/** @file Copyright (c) 2015 - 2017, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php. THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "EmmcBlockIoPei.h" /** Read/Write specified EMMC host controller mmio register. @param[in] Address The address of the mmio register to be read/written. @param[in] Read A boolean to indicate it's read or write operation. @param[in] Count The width of the mmio register in bytes. Must be 1, 2 , 4 or 8 bytes. @param[in, out] Data For read operations, the destination buffer to store the results. For write operations, the source buffer to write data from. The caller is responsible for having ownership of the data buffer and ensuring its size not less than Count bytes. @retval EFI_INVALID_PARAMETER The Address or the Data or the Count is not valid. @retval EFI_SUCCESS The read/write operation succeeds. @retval Others The read/write operation fails. **/ EFI_STATUS EFIAPI EmmcPeimHcRwMmio ( IN UINTN Address, IN BOOLEAN Read, IN UINT8 Count, IN OUT VOID *Data ) { if ((Address == 0) || (Data == NULL)) { return EFI_INVALID_PARAMETER; } if ((Count != 1) && (Count != 2) && (Count != 4) && (Count != 8)) { return EFI_INVALID_PARAMETER; } switch (Count) { case 1: if (Read) { *(UINT8*)Data = MmioRead8 (Address); } else { MmioWrite8 (Address, *(UINT8*)Data); } break; case 2: if (Read) { *(UINT16*)Data = MmioRead16 (Address); } else { MmioWrite16 (Address, *(UINT16*)Data); } break; case 4: if (Read) { *(UINT32*)Data = MmioRead32 (Address); } else { MmioWrite32 (Address, *(UINT32*)Data); } break; case 8: if (Read) { *(UINT64*)Data = MmioRead64 (Address); } else { MmioWrite64 (Address, *(UINT64*)Data); } break; default: ASSERT (FALSE); return EFI_INVALID_PARAMETER; } return EFI_SUCCESS; } /** Do OR operation with the value of the specified EMMC host controller mmio register. @param[in] Address The address of the mmio register to be read/written. @param[in] Count The width of the mmio register in bytes. Must be 1, 2 , 4 or 8 bytes. @param[in] OrData The pointer to the data used to do OR operation. The caller is responsible for having ownership of the data buffer and ensuring its size not less than Count bytes. @retval EFI_INVALID_PARAMETER The Address or the OrData or the Count is not valid. @retval EFI_SUCCESS The OR operation succeeds. @retval Others The OR operation fails. **/ EFI_STATUS EFIAPI EmmcPeimHcOrMmio ( IN UINTN Address, IN UINT8 Count, IN VOID *OrData ) { EFI_STATUS Status; UINT64 Data; UINT64 Or; Status = EmmcPeimHcRwMmio (Address, TRUE, Count, &Data); if (EFI_ERROR (Status)) { return Status; } if (Count == 1) { Or = *(UINT8*) OrData; } else if (Count == 2) { Or = *(UINT16*) OrData; } else if (Count == 4) { Or = *(UINT32*) OrData; } else if (Count == 8) { Or = *(UINT64*) OrData; } else { return EFI_INVALID_PARAMETER; } Data |= Or; Status = EmmcPeimHcRwMmio (Address, FALSE, Count, &Data); return Status; } /** Do AND operation with the value of the specified EMMC host controller mmio register. @param[in] Address The address of the mmio register to be read/written. @param[in] Count The width of the mmio register in bytes. Must be 1, 2 , 4 or 8 bytes. @param[in] AndData The pointer to the data used to do AND operation. The caller is responsible for having ownership of the data buffer and ensuring its size not less than Count bytes. @retval EFI_INVALID_PARAMETER The Address or the AndData or the Count is not valid. @retval EFI_SUCCESS The AND operation succeeds. @retval Others The AND operation fails. **/ EFI_STATUS EFIAPI EmmcPeimHcAndMmio ( IN UINTN Address, IN UINT8 Count, IN VOID *AndData ) { EFI_STATUS Status; UINT64 Data; UINT64 And; Status = EmmcPeimHcRwMmio (Address, TRUE, Count, &Data); if (EFI_ERROR (Status)) { return Status; } if (Count == 1) { And = *(UINT8*) AndData; } else if (Count == 2) { And = *(UINT16*) AndData; } else if (Count == 4) { And = *(UINT32*) AndData; } else if (Count == 8) { And = *(UINT64*) AndData; } else { return EFI_INVALID_PARAMETER; } Data &= And; Status = EmmcPeimHcRwMmio (Address, FALSE, Count, &Data); return Status; } /** Wait for the value of the specified MMIO register set to the test value. @param[in] Address The address of the mmio register to be checked. @param[in] Count The width of the mmio register in bytes. Must be 1, 2, 4 or 8 bytes. @param[in] MaskValue The mask value of memory. @param[in] TestValue The test value of memory. @retval EFI_NOT_READY The MMIO register hasn't set to the expected value. @retval EFI_SUCCESS The MMIO register has expected value. @retval Others The MMIO operation fails. **/ EFI_STATUS EFIAPI EmmcPeimHcCheckMmioSet ( IN UINTN Address, IN UINT8 Count, IN UINT64 MaskValue, IN UINT64 TestValue ) { EFI_STATUS Status; UINT64 Value; // // Access PCI MMIO space to see if the value is the tested one. // Value = 0; Status = EmmcPeimHcRwMmio (Address, TRUE, Count, &Value); if (EFI_ERROR (Status)) { return Status; } Value &= MaskValue; if (Value == TestValue) { return EFI_SUCCESS; } return EFI_NOT_READY; } /** Wait for the value of the specified MMIO register set to the test value. @param[in] Address The address of the mmio register to