in AMI code for asm edition
//
EDX = (UINT16)((RegSet.E.EBX >> 16) & 0xffff);
IgdVBIOSRevH = (UINT8)(((EDX & 0x0F00) >> 4) | (EDX & 0x000F));
IgdVBIOSRevL = (UINT8)(((RegSet.X.BX & 0x0F00) >> 4) | (RegSet.X.BX & 0x000F));
if (IgdVBIOSRevH==0 && IgdVBIOSRevL==0){
HiiSetString(mHiiHandle, STRING_TOKEN(STR_CHIP_IGD_VBIOS_REV_VALUE), L"N/A", NULL);
} else {
UnicodeSPrint (Buffer, sizeof (Buffer), L"%02X%02X", IgdVBIOSRevH,IgdVBIOSRevL);
HiiSetString(mHiiHandle, STRING_TOKEN(STR_CHIP_IGD_VBIOS_REV_VALUE), Buffer, NULL);
}
}
Status = GetGOPDriverName(Name);
if (!EFI_ERROR(Status))
{
HiiSetString(mHiiHandle, STRING_TOKEN(STR_GOP_VALUE), Name, NULL);
}
//
// CpuFlavor
// ISG-DC Tablet 000
// VLV-QC Tablet 001
// VLV-QC Desktop 010
// VLV-QC Notebook 011
//
CpuFlavor = RShiftU64 (EfiReadMsr (MSR_IA32_PLATFORM_ID), 50) & 0x07;
switch(CpuFlavor){
case 0x0:
UnicodeSPrint (Buffer, sizeof (Buffer), L"%s (%01x)", L"VLV-DC Tablet", CpuFlavor);
break;
case 0x01:
UnicodeSPrint (Buffer, sizeof (Buffer), L"%s (%01x)", L"VLV-QC Notebook", CpuFlavor);
break;
case 0x02:
UnicodeSPrint (Buffer, sizeof (Buffer), L"%s (%01x)", L"VLV-QC Desktop", CpuFlavor);
break;
case 0x03:
UnicodeSPrint (Buffer, sizeof (Buffer), L"%s (%01x)", L"VLV-QC Notebook", CpuFlavor);
break;
default:
UnicodeSPrint (Buffer, sizeof (Buffer), L"%s (%01x)", L"Unknown CPU", CpuFlavor);
break;
}
HiiSetString(mHiiHandle,STRING_TOKEN(STR_CPU_FLAVOR_VALUE), Buffer, NULL);
if ( NULL != mPlatformInfo) {
//
//BoardId
//
switch(mPlatformInfo->BoardId){
case 0x2:
UnicodeSPrint (Buffer, sizeof (Buffer), L"BAY LAKE RVP(%02x)", mPlatformInfo->BoardId);
break;
case 0x4:
UnicodeSPrint (Buffer, sizeof (Buffer), L"BAY LAKE FFRD(%02x)", mPlatformInfo->BoardId);
break;
case 0x5:
UnicodeSPrint (Buffer, sizeof (Buffer), L"BAY ROCK RVP DDR3L (%02x)", mPlatformInfo->BoardId);
break;
case 0x20:
UnicodeSPrint (Buffer, sizeof (Buffer), L"BAYLEY BAY (%02x)", mPlatformInfo->BoardId);
break;
case 0x30:
UnicodeSPrint (Buffer, sizeof (Buffer), L"BAKER SPORT (%02x)", mPlatformInfo->BoardId);
break;
case 0x0:
UnicodeSPrint (Buffer, sizeof (Buffer), L"ALPINE VALLEY (%x)", mPlatformInfo->BoardId);
break;
case 0x3:
UnicodeSPrint (Buffer, sizeof (Buffer), L"BAY LAKE FFD8 (%x)", mPlatformInfo->BoardId);
break;
default:
UnicodeSPrint (Buffer, sizeof (Buffer), L"Unknown BOARD (%02x)", mPlatformInfo->BoardId);
break;
}
HiiSetString(mHiiHandle,STRING_TOKEN(STR_BOARD_ID_VALUE), Buffer, NULL);
//
// Get Board FAB ID Info from protocol, update into the NVS area.
// bit0~bit3 are for Fab ID, 0x0F means unknow FAB.
//
if(mPlatformInfo->BoardRev == 0x0F) {
UnicodeSPrint (Buffer, sizeof (Buffer), L"%s", L"Unknown FAB");
HiiSetString(mHiiHandle,STRING_TOKEN(STR_FAB_ID_VALUE), Buffer, NULL);
} else {
UnicodeSPrint (Buffer, sizeof (Buffer), L"%2x", mPlatformInfo->BoardRev);
HiiSetString(mHiiHandle,STRING_TOKEN(STR_FAB_ID_VALUE), Buffer, NULL);
}
}
//
//Update MRC Version
//
MrcVersion = 0x00000000;
MrcVersion &= 0xffff;
Index = EfiValueToString (Buffer, MrcVersion/100, PREFIX_ZERO, 0);
StrCat (Buffer, L".");
EfiValueToString (Buffer + Index + 1, (MrcVersion%100)/10, PREFIX_ZERO, 0);
EfiValueToString (Buffer + Index + 2, (MrcVersion%100)%10, PREFIX_ZERO, 0);
HiiSetString(mHiiHandle,STRING_TOKEN(STR_MRC_VERSION_VALUE), Buffer, NULL);
//
//Update Soc Version
//
//
// Retrieve all instances of PCH Platform Policy protocol
//
Status = gBS->LocateHandleBuffer (
ByProtocol,
&gDxePchPlatformPolicyProtocolGuid,
NULL,
&NumHandles,
&HandleBuffer
);
if (!EFI_ERROR (Status)) {
//
// Find the matching PCH Policy protocol
//
for (Index = 0; Index < NumHandles; Index++) {
Status = gBS->HandleProtocol (
HandleBuffer[Index],
&gDxePchPlatformPolicyProtocolGuid,
(void **)&PchPlatformPolicy
);
if (!EFI_ERROR (Status)) {
PciD31F0RegBase = MmPciAddress (
0,
PchPlatformPolicy->BusNumber,
PCI_DEVICE_NUMBER_PCH_LPC,
PCI_FUNCTION_NUMBER_PCH_LPC,
0
);
Data8 = MmioRead8 (PciD31F0RegBase + R_PCH_LPC_RID_CC);
count = ARRAY_SIZE (SBRevisionTable);
for (Index = 0; Index < count; Index++) {
if(Data8 == SBRevisionTable[Index].RevId) {
UnicodeSPrint (Buffer, sizeof (Buffer), L"%02x %a", Data8, SBRevisionTable[Index].String);
HiiSetString(mHiiHandle,STRING_TOKEN(STR_SOC_VALUE), Buffer, NULL);
break;
}
}
break;
}
}
}
//
// Microcode Revision
//
EfiWriteMsr (EFI_MSR_IA32_BIOS_SIGN_ID, 0);
EfiCpuid (EFI_CPUID_VERSION_INFO, NULL);
MicroCodeVersion = (UINT32) RShiftU64 (EfiReadMsr (EFI_MSR_IA32_BIOS_SIGN_ID), 32);
UnicodeSPrint (Buffer, sizeof (Buffer), L"%x", MicroCodeVersion);
HiiSetString(mHiiHandle,STRING_TOKEN(STR_PROCESSOR_MICROCODE_VALUE), Buffer, NULL);
//
// Punit Version
//
Data8 = 0;
UnicodeSPrint (Buffer, sizeof (Buffer), L"0x%x", Data8);
HiiSetString(mHiiHandle,STRING_TOKEN(STR_PUNIT_FW_VALUE), Buffer, NULL);
//
// PMC Version
//
Data8 = (UINT8)((MmioRead32 (PMC_BASE_ADDRESS + R_PCH_PMC_PRSTS)>>16)&0x00FF);
PIDData8 = (UINT8)((MmioRead32 (PMC_BASE_ADDRESS + R_PCH_PMC_PRSTS)>>24)&0x00FF);
UnicodeSPrint (Buffer, sizeof (Buffer), L"0x%X_%X",PIDData8, Data8);
HiiSetString(mHiiHandle,STRING_TOKEN(STR_PMC_FW_VALUE), Buffer, NULL);
return EFI_SUCCESS;
}
/**
Update SATA Drivesize Strings for Setup and Boot order
@param NewString - pointer to string.
@param DeviceSpeed - speed of drive.
**/
VOID
GetDeviceSpeedString (
CHAR16 *NewString,
IN UINTN DeviceSpeed
)
{
if (DeviceSpeed == 0x01) {
StrCat (NewString, L"1.5Gb/s");
} else if (DeviceSpeed == 0x02) {
StrCat (NewString, L"3.0Gb/s");
} else if (DeviceSpeed == 0x03) {
StrCat (NewString, L"6.0Gb/s");
} else if (DeviceSpeed == 0x0) {
}
}
UINT8
GetChipsetSataPortSpeed (
UINTN PortNum
)
{
UINT32 DeviceSpeed;
UINT8 DeviceConfigStatus;
UINT32 IdeAhciBar;
EFI_PHYSICAL_ADDRESS MemBaseAddress = 0;
UINT8 FunNum;
DeviceSpeed = 0x01; // generation 1
//
// Allocate the AHCI BAR
//
FunNum = PCI_FUNCTION_NUMBER_PCH_SATA;
MemBaseAddress = 0x0ffffffff;
gDS->AllocateMemorySpace (
EfiGcdAllocateMaxAddressSearchBottomUp,
EfiGcdMemoryTypeMemoryMappedIo,
N_PCH_SATA_ABAR_ALIGNMENT, // 2^11: 2K Alignment
V_PCH_SATA_ABAR_LENGTH, // 2K Length
&MemBaseAddress,
mImageHandle,
NULL
);
IdeAhciBar = MmioRead32 (
MmPciAddress (
0,
0,
PCI_DEVICE_NUMBER_PCH_SATA,
FunNum,
R_PCH_SATA_ABAR
)
);
IdeAhciBar &= 0xFFFFF800;
DeviceConfigStatus = 0;
if (IdeAhciBar == 0) {
DeviceConfigStatus = 1;
IdeAhciBar = (UINT32)MemBaseAddress;
MmioWrite32 (
MmPciAddress (0, 0, PCI_DEVICE_NUMBER_PCH_SATA, FunNum, R_PCH_SATA_ABAR),
IdeAhciBar
);
MmioOr16 (
MmPciAddress (0, 0, PCI_DEVICE_NUMBER_PCH_SATA, FunNum, R_PCH_SATA_COMMAND),
B_PCH_SATA_COMMAND_MSE
);
}
if (mSystemConfiguration.SataType == PCH_SATA_MODE_IDE){
//
// Program the "Ports Implemented Register"
//
MmioAndThenOr32 (IdeAhciBar + R_PCH_SATA_AHCI_PI, (UINT32)~(B_PCH_SATA_PORT0_IMPLEMENTED + B_PCH_SATA_PORT1_IMPLEMENTED), (UINT32)(B_PCH_SATA_PORT0_IMPLEMENTED + B_PCH_SATA_PORT1_IMPLEMENTED));
}
switch (PortNum)
{
case 0:
DeviceSpeed = *(volatile UINT32 *)(UINTN)(IdeAhciBar + R_PCH_SATA_AHCI_P0SSTS);
break;
case 1:
DeviceSpeed = *(volatile UINT32 *)(UINTN)(IdeAhciBar + R_PCH_SATA_AHCI_P1SSTS);
break;
}
if (MemBaseAddress) {
gDS->FreeMemorySpace (
MemBaseAddress,
V_PCH_SATA_ABAR_LENGTH
);
}
if (DeviceConfigStatus) {
IdeAhciBar = 0;
MmioWrite32 (
MmPciAddress (0, 0, PCI_DEVICE_NUMBER_PCH_SATA, FunNum, R_PCH_SATA_ABAR),
IdeAhciBar
);
}
DeviceSpeed = (UINT8)((DeviceSpeed >> 4) & 0x0F);
return (UINT8)DeviceSpeed;
}
/**
IDE data filter function.
**/
void
IdeDataFilter (void)
{
EFI_STATUS Status;
UINTN HandleCount;
EFI_HANDLE *HandleBuffer;
EFI_DISK_INFO_PROTOCOL *DiskInfo;
EFI_DEVICE_PATH_PROTOCOL *DevicePath, *DevicePathNode;
PCI_DEVICE_PATH *PciDevicePath;
UINTN Index;
UINT8 Index1;
UINT32 BufferSize;
UINT32 DriveSize;
UINT32 IdeChannel;
UINT32 IdeDevice;
EFI_ATA_IDENTIFY_DATA *IdentifyDriveInfo;
CHAR16 *NewString;
CHAR16 SizeString[20];
STRING_REF NameToUpdate;
CHAR8 StringBuffer[0x100];
UINT32 DeviceSpeed;
UINTN PortNumber;
//
// Assume no line strings is longer than 256 bytes.
//
NewString = AllocateZeroPool (0x100);
PciDevicePath = NULL;
//
// Fill IDE Infomation
//
Status = gBS->LocateHandleBuffer (
ByProtocol,
&gEfiDiskInfoProtocolGuid,
NULL,
&HandleCount,
&HandleBuffer
);
if (EFI_ERROR (Status)) {
return;
}
for (Index = 0; Index < HandleCount; Index++) {
Status = gBS->HandleProtocol (
HandleBuffer[Index],
&gEfiDevicePathProtocolGuid,
(VOID*)&DevicePath
);
ASSERT_EFI_ERROR (Status);
DevicePathNode = DevicePath;
while (!IsDevicePathEnd (DevicePathNode) ) {
if ((DevicePathType (DevicePathNode) == HARDWARE_DEVICE_PATH) &&
( DevicePathSubType (DevicePathNode) == HW_PCI_DP)) {
PciDevicePath = (PCI_DEVICE_PATH *) DevicePathNode;
break;
}
DevicePathNode = NextDevicePathNode (DevicePathNode);
}
if (PciDevicePath == NULL) {
continue;
}
//
// Check for onboard IDE
//
if (PciDevicePath->Device== PCI_DEVICE_NUMBER_PCH_SATA) {
Status = gBS->HandleProtocol (
HandleBuffer[Index],
&gEfiDiskInfoProtocolGuid,
(void **)&DiskInfo
);
ASSERT_EFI_ERROR (Status);
Status = DiskInfo->WhichIde (
DiskInfo,
&IdeChannel,
&IdeDevice
);
ASSERT_EFI_ERROR (Status);
IdentifyDriveInfo = AllocatePool (sizeof(EFI_ATA_IDENTIFY_DATA));
BufferSize = sizeof(EFI_ATA_IDENTIFY_DATA);
Status = DiskInfo->Identify (
DiskInfo,
IdentifyDriveInfo,
&BufferSize
);
ASSERT_EFI_ERROR(Status);
//
// Onboard SATA Devices
//
if (PciDevicePath->Function == PCI_FUNCTION_NUMBER_PCH_SATA) {
if (IdeChannel == 0 && IdeDevice == 0) {
NameToUpdate = (STRING_REF)STR_SATA0_NAME;
} else if (IdeChannel == 1 && IdeDevice == 0) {
NameToUpdate = (STRING_REF)STR_SATA1_NAME;
} else {
continue;
}
} else {
continue;
}
ZeroMem(StringBuffer, sizeof(StringBuffer));
CopyMem(
StringBuffer,
(CHAR8 *)&IdentifyDriveInfo->ModelName,
sizeof(IdentifyDriveInfo->ModelName)
);
SwapEntries(StringBuffer);
AsciiToUnicode(StringBuffer, NewString);
//
// Chap it off after 16 characters
//
NewString[16] = 0;
//
// For HardDisk append the size. Otherwise display atapi
//
if ((IdentifyDriveInfo->config & 0x8000) == 00) {
//
// 48 bit address feature set is supported, get maximum capacity
//
if ((IdentifyDriveInfo->command_set_supported_83 & 0x0400) == 0) {
DriveSize = (((((IdentifyDriveInfo->user_addressable_sectors_hi << 16) +
IdentifyDriveInfo->user_addressable_sectors_lo) / 1000) * 512) / 1000);
} else {
DriveSize = IdentifyDriveInfo->maximum_lba_for_48bit_addressing[0];
for (Index1 = 1; Index1 < 4; Index1++) {
//
// Lower byte goes first: word[100] is the lowest word, word[103] is highest
//
DriveSize |= LShiftU64(IdentifyDriveInfo->maximum_lba_for_48bit_addressing[Index1], 16 * Index1);
}
DriveSize = (UINT32) DivU64x32(MultU64x32(DivU64x32(DriveSize, 1000), 512), 1000);
}
StrCat (NewString, L"(");
EfiValueToString (SizeString, DriveSize/1000, PREFIX_BLANK, 0);
StrCat (NewString, SizeString);
StrCat (NewString, L".");
EfiValueToString (SizeString, (DriveSize%1000)/100, PREFIX_BLANK, 0);
StrCat (NewString, SizeString);
StrCat (NewString, L"GB");
} else {
StrCat (NewString, L"(ATAPI");
}
//
// Update SPEED.
//
PortNumber = (IdeDevice << 1) + IdeChannel;
DeviceSpeed = GetChipsetSataPortSpeed(PortNumber);
if (DeviceSpeed) {
StrCat (NewString, L"-");
GetDeviceSpeedString( NewString, DeviceSpeed);
}
StrCat (NewString, L")");
HiiSetString(mHiiHandle, NameToUpdate, NewString, NULL);
}
}
if (HandleBuffer != NULL) {
gBS->FreePool (HandleBuffer);
}
gBS->FreePool(NewString);
return;
}
VOID
EFIAPI
SetupInfo (void)
{
EFI_STATUS Status;
UINTN VarSize;
EFI_PEI_HOB_POINTERS GuidHob;
if (mSetupInfoDone) {
return;
}
VarSize = sizeof(SYSTEM_CONFIGURATION);
Status = gRT->GetVariable(
NORMAL_SETUP_NAME,
&gEfiNormalSetupGuid,
NULL,
&VarSize,
&mSystemConfiguration
);
if (EFI_ERROR (Status) || VarSize != sizeof(SYSTEM_CONFIGURATION)) {
//The setup variable is corrupted
VarSize = sizeof(SYSTEM_CONFIGURATION);
Status = gRT->GetVariable(
L"SetupRecovery",
&gEfiNormalSetupGuid,
NULL,
&VarSize,
&mSystemConfiguration
);
ASSERT_EFI_ERROR (Status);
}
//
// Update HOB variable for PCI resource information
// Get the HOB list. If it is not present, then ASSERT.
//
GuidHob.Raw = GetHobList ();
if (GuidHob.Raw != NULL) {
if ((GuidHob.Raw = GetNextGuidHob (&gEfiPlatformInfoGuid, GuidHob.Raw)) != NULL) {
mPlatformInfo = GET_GUID_HOB_DATA (GuidHob.Guid);
}
}
PrepareSetupInformation();
UpdateAdditionalInformation ();
UpdatePlatformInformation();
UpdateCPUInformation();
IdeDataFilter();
mSetupInfoDone = TRUE;
return;
}
#define EFI_SECURE_BOOT_MODE_NAME L"SecureBoot"
VOID
CheckSystemConfigLoad(SYSTEM_CONFIGURATION *SystemConfigPtr)
{
EFI_STATUS Status;
UINT8 SecureBoot;
UINTN DataSize;
DataSize = sizeof(SecureBoot);
Status = gRT->GetVariable (
EFI_SECURE_BOOT_MODE_NAME,
&gEfiGlobalVariableGuid,
NULL,
&DataSize,
&SecureBoot
);
if (EFI_ERROR(Status)) {
SystemConfigPtr->SecureBoot = 0;
} else {
SystemConfigPtr->SecureBoot = SecureBoot;
}
}
//
// "SecureBootEnable" variable for the Secure boot feature enable/disable.
//
#define EFI_SECURE_BOOT_ENABLE_NAME L"SecureBootEnable"
extern EFI_GUID gEfiSecureBootEnableDisableGuid;
VOID
CheckSystemConfigSave(SYSTEM_CONFIGURATION *SystemConfigPtr)
{
EFI_STATUS Status;
UINT8 SecureBootCfg;
BOOLEAN SecureBootNotFound;
UINTN DataSize;
//
// Secure Boot configuration changes
//
DataSize = sizeof(SecureBootCfg);
SecureBootNotFound = FALSE;
Status = gRT->GetVariable (
EFI_SECURE_BOOT_ENABLE_NAME,
&gEfiSecureBootEnableDisableGuid,
NULL,
&DataSize,
&SecureBootCfg
);
if (EFI_ERROR(Status)) {
SecureBootNotFound = TRUE;
}
if (SecureBootNotFound) {
Status = gRT->GetVariable (
EFI_SECURE_BOOT_ENABLE_NAME,
&gEfiSecureBootEnableDisableGuid,
NULL,
&DataSize,
&SecureBootCfg
);
ASSERT_EFI_ERROR(Status);
}
if ((SecureBootCfg) != SystemConfigPtr->SecureBoot) {
SecureBootCfg = !SecureBootCfg;
Status = gRT->SetVariable (
EFI_SECURE_BOOT_ENABLE_NAME,
&gEfiSecureBootEnableDisableGuid,
EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS,
sizeof (UINT8),
&SecureBootCfg
);
}
}
VOID
ConfirmSecureBootTest()
{
}