/** @file
Copyright (c) 2004 - 2018, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
Module Name:
AcpiPlatform.c
Abstract:
ACPI Platform Driver
**/
#include
#include
#include
#include "AcpiPlatform.h"
#include "AcpiPlatformHooks.h"
#include "AcpiPlatformHooksLib.h"
#include "Platform.h"
#include
#include
#include "Osfr.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
CHAR16 EfiPlatformCpuInfoVariable[] = L"PlatformCpuInfo";
CHAR16 gACPIOSFRModelStringVariableName[] = ACPI_OSFR_MODEL_STRING_VARIABLE_NAME;
CHAR16 gACPIOSFRRefDataBlockVariableName[] = ACPI_OSFR_REF_DATA_BLOCK_VARIABLE_NAME;
CHAR16 gACPIOSFRMfgStringVariableName[] = ACPI_OSFR_MFG_STRING_VARIABLE_NAME;
EFI_CPU_IO_PROTOCOL *mCpuIo;
EFI_GLOBAL_NVS_AREA_PROTOCOL mGlobalNvsArea;
#ifndef __GNUC__
#pragma optimize("", off)
#endif
BOOLEAN mFirstNotify;
EFI_PLATFORM_INFO_HOB *mPlatformInfo;
EFI_GUID mSystemConfigurationGuid = SYSTEM_CONFIGURATION_GUID;
SYSTEM_CONFIGURATION mSystemConfiguration;
SYSTEM_CONFIGURATION mSystemConfig;
UINT8 mSmbusRsvdAddresses[] = PLATFORM_SMBUS_RSVD_ADDRESSES;
UINT8 mNumberSmbusAddress = sizeof( mSmbusRsvdAddresses ) / sizeof( mSmbusRsvdAddresses[0] );
/**
Locate the first instance of a protocol. If the protocol requested is an
FV protocol, then it will return the first FV that contains the ACPI table
storage file.
@param[in] Protocol The protocol to find.
@param[in] Instance Return pointer to the first instance of the protocol.
@param[in] Type The type of protocol to locate.
@retval EFI_SUCCESS The function completed successfully.
@retval EFI_NOT_FOUND The protocol could not be located.
@retval EFI_OUT_OF_RESOURCES There are not enough resources to find the protocol.
**/
EFI_STATUS
LocateSupportProtocol (
IN EFI_GUID *Protocol,
OUT VOID **Instance,
IN UINT32 Type
)
{
EFI_STATUS Status;
EFI_HANDLE *HandleBuffer;
UINTN NumberOfHandles;
EFI_FV_FILETYPE FileType;
UINT32 FvStatus;
EFI_FV_FILE_ATTRIBUTES Attributes;
UINTN Size;
UINTN Index;
FvStatus = 0;
//
// Locate protocol.
//
Status = gBS->LocateHandleBuffer (
ByProtocol,
Protocol,
NULL,
&NumberOfHandles,
&HandleBuffer
);
if (EFI_ERROR (Status)) {
//
// Defined errors at this time are not found and out of resources.
//
return Status;
}
//
// Looking for FV with ACPI storage file.
//
for (Index = 0; Index < NumberOfHandles; Index++) {
//
// Get the protocol on this handle.
// This should not fail because of LocateHandleBuffer.
//
Status = gBS->HandleProtocol (
HandleBuffer[Index],
Protocol,
Instance
);
ASSERT (!EFI_ERROR (Status));
if (!Type) {
//
// Not looking for the FV protocol, so find the first instance of the
// protocol. There should not be any errors because our handle buffer
// should always contain at least one or LocateHandleBuffer would have
// returned not found.
//
break;
}
//
// See if it has the ACPI storage file.
//
Status = ((EFI_FIRMWARE_VOLUME_PROTOCOL *) (*Instance))->ReadFile (
*Instance,
&gEfiAcpiTableStorageGuid,
NULL,
&Size,
&FileType,
&Attributes,
&FvStatus
);
//
// If we found it, then we are done.
//
if (!EFI_ERROR (Status)) {
break;
}
}
//
// Our exit status is determined by the success of the previous operations.
// If the protocol was found, Instance already points to it.
//
//
// Free any allocated buffers.
//
gBS->FreePool (HandleBuffer);
return Status;
}
/**
This function will update any runtime platform specific information.
This currently includes:
Setting OEM table values, ID, table ID, creator ID and creator revision.
Enabling the proper processor entries in the APIC tables.
@param[in] Table The table to update.
@retval EFI_SUCCESS The function completed successfully.
**/
EFI_STATUS
PlatformUpdateTables (
IN OUT EFI_ACPI_COMMON_HEADER *Table
)
{
EFI_ACPI_DESCRIPTION_HEADER *TableHeader;
UINT8 *CurrPtr;
UINT8 *EndPtr;
ACPI_APIC_STRUCTURE_PTR *ApicPtr;
UINT8 CurrProcessor;
EFI_STATUS Status;
EFI_MP_SERVICES_PROTOCOL *MpService;
UINTN MaximumNumberOfCPUs;
UINTN NumberOfEnabledCPUs;
UINTN BspIndex;
EFI_ACPI_1_0_ASF_DESCRIPTION_TABLE *AsfEntry;
EFI_ACPI_HIGH_PRECISION_EVENT_TIMER_TABLE_HEADER *HpetTbl;
UINT64 OemIdValue;
UINT8 Index;
EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE *Facp;
EFI_ACPI_OSFR_TABLE *OsfrTable;
EFI_ACPI_OSFR_OCUR_OBJECT *pOcurObject;
EFI_ACPI_OSFR_OCUR_OBJECT OcurObject = {{0xB46F133D, 0x235F, 0x4634, 0x9F, 0x03, 0xB1, 0xC0, 0x1C, 0x54, 0x78, 0x5B}, 0, 0, 0, 0, 0};
CHAR16 *OcurMfgStringBuffer = NULL;
CHAR16 *OcurModelStringBuffer = NULL;
UINT8 *OcurRefDataBlockBuffer = NULL;
UINTN OcurMfgStringBufferSize;
UINTN OcurModelStringBufferSize;
UINTN OcurRefDataBlockBufferSize;
#if defined (IDCC2_SUPPORTED) && IDCC2_SUPPORTED
EFI_ACPI_ASPT_TABLE *pSpttTable;
#endif
UINT16 NumberOfHpets;
UINT16 HpetCapIdValue;
UINT32 HpetBlockID;
EFI_PROCESSOR_INFORMATION ProcessorInfoBuffer;
UINT8 TempVal;
EFI_ACPI_3_0_IO_APIC_STRUCTURE *IOApicType;
EFI_ACPI_3_0_MULTIPLE_APIC_DESCRIPTION_TABLE_HEADER *APICTableHeader;
EFI_ACPI_WSMT_TABLE *WsmtTable;
CurrPtr = NULL;
EndPtr = NULL;
ApicPtr = NULL;
CurrProcessor = 0;
if (Table->Signature != EFI_ACPI_1_0_FIRMWARE_ACPI_CONTROL_STRUCTURE_SIGNATURE) {
TableHeader = (EFI_ACPI_DESCRIPTION_HEADER *) Table;
//
// Update the OEMID.
//
OemIdValue = mPlatformInfo->AcpiOemId;
*(UINT32 *)(TableHeader->OemId) = (UINT32)OemIdValue;
*(UINT16 *)(TableHeader->OemId + 4) = *(UINT16*)(((UINT8 *)&OemIdValue) + 4);
if ((Table->Signature != EFI_ACPI_2_0_SECONDARY_SYSTEM_DESCRIPTION_TABLE_SIGNATURE)) {
//
// Update the OEM Table ID.
//
TableHeader->OemTableId = mPlatformInfo->AcpiOemTableId;
}
//
// Update the OEM Table ID.
//
TableHeader->OemRevision = EFI_ACPI_OEM_REVISION;
//
// Update the creator ID.
//
TableHeader->CreatorId = EFI_ACPI_CREATOR_ID;
//
// Update the creator revision.
//
TableHeader->CreatorRevision = EFI_ACPI_CREATOR_REVISION;
}
//
// Complete this function.
//
//
// Locate the MP services protocol.
//
//
// Find the MP Protocol. This is an MP platform, so MP protocol must be
// there.
//
Status = gBS->LocateProtocol (
&gEfiMpServiceProtocolGuid,
NULL,
(VOID **) &MpService
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Determine the number of processors.
//
MpService->GetNumberOfProcessors (
MpService,
&MaximumNumberOfCPUs,
&NumberOfEnabledCPUs
);
ASSERT (MaximumNumberOfCPUs <= MAX_CPU_NUM && NumberOfEnabledCPUs >= 1);
//
// Assign a invalid intial value for update.
//
//
// Update the processors in the APIC table.
//
switch (Table->Signature) {
case EFI_ACPI_1_0_ASF_DESCRIPTION_TABLE_SIGNATURE:
//
// Update the table if ASF is enabled. Otherwise, return error so caller will not install.
//
if (mSystemConfig.Asf == 1) {
return EFI_UNSUPPORTED;
}
AsfEntry = (EFI_ACPI_1_0_ASF_DESCRIPTION_TABLE *) Table;
TempVal = (mNumberSmbusAddress < ASF_ADDR_DEVICE_ARRAY_LENGTH)? mNumberSmbusAddress : ASF_ADDR_DEVICE_ARRAY_LENGTH;
for (Index = 0; Index < TempVal; Index++) {
AsfEntry->AsfAddr.FixedSmbusAddresses[Index] = mSmbusRsvdAddresses[Index];
}
break;
case EFI_ACPI_3_0_MULTIPLE_APIC_DESCRIPTION_TABLE_SIGNATURE:
Status = MpService->WhoAmI (
MpService,
&BspIndex
);
//
// PCAT_COMPAT Set to 1 indicate 8259 vectors should be disabled.
//
APICTableHeader = (EFI_ACPI_3_0_MULTIPLE_APIC_DESCRIPTION_TABLE_HEADER *)Table;
APICTableHeader->Flags |= EFI_ACPI_3_0_PCAT_COMPAT;
CurrPtr = (UINT8 *) &((EFI_ACPI_DESCRIPTION_HEADER *) Table)[1];
CurrPtr = CurrPtr + 8;
//
// Size of Local APIC Address & Flag.
//
EndPtr = (UINT8 *) Table;
EndPtr = EndPtr + Table->Length;
while (CurrPtr < EndPtr) {
ApicPtr = (ACPI_APIC_STRUCTURE_PTR *) CurrPtr;
switch (ApicPtr->AcpiApicCommon.Type) {
case EFI_ACPI_3_0_PROCESSOR_LOCAL_APIC:
//
// ESS override
// Fix for Ordering of MADT to be maintained as it is in MADT table.
//
// Update processor enabled or disabled and keep the local APIC
// order in MADT intact.
//
// Sanity check to make sure proc-id is not arbitrary.
//
DEBUG ((EFI_D_ERROR, "ApicPtr->AcpiLocalApic.AcpiProcessorId = %x, MaximumNumberOfCPUs = %x\n", \
ApicPtr->AcpiLocalApic.AcpiProcessorId, MaximumNumberOfCPUs));
if(ApicPtr->AcpiLocalApic.AcpiProcessorId > MaximumNumberOfCPUs) {
ApicPtr->AcpiLocalApic.AcpiProcessorId = (UINT8)MaximumNumberOfCPUs;
}
ApicPtr->AcpiLocalApic.Flags = 0;
for (CurrProcessor = 0; CurrProcessor < MaximumNumberOfCPUs; CurrProcessor++) {
Status = MpService->GetProcessorInfo (
MpService,
CurrProcessor,
&ProcessorInfoBuffer
);
if (Status == EFI_SUCCESS && ProcessorInfoBuffer.ProcessorId == ApicPtr->AcpiLocalApic.ApicId) {
//
// Check to see whether or not a processor (or thread) is enabled.
//
if ((BspIndex == CurrProcessor) || ((ProcessorInfoBuffer.StatusFlag & PROCESSOR_ENABLED_BIT) != 0)) {
//
// Go on and check if Hyper Threading is enabled. If HT not enabled
// hide this thread from OS by not setting the flag to 1. This is the
// software way to disable Hyper Threading. Basically we just hide it
// from the OS.
//
ApicPtr->AcpiLocalApic.Flags = EFI_ACPI_1_0_LOCAL_APIC_ENABLED;
if(ProcessorInfoBuffer.Location.Thread != 0) {
ApicPtr->AcpiLocalApic.Flags = 0;
}
AppendCpuMapTableEntry (&(ApicPtr->AcpiLocalApic));
}
break;
}
}
//
// If no APIC-ID match, the cpu may not be populated.
//
break;
case EFI_ACPI_3_0_IO_APIC:
IOApicType = (EFI_ACPI_3_0_IO_APIC_STRUCTURE *)CurrPtr;
IOApicType->IoApicId = 0x02;
//
// IO APIC entries can be patched here.
//
break;
}
CurrPtr = CurrPtr + ApicPtr->AcpiApicCommon.Length;
}
break;
case EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE_SIGNATURE:
Facp = (EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE *) Table;
Facp->Flags &= (UINT32)(~(3<<2));
break;
case EFI_ACPI_3_0_DIFFERENTIATED_SYSTEM_DESCRIPTION_TABLE_SIGNATURE:
//
// Patch the memory resource.
//
PatchDsdtTable ((EFI_ACPI_DESCRIPTION_HEADER *) Table);
break;
case EFI_ACPI_3_0_SECONDARY_SYSTEM_DESCRIPTION_TABLE_SIGNATURE:
//
// Gv3 support
//
// TBD: Need re-design based on the ValleyTrail platform.
//
break;
case EFI_ACPI_3_0_HIGH_PRECISION_EVENT_TIMER_TABLE_SIGNATURE:
//
// Adjust HPET Table to correct the Base Address.
//
// Enable HPET always as Hpet.asi always indicates that Hpet is enabled.
//
MmioOr8 (R_PCH_PCH_HPET + R_PCH_PCH_HPET_GCFG, B_PCH_PCH_HPET_GCFG_EN);
HpetTbl = (EFI_ACPI_HIGH_PRECISION_EVENT_TIMER_TABLE_HEADER *) Table;
HpetTbl->BaseAddressLower32Bit.Address = HPET_BASE_ADDRESS;
HpetTbl->EventTimerBlockId = *((UINT32*)(UINTN)HPET_BASE_ADDRESS);
HpetCapIdValue = *(UINT16 *)(UINTN)(HPET_BASE_ADDRESS);
NumberOfHpets = HpetCapIdValue & B_PCH_PCH_HPET_GCID_NT; // Bits [8:12] contains the number of Hpets
HpetBlockID = EFI_ACPI_EVENT_TIMER_BLOCK_ID;
if((NumberOfHpets) && (NumberOfHpets & B_PCH_PCH_HPET_GCID_NT)) {
HpetBlockID |= (NumberOfHpets);
}
HpetTbl->EventTimerBlockId = HpetBlockID;
break;
case EFI_ACPI_3_0_PCI_EXPRESS_MEMORY_MAPPED_CONFIGURATION_SPACE_BASE_ADDRESS_DESCRIPTION_TABLE_SIGNATURE:
//
// Update MCFG base and end bus number.
//
((EFI_ACPI_MEMORY_MAPPED_CONFIGURATION_BASE_ADDRESS_TABLE *) Table)->Segment[0].BaseAddress
= mPlatformInfo->PciData.PciExpressBase;
((EFI_ACPI_MEMORY_MAPPED_CONFIGURATION_BASE_ADDRESS_TABLE *) Table)->Segment[0].EndBusNumber
= (UINT8)RShiftU64 (mPlatformInfo->PciData.PciExpressSize, 20) - 1;
break;
case EFI_ACPI_OSFR_TABLE_SIGNATURE:
//
// Get size of OSFR variable.
//
OcurMfgStringBufferSize = 0;
Status = gRT->GetVariable (
gACPIOSFRMfgStringVariableName,
&gACPIOSFRMfgStringVariableGuid,
NULL,
&OcurMfgStringBufferSize,
NULL
);
if (Status != EFI_BUFFER_TOO_SMALL) {
//
// Variable must not be present on the system.
//
return EFI_UNSUPPORTED;
}
//
// Allocate memory for variable data.
//
OcurMfgStringBuffer = AllocatePool (OcurMfgStringBufferSize);
Status = gRT->GetVariable (
gACPIOSFRMfgStringVariableName,
&gACPIOSFRMfgStringVariableGuid,
NULL,
&OcurMfgStringBufferSize,
OcurMfgStringBuffer
);
if (!EFI_ERROR (Status)) {
OcurModelStringBufferSize = 0;
Status = gRT->GetVariable (
gACPIOSFRModelStringVariableName,
&gACPIOSFRModelStringVariableGuid,
NULL,
&OcurModelStringBufferSize,
NULL
);
if (Status != EFI_BUFFER_TOO_SMALL) {
//
// Variable must not be present on the system.
//
return EFI_UNSUPPORTED;
}
//
// Allocate memory for variable data.
//
OcurModelStringBuffer = AllocatePool (OcurModelStringBufferSize);
Status = gRT->GetVariable (
gACPIOSFRModelStringVariableName,
&gACPIOSFRModelStringVariableGuid,
NULL,
&OcurModelStringBufferSize,
OcurModelStringBuffer
);
if (!EFI_ERROR (Status)) {
OcurRefDataBlockBufferSize = 0;
Status = gRT->GetVariable (
gACPIOSFRRefDataBlockVariableName,
&gACPIOSFRRefDataBlockVariableGuid,
NULL,
&OcurRefDataBlockBufferSize,
NULL
);
if (Status == EFI_BUFFER_TOO_SMALL) {
//
// Allocate memory for variable data.
//
OcurRefDataBlockBuffer = AllocatePool (OcurRefDataBlockBufferSize);
Status = gRT->GetVariable (
gACPIOSFRRefDataBlockVariableName,
&gACPIOSFRRefDataBlockVariableGuid,
NULL,
&OcurRefDataBlockBufferSize,
OcurRefDataBlockBuffer
);
}
OsfrTable = (EFI_ACPI_OSFR_TABLE *) Table;
//
// Currently only one object is defined: OCUR_OSFR_TABLE.
//
OsfrTable->ObjectCount = 1;
//
// Initialize table length to fixed portion of the ACPI OSFR table.
//
OsfrTable->Header.Length = sizeof (EFI_ACPI_OSFR_TABLE_FIXED_PORTION);
*(UINT32 *)((UINTN) OsfrTable + sizeof (EFI_ACPI_OSFR_TABLE_FIXED_PORTION)) = \
(UINT32) (sizeof (EFI_ACPI_OSFR_TABLE_FIXED_PORTION) + sizeof (UINT32));
pOcurObject = (EFI_ACPI_OSFR_OCUR_OBJECT *)((UINTN) OsfrTable + sizeof (EFI_ACPI_OSFR_TABLE_FIXED_PORTION) + \
sizeof (UINT32));
CopyMem (pOcurObject, &OcurObject, sizeof (EFI_ACPI_OSFR_OCUR_OBJECT));
pOcurObject->ManufacturerNameStringOffset = (UINT32)((UINTN) pOcurObject - (UINTN) OsfrTable + \
sizeof (EFI_ACPI_OSFR_OCUR_OBJECT));
pOcurObject->ModelNameStringOffset = (UINT32)((UINTN) pOcurObject - (UINTN) OsfrTable + \
sizeof (EFI_ACPI_OSFR_OCUR_OBJECT) + OcurMfgStringBufferSize);
if (OcurRefDataBlockBufferSize > 0) {
pOcurObject->MicrosoftReferenceOffset = (UINT32)((UINTN) pOcurObject - (UINTN) OsfrTable + \
sizeof (EFI_ACPI_OSFR_OCUR_OBJECT) + OcurMfgStringBufferSize + OcurModelStringBufferSize);
}
CopyMem ((UINTN *)((UINTN) pOcurObject + sizeof (EFI_ACPI_OSFR_OCUR_OBJECT)), OcurMfgStringBuffer, \
OcurMfgStringBufferSize);
CopyMem ((UINTN *)((UINTN) pOcurObject + sizeof (EFI_ACPI_OSFR_OCUR_OBJECT) + OcurMfgStringBufferSize), \
OcurModelStringBuffer, OcurModelStringBufferSize);
if (OcurRefDataBlockBufferSize > 0) {
CopyMem ((UINTN *)((UINTN) pOcurObject + sizeof (EFI_ACPI_OSFR_OCUR_OBJECT) + OcurMfgStringBufferSize + \
OcurModelStringBufferSize),OcurRefDataBlockBuffer, OcurRefDataBlockBufferSize);
}
OsfrTable->Header.Length += (UINT32)(OcurMfgStringBufferSize + OcurModelStringBufferSize + OcurRefDataBlockBufferSize);
OsfrTable->Header.Length += sizeof (EFI_ACPI_OSFR_OCUR_OBJECT) + sizeof (UINT32);
}
}
gBS->FreePool (OcurMfgStringBuffer);
gBS->FreePool (OcurModelStringBuffer);
gBS->FreePool (OcurRefDataBlockBuffer);
break;
case EFI_ACPI_WINDOWS_SMM_SECURITY_MITIGATION_TABLE_SIGNATURE:
WsmtTable = (EFI_ACPI_WSMT_TABLE *) Table;
//
// Update Microsoft WSMT table Protections flags.
//
WsmtTable->ProtectionFlags = ((WsmtTable->ProtectionFlags) | (EFI_WSMT_PROTECTION_FLAGS_FIXED_COMM_BUFFERS | EFI_WSMT_PROTECTION_FLAGS_COMM_BUFFER_NESTED_PTR_PROTECTION ));
break;
default:
break;
}
//
//
// Update the hardware signature in the FACS structure.
//
//
// Locate the SPCR table and update based on current settings.
// The user may change CR settings via setup or other methods.
// The SPCR table must match.
//
return EFI_SUCCESS;
}
/**
Routine Description:
GC_TODO: Add function description.
Arguments:
Event - GC_TODO: add argument description
Context - GC_TODO: add argument description
Returns:
GC_TODO: add return values
**/
STATIC
VOID
EFIAPI
OnReadyToBoot (
IN EFI_EVENT Event,
IN VOID *Context
)
{
EFI_STATUS Status;
EFI_ACPI_TABLE_VERSION TableVersion;
EFI_ACPI_SUPPORT_PROTOCOL *AcpiSupport;
EFI_ACPI_S3_SAVE_PROTOCOL *AcpiS3Save;
SYSTEM_CONFIGURATION SetupVarBuffer;
UINTN VariableSize;
EFI_PLATFORM_CPU_INFO *PlatformCpuInfoPtr = NULL;
EFI_PLATFORM_CPU_INFO PlatformCpuInfo;
EFI_PEI_HOB_POINTERS GuidHob;
if (mFirstNotify) {
return;
}
mFirstNotify = TRUE;
//
// To avoid compiler warning of "C4701: potentially uninitialized local variable 'PlatformCpuInfo' used".
//
PlatformCpuInfo.CpuVersion.FullCpuId = 0;
//
// Get Platform CPU Info HOB.
//
PlatformCpuInfoPtr = NULL;
ZeroMem (&PlatformCpuInfo, sizeof(EFI_PLATFORM_CPU_INFO));
VariableSize = sizeof(EFI_PLATFORM_CPU_INFO);
Status = gRT->GetVariable(
EfiPlatformCpuInfoVariable,
&gEfiVlv2VariableGuid,
NULL,
&VariableSize,
PlatformCpuInfoPtr
);
if (EFI_ERROR(Status)) {
GuidHob.Raw = GetHobList ();
if (GuidHob.Raw != NULL) {
if ((GuidHob.Raw = GetNextGuidHob (&gEfiPlatformCpuInfoGuid, GuidHob.Raw)) != NULL) {
PlatformCpuInfoPtr = GET_GUID_HOB_DATA (GuidHob.Guid);
}
}
}
if ((PlatformCpuInfoPtr != NULL)) {
CopyMem(&PlatformCpuInfo, PlatformCpuInfoPtr, sizeof(EFI_PLATFORM_CPU_INFO));
}
//
// Update the ACPI parameter blocks finally.
//
VariableSize = sizeof (SYSTEM_CONFIGURATION);
Status = gRT->GetVariable (
L"Setup",
&mSystemConfigurationGuid,
NULL,
&VariableSize,
&SetupVarBuffer
);
if (EFI_ERROR (Status) || VariableSize != sizeof(SYSTEM_CONFIGURATION)) {
//The setup variable is corrupted
VariableSize = sizeof(SYSTEM_CONFIGURATION);
Status = gRT->GetVariable(
L"SetupRecovery",
&mSystemConfigurationGuid,
NULL,
&VariableSize,
&SetupVarBuffer
);
ASSERT_EFI_ERROR (Status);
}
//
// Find the AcpiSupport protocol.
//
Status = LocateSupportProtocol (&gEfiAcpiSupportProtocolGuid, (VOID **) &AcpiSupport, 0);
ASSERT_EFI_ERROR (Status);
TableVersion = EFI_ACPI_TABLE_VERSION_2_0;
//
// Publish ACPI 1.0 or 2.0 Tables.
//
Status = AcpiSupport->PublishTables (
AcpiSupport,
TableVersion
);
ASSERT_EFI_ERROR (Status);
//
// S3 script save.
//
Status = gBS->LocateProtocol (&gEfiAcpiS3SaveProtocolGuid, NULL, (VOID **) &AcpiS3Save);
if (!EFI_ERROR (Status)) {
AcpiS3Save->S3Save (AcpiS3Save, NULL);
}
}
VOID
PR1FSASetting (
IN VOID
)
{
//
// for FSA on PR1.
//
if (mPlatformInfo->BoardId == BOARD_ID_BL_FFRD && mPlatformInfo->BoardRev >= PR1) {
DEBUG((EFI_D_ERROR, "Set FSA status = 1 for FFRD PR1\n"));
mGlobalNvsArea.Area->FsaStatus = mSystemConfiguration.PchFSAOn;
}
if (mPlatformInfo->BoardId == BOARD_ID_BL_FFRD8) {
DEBUG((EFI_D_ERROR, "Set FSA status = 1 for FFRD8\n"));
mGlobalNvsArea.Area->FsaStatus = mSystemConfiguration.PchFSAOn;
}
}
/**
Entry point for Acpi platform driver.
@param[in] ImageHandle A handle for the image that is initializing this driver.
@param[in] SystemTable A pointer to the EFI system table.
@retval EFI_SUCCESS Driver initialized successfully.
@retval EFI_LOAD_ERROR Failed to Initialize or has been loaded.
@retval EFI_OUT_OF_RESOURCES Could not allocate needed resources.
**/
EFI_STATUS
EFIAPI
AcpiPlatformEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
EFI_STATUS AcpiStatus;
EFI_ACPI_SUPPORT_PROTOCOL *AcpiSupport;
EFI_FIRMWARE_VOLUME2_PROTOCOL *FwVol;
INTN Instance;
EFI_ACPI_COMMON_HEADER *CurrentTable;
UINTN TableHandle;
UINT32 FvStatus;
UINT32 Size;
EFI_EVENT Event;
EFI_ACPI_TABLE_VERSION TableVersion;
UINTN VarSize;
UINTN SysCfgSize;
EFI_HANDLE Handle;
EFI_PS2_POLICY_PROTOCOL *Ps2Policy;
EFI_PEI_HOB_POINTERS GuidHob;
UINT8 PortData;
EFI_MP_SERVICES_PROTOCOL *MpService;
UINTN MaximumNumberOfCPUs;
UINTN NumberOfEnabledCPUs;
PCH_STEPPING pchStepping;
mFirstNotify = FALSE;
TableVersion = EFI_ACPI_TABLE_VERSION_2_0;
Instance = 0;
CurrentTable = NULL;
TableHandle = 0;
//
// Update HOB variable for PCI resource information.
// Get the HOB list. If it is not present, then ASSERT.
//
GuidHob.Raw = GetHobList ();
if (GuidHob.Raw != NULL) {
if ((GuidHob.Raw = GetNextGuidHob (&gEfiPlatformInfoGuid, GuidHob.Raw)) != NULL) {
mPlatformInfo = GET_GUID_HOB_DATA (GuidHob.Guid);
}
}
//
// Search for the Memory Configuration GUID HOB. If it is not present, then
// there's nothing we can do. It may not exist on the update path.
//
VarSize = sizeof(SYSTEM_CONFIGURATION);
Status = gRT->GetVariable(
L"Setup",
&mSystemConfigurationGuid,
NULL,
&VarSize,
&mSystemConfiguration
);
if (EFI_ERROR (Status) || VarSize != sizeof(SYSTEM_CONFIGURATION)) {
//The setup variable is corrupted
VarSize = sizeof(SYSTEM_CONFIGURATION);
Status = gRT->GetVariable(
L"SetupRecovery",
&mSystemConfigurationGuid,
NULL,
&VarSize,
&mSystemConfiguration
);
ASSERT_EFI_ERROR (Status);
}
//
// Find the AcpiSupport protocol.
//
Status = LocateSupportProtocol (&gEfiAcpiSupportProtocolGuid, (VOID **) &AcpiSupport, 0);
ASSERT_EFI_ERROR (Status);
//
// Locate the firmware volume protocol.
//
Status = LocateSupportProtocol (&gEfiFirmwareVolume2ProtocolGuid, (VOID **) &FwVol, 1);
ASSERT_EFI_ERROR (Status);
//
// Read the current system configuration variable store.
//
SysCfgSize = sizeof(SYSTEM_CONFIGURATION);
Status = gRT->GetVariable (
L"Setup",
&gEfiNormalSetupGuid,
NULL,
&SysCfgSize,
&mSystemConfig
);
if (EFI_ERROR (Status) || SysCfgSize != sizeof(SYSTEM_CONFIGURATION)) {
//The setup variable is corrupted
SysCfgSize = sizeof(SYSTEM_CONFIGURATION);
Status = gRT->GetVariable(
L"SetupRecovery",
&gEfiNormalSetupGuid,
NULL,
&SysCfgSize,
&mSystemConfig
);
ASSERT_EFI_ERROR (Status);
}
Status = EFI_SUCCESS;
Instance = 0;
//
// TBD: Need re-design based on the ValleyTrail platform.
//
Status = gBS->LocateProtocol (
&gEfiMpServiceProtocolGuid,
NULL,
(VOID **) &MpService
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Determine the number of processors.
//
MpService->GetNumberOfProcessors (
MpService,
&MaximumNumberOfCPUs,
&NumberOfEnabledCPUs
);
//
// Allocate and initialize the NVS area for SMM and ASL communication.
//
Status = gBS->AllocatePool (
EfiACPIMemoryNVS,
sizeof (EFI_GLOBAL_NVS_AREA),
(void **)&mGlobalNvsArea.Area
);
ASSERT_EFI_ERROR (Status);
gBS->SetMem (
mGlobalNvsArea.Area,
sizeof (EFI_GLOBAL_NVS_AREA),
0
);
DEBUG((EFI_D_ERROR, "mGlobalNvsArea.Area is at 0x%X\n", mGlobalNvsArea.Area));
//
// Update global NVS area for ASL and SMM init code to use.
//
mGlobalNvsArea.Area->ApicEnable = 1;
mGlobalNvsArea.Area->EmaEnable = 0;
mGlobalNvsArea.Area->NumberOfBatteries = 1;
mGlobalNvsArea.Area->BatteryCapacity0 = 100;
mGlobalNvsArea.Area->BatteryStatus0 = 84;
mGlobalNvsArea.Area->OnboardCom = 1;
mGlobalNvsArea.Area->IdeMode = 0;
mGlobalNvsArea.Area->PowerState = 0;
mGlobalNvsArea.Area->LogicalProcessorCount = (UINT8)NumberOfEnabledCPUs;
mGlobalNvsArea.Area->PassiveThermalTripPoint = mSystemConfiguration.PassiveThermalTripPoint;
mGlobalNvsArea.Area->PassiveTc1Value = mSystemConfiguration.PassiveTc1Value;
mGlobalNvsArea.Area->PassiveTc2Value = mSystemConfiguration.PassiveTc2Value;
mGlobalNvsArea.Area->PassiveTspValue = mSystemConfiguration.PassiveTspValue;
mGlobalNvsArea.Area->CriticalThermalTripPoint = mSystemConfiguration.CriticalThermalTripPoint;
mGlobalNvsArea.Area->IgdPanelType = mSystemConfiguration.IgdFlatPanel;
mGlobalNvsArea.Area->IgdPanelScaling = mSystemConfiguration.PanelScaling;
mGlobalNvsArea.Area->IgdSciSmiMode = 0;
mGlobalNvsArea.Area->IgdTvFormat = 0;
mGlobalNvsArea.Area->IgdTvMinor = 0;
mGlobalNvsArea.Area->IgdSscConfig = 1;
mGlobalNvsArea.Area->IgdBiaConfig = mSystemConfiguration.IgdLcdIBia;
mGlobalNvsArea.Area->IgdBlcConfig = mSystemConfiguration.IgdLcdIGmchBlc;
mGlobalNvsArea.Area->IgdDvmtMemSize = mSystemConfiguration.IgdDvmt50TotalAlloc;
mGlobalNvsArea.Area->IgdPAVP = mSystemConfiguration.PavpMode;
mGlobalNvsArea.Area->AlsEnable = mSystemConfiguration.AlsEnable;
mGlobalNvsArea.Area->BacklightControlSupport = 2;
mGlobalNvsArea.Area->BrightnessPercentage = 100;
mGlobalNvsArea.Area->IgdState = 1;
mGlobalNvsArea.Area->LidState = 1;
mGlobalNvsArea.Area->DeviceId1 = 0x80000100 ;
mGlobalNvsArea.Area->DeviceId2 = 0x80000400 ;
mGlobalNvsArea.Area->DeviceId3 = 0x80000200 ;
mGlobalNvsArea.Area->DeviceId4 = 0x04;
mGlobalNvsArea.Area->DeviceId5 = 0x05;
mGlobalNvsArea.Area->NumberOfValidDeviceId = 4 ;
mGlobalNvsArea.Area->CurrentDeviceList = 0x0F ;
mGlobalNvsArea.Area->PreviousDeviceList = 0x0F ;
mGlobalNvsArea.Area->UartSelection = mSystemConfiguration.UartInterface;
mGlobalNvsArea.Area->PcuUart1Enable = mSystemConfiguration.PcuUart1;
mGlobalNvsArea.Area->NativePCIESupport = 1;
mGlobalNvsArea.Area->RtcBattery = mSystemConfiguration.RtcBattery;
//
// Update BootMode: 0:ACPI mode; 1:PCI mode
//
mGlobalNvsArea.Area->LpssSccMode = mSystemConfiguration.LpssPciModeEnabled;
if (mSystemConfiguration.LpssMipiHsi == 0) {
mGlobalNvsArea.Area->MipiHsiAddr = 0;
mGlobalNvsArea.Area->MipiHsiLen = 0;
mGlobalNvsArea.Area->MipiHsi1Addr = 0;
mGlobalNvsArea.Area->MipiHsi1Len = 0;
}
//
// Platform Flavor
//
mGlobalNvsArea.Area->PlatformFlavor = mPlatformInfo->PlatformFlavor;
//
// Update the Platform id
//
mGlobalNvsArea.Area->BoardID = mPlatformInfo->BoardId;
//
// Update the Board Revision
//
mGlobalNvsArea.Area->FabID = mPlatformInfo->BoardRev;
//
// Update SOC Stepping
//
mGlobalNvsArea.Area->SocStepping = (UINT8)(PchStepping());
mGlobalNvsArea.Area->OtgMode = mSystemConfiguration.PchUsbOtg;
pchStepping = PchStepping();
if (mSystemConfiguration.UsbAutoMode == 1) {
//
// Auto mode is enabled.
//
if (PchA0 == pchStepping) {
//
// For A0, EHCI is enabled as default.
//
mSystemConfiguration.PchUsb20 = 1;
mSystemConfiguration.PchUsb30Mode = 0;
mSystemConfiguration.UsbXhciSupport = 0;
DEBUG ((EFI_D_INFO, "EHCI is enabled as default. SOC 0x%x\n", pchStepping));
} else {
//
// For A1 and later, XHCI is enabled as default.
//
mSystemConfiguration.PchUsb20 = 0;
mSystemConfiguration.PchUsb30Mode = 1;
mSystemConfiguration.UsbXhciSupport = 1;
DEBUG ((EFI_D_INFO, "XHCI is enabled as default. SOC 0x%x\n", pchStepping));
}
}
mGlobalNvsArea.Area->XhciMode = mSystemConfiguration.PchUsb30Mode;
mGlobalNvsArea.Area->Stepping = mPlatformInfo->IchRevision;
//
// Override invalid Pre-Boot Driver and XhciMode combination.
//
if ((mSystemConfiguration.UsbXhciSupport == 0) && (mSystemConfiguration.PchUsb30Mode == 3)) {
mGlobalNvsArea.Area->XhciMode = 2;
}
if ((mSystemConfiguration.UsbXhciSupport == 1) && (mSystemConfiguration.PchUsb30Mode == 2)) {
mGlobalNvsArea.Area->XhciMode = 3;
}
DEBUG ((EFI_D_ERROR, "ACPI NVS XHCI:0x%x\n", mGlobalNvsArea.Area->XhciMode));
mGlobalNvsArea.Area->PmicEnable = GLOBAL_NVS_DEVICE_DISABLE;
mGlobalNvsArea.Area->BatteryChargingSolution = GLOBAL_NVS_DEVICE_DISABLE;
mGlobalNvsArea.Area->ISPDevSel = mSystemConfiguration.ISPDevSel;
mGlobalNvsArea.Area->LpeEnable = mSystemConfiguration.Lpe;
mGlobalNvsArea.Area->LpeAudioReportedByDSDT = mSystemConfiguration.LpeAudioReportedByDSDT;
if (mSystemConfiguration.ISPEn == 0) {
mGlobalNvsArea.Area->ISPDevSel = GLOBAL_NVS_DEVICE_DISABLE;
}
mGlobalNvsArea.Area->WittEnable = mSystemConfiguration.WittEnable;
mGlobalNvsArea.Area->UtsEnable = mSystemConfiguration.UtsEnable;
mGlobalNvsArea.Area->SarEnable = mSystemConfiguration.SAR1;
mGlobalNvsArea.Area->ReservedO = 1;
SettingI2CTouchAddress();
mGlobalNvsArea.Area->IdleReserve= mSystemConfiguration.IdleReserve;
//
// Read BMBOUND and store it in GlobalNVS to pass into ASL.
//
// BUGBUG: code was moved into silicon reference code.
//
if (mSystemConfiguration.eMMCBootMode== 1) {
//
// Auto detect mode.
//
DEBUG ((EFI_D_ERROR, "Auto detect mode------------start\n"));
//
// Silicon Steppings.
//
switch (PchStepping()) {
case PchA0: // A0/A1
case PchA1:
DEBUG ((EFI_D_ERROR, "SOC A0/A1: eMMC 4.41 Configuration\n"));
mSystemConfiguration.LpsseMMCEnabled = 1;
mSystemConfiguration.LpsseMMC45Enabled = 0;
break;
case PchB0: // B0 and later.
default:
DEBUG ((EFI_D_ERROR, "SOC B0 and later: eMMC 4.5 Configuration\n"));
mSystemConfiguration.LpsseMMCEnabled = 0;
mSystemConfiguration.LpsseMMC45Enabled = 1;
break;
}
} else if (mSystemConfiguration.eMMCBootMode == 2) {
//
// eMMC 4.41
//
DEBUG ((EFI_D_ERROR, "Force to eMMC 4.41 Configuration\n"));
mSystemConfiguration.LpsseMMCEnabled = 1;
mSystemConfiguration.LpsseMMC45Enabled = 0;
} else if (mSystemConfiguration.eMMCBootMode == 3) {
//
// eMMC 4.5
//
DEBUG ((EFI_D_ERROR, "Force to eMMC 4.5 Configuration\n"));
mSystemConfiguration.LpsseMMCEnabled = 0;
mSystemConfiguration.LpsseMMC45Enabled = 1;
} else {
//
// Disable eMMC controllers.
//
DEBUG ((EFI_D_ERROR, "Disable eMMC controllers\n"));
mSystemConfiguration.LpsseMMCEnabled = 0;
mSystemConfiguration.LpsseMMC45Enabled = 0;
}
mGlobalNvsArea.Area->emmcVersion = 0;
if (mSystemConfiguration.LpsseMMCEnabled) {
DEBUG ((EFI_D_ERROR, "mGlobalNvsArea.Area->emmcVersion = 0\n"));
mGlobalNvsArea.Area->emmcVersion = 0;
}
if (mSystemConfiguration.LpsseMMC45Enabled) {
DEBUG ((EFI_D_ERROR, "mGlobalNvsArea.Area->emmcVersion = 1\n"));
mGlobalNvsArea.Area->emmcVersion = 1;
}
mGlobalNvsArea.Area->SdCardRemovable = mSystemConfiguration.SdCardRemovable;
//
// Microsoft IOT
//
if ((mSystemConfiguration.LpssHsuart0FlowControlEnabled == 1) && \
(mSystemConfiguration.LpssPwm0Enabled == 0) && \
(mSystemConfiguration.LpssPwm1Enabled == 0)) {
mGlobalNvsArea.Area->MicrosoftIoT = GLOBAL_NVS_DEVICE_ENABLE;
DEBUG ((EFI_D_ERROR, "JP1 is set to be MSFT IOT configuration.\n"));
} else {
mGlobalNvsArea.Area->MicrosoftIoT = GLOBAL_NVS_DEVICE_DISABLE;
DEBUG ((EFI_D_ERROR, "JP1 is not set to be MSFT IOT configuration.\n"));
}
//
// SIO related option.
//
Status = gBS->LocateProtocol (&gEfiCpuIoProtocolGuid, NULL, (void **)&mCpuIo);
ASSERT_EFI_ERROR (Status);
mGlobalNvsArea.Area->WPCN381U = GLOBAL_NVS_DEVICE_DISABLE;
mGlobalNvsArea.Area->DockedSioPresent = GLOBAL_NVS_DEVICE_DISABLE;
if (mGlobalNvsArea.Area->DockedSioPresent != GLOBAL_NVS_DEVICE_ENABLE) {
//
// Check ID for SIO WPCN381U.
//
Status = mCpuIo->Io.Read (
mCpuIo,
EfiCpuIoWidthUint8,
WPCN381U_CONFIG_INDEX,
1,
&PortData
);
ASSERT_EFI_ERROR (Status);
if (PortData != 0xFF) {
PortData = 0x20;
Status = mCpuIo->Io.Write (
mCpuIo,
EfiCpuIoWidthUint8,
WPCN381U_CONFIG_INDEX,
1,
&PortData
);
ASSERT_EFI_ERROR (Status);
Status = mCpuIo->Io.Read (
mCpuIo,
EfiCpuIoWidthUint8,
WPCN381U_CONFIG_DATA,
1,
&PortData
);
ASSERT_EFI_ERROR (Status);
if ((PortData == WPCN381U_CHIP_ID) || (PortData == WDCP376_CHIP_ID)) {
mGlobalNvsArea.Area->WPCN381U = GLOBAL_NVS_DEVICE_ENABLE;
mGlobalNvsArea.Area->OnboardCom = GLOBAL_NVS_DEVICE_ENABLE;
mGlobalNvsArea.Area->OnboardComCir = GLOBAL_NVS_DEVICE_DISABLE;
}
}
}
//
// Get Ps2 policy to set. Will be use if present.
//
Status = gBS->LocateProtocol (
&gEfiPs2PolicyProtocolGuid,
NULL,
(VOID **)&Ps2Policy
);
if (!EFI_ERROR (Status)) {
Status = Ps2Policy->Ps2InitHardware (ImageHandle);
}
mGlobalNvsArea.Area->SDIOMode = mSystemConfiguration.LpssSdioMode;
Handle = NULL;
Status = gBS->InstallMultipleProtocolInterfaces (
&Handle,
&gEfiGlobalNvsAreaProtocolGuid,
&mGlobalNvsArea,
NULL
);
//
// Read tables from the storage file.
//
while (!EFI_ERROR (Status)) {
CurrentTable = NULL;
Status = FwVol->ReadSection (
FwVol,
&gEfiAcpiTableStorageGuid,
EFI_SECTION_RAW,
Instance,
(VOID **) &CurrentTable,
(UINTN *) &Size,
&FvStatus
);
if (!EFI_ERROR (Status)) {
//
// Allow platform specific code to reject the table or update it.
//
AcpiStatus = AcpiPlatformHooksIsActiveTable (CurrentTable);
if (!EFI_ERROR (AcpiStatus)) {
//
// Perform any table specific updates.
//
AcpiStatus = PlatformUpdateTables (CurrentTable);
if (!EFI_ERROR (AcpiStatus)) {
//
// Add the table.
//
TableHandle = 0;
AcpiStatus = AcpiSupport->SetAcpiTable (
AcpiSupport,
CurrentTable,
TRUE,
TableVersion,
&TableHandle
);
ASSERT_EFI_ERROR (AcpiStatus);
}
}
//
// Increment the instance.
//
Instance++;
}
}
Status = EfiCreateEventReadyToBootEx (
TPL_NOTIFY,
OnReadyToBoot,
NULL,
&Event
);
//
// Finished.
//
return EFI_SUCCESS;
}
UINT8
ReadCmosBank1Byte (
IN UINT8 Index
)
{
UINT8 Data;
IoWrite8(0x72, Index);
Data = IoRead8 (0x73);
return Data;
}
VOID
WriteCmosBank1Byte (
IN UINT8 Index,
IN UINT8 Data
)
{
IoWrite8 (0x72, Index);
IoWrite8 (0x73, Data);
}
VOID
SettingI2CTouchAddress (
IN VOID
)
{
if (mSystemConfiguration.I2CTouchAd == 0) {
//
// If setup menu select auto set I2C Touch Address base on board id.
//
if (mPlatformInfo->BoardId == BOARD_ID_BL_RVP ||
mPlatformInfo->BoardId == BOARD_ID_BL_STHI ||
mPlatformInfo->BoardId == BOARD_ID_BL_RVP_DDR3L ) {
//
//RVP
//
mGlobalNvsArea.Area->I2CTouchAddress = 0x4B;
} else if (mPlatformInfo->BoardId == BOARD_ID_BL_FFRD) {
//
//FFRD
//
mGlobalNvsArea.Area->I2CTouchAddress = 0x4A;
} else if (mPlatformInfo->BoardId == BOARD_ID_BB_RVP) {
mGlobalNvsArea.Area->I2CTouchAddress = 0x4C;
} else if (mPlatformInfo->BoardId == BOARD_ID_CVH) {
mGlobalNvsArea.Area->I2CTouchAddress = 0x4C;
} else if (mPlatformInfo->BoardId == BOARD_ID_BL_FFRD8) {
//
//FFRD8 uses 0x4A.
//
mGlobalNvsArea.Area->I2CTouchAddress = 0x4A;
}
} else {
mGlobalNvsArea.Area->I2CTouchAddress = mSystemConfiguration.I2CTouchAd;
}
DEBUG((EFI_D_ERROR, "GlobalNvsArea.Area->I2CTouchAddress: [%02x]\n", mGlobalNvsArea.Area->I2CTouchAddress));
}