wait. @param[in] Count The width of the mmio register in bytes. Must be 1, 2, 4 or 8 bytes. @param[in] MaskValue The mask value of memory. @param[in] TestValue The test value of memory. @param[in] Timeout The time out value for wait memory set, uses 1 microsecond as a unit. @retval EFI_TIMEOUT The MMIO register hasn't expected value in timeout range. @retval EFI_SUCCESS The MMIO register has expected value. @retval Others The MMIO operation fails. **/ EFI_STATUS EFIAPI EmmcPeimHcWaitMmioSet ( IN UINTN Address, IN UINT8 Count, IN UINT64 MaskValue, IN UINT64 TestValue, IN UINT64 Timeout ) { EFI_STATUS Status; BOOLEAN InfiniteWait; if (Timeout == 0) { InfiniteWait = TRUE; } else { InfiniteWait = FALSE; } while (InfiniteWait || (Timeout > 0)) { Status = EmmcPeimHcCheckMmioSet ( Address, Count, MaskValue, TestValue ); if (Status != EFI_NOT_READY) { return Status; } // // Stall for 1 microsecond. // MicroSecondDelay (1); Timeout--; } return EFI_TIMEOUT; } /** Software reset the specified EMMC host controller and enable all interrupts. @param[in] Bar The mmio base address of the slot to be accessed. @retval EFI_SUCCESS The software reset executes successfully. @retval Others The software reset fails. **/ EFI_STATUS EmmcPeimHcReset ( IN UINTN Bar ) { EFI_STATUS Status; UINT8 SwReset; SwReset = 0xFF; Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_SW_RST, FALSE, sizeof (SwReset), &SwReset); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "EmmcPeimHcReset: write full 1 fails: %r\n", Status)); return Status; } Status = EmmcPeimHcWaitMmioSet ( Bar + EMMC_HC_SW_RST, sizeof (SwReset), 0xFF, 0x00, EMMC_TIMEOUT ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_INFO, "EmmcPeimHcReset: reset done with %r\n", Status)); return Status; } // // Enable all interrupt after reset all. // Status = EmmcPeimHcEnableInterrupt (Bar); return Status; } /** Set all interrupt status bits in Normal and Error Interrupt Status Enable register. @param[in] Bar The mmio base address of the slot to be accessed. @retval EFI_SUCCESS The operation executes successfully. @retval Others The operation fails. **/ EFI_STATUS EmmcPeimHcEnableInterrupt ( IN UINTN Bar ) { EFI_STATUS Status; UINT16 IntStatus; // // Enable all bits in Error Interrupt Status Enable Register // IntStatus = 0xFFFF; Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_ERR_INT_STS_EN, FALSE, sizeof (IntStatus), &IntStatus); if (EFI_ERROR (Status)) { return Status; } // // Enable all bits in Normal Interrupt Status Enable Register // IntStatus = 0xFFFF; Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_NOR_INT_STS_EN, FALSE, sizeof (IntStatus), &IntStatus); return Status; } /** Get the capability data from the specified slot. @param[in] Bar The mmio base address of the slot to be accessed. @param[out] Capability The buffer to store the capability data. @retval EFI_SUCCESS The operation executes successfully. @retval Others The operation fails. **/ EFI_STATUS EmmcPeimHcGetCapability ( IN UINTN Bar, OUT EMMC_HC_SLOT_CAP *Capability ) { EFI_STATUS Status; UINT64 Cap; Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_CAP, TRUE, sizeof (Cap), &Cap); if (EFI_ERROR (Status)) { return Status; } CopyMem (Capability, &Cap, sizeof (Cap)); return EFI_SUCCESS; } /** Detect whether there is a EMMC card attached at the specified EMMC host controller slot. Refer to SD Host Controller Simplified spec 3.0 Section 3.1 for details. @param[in] Bar The mmio base address of the slot to be accessed. @retval EFI_SUCCESS There is a EMMC card attached. @retval EFI_NO_MEDIA There is not a EMMC card attached. @retval Others The detection fails. **/ EFI_STATUS EmmcPeimHcCardDetect ( IN UINTN Bar ) { EFI_STATUS Status; UINT16 Data; UINT32 PresentState; // // Check Normal Interrupt Status Register // Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_NOR_INT_STS, TRUE, sizeof (Data), &Data); if (EFI_ERROR (Status)) { return Status; } if ((Data & (BIT6 | BIT7)) != 0) { // // Clear BIT6 and BIT7 by writing 1 to these two bits if set. // Data &= BIT6 | BIT7; Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_NOR_INT_STS, FALSE, sizeof (Data), &Data); if (EFI_ERROR (Status)) { return Status; } } // // Check Present State Register to see if there is a card presented. // Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_PRESENT_STATE, TRUE, sizeof (PresentState), &PresentState); if (EFI_ERROR (Status)) { return Status; } if ((PresentState & BIT16) != 0) { return EFI_SUCCESS; } else { return EFI_NO_MEDIA; } } /** Stop EMMC card clock. Refer to SD Host Controller Simplified spec 3.0 Section 3.2.2 for details. @param[in] Bar The mmio base address of the slot to be accessed. @retval EFI_SUCCESS Succeed to stop EMMC clock. @retval Others Fail to stop EMMC clock. **/ EFI_STATUS EmmcPeimHcStopClock ( IN UINTN Bar ) { EFI_STATUS Status; UINT32 PresentState; UINT16 ClockCtrl; // // Ensure no SD transactions are occurring on the SD Bus by // waiting for Command Inhibit (DAT) and Command Inhibit (CMD) // in the Present State register to be 0. // Status = EmmcPeimHcWaitMmioSet ( Bar + EMMC_HC_PRESENT_STATE, sizeof (PresentState), BIT0 | BIT1, 0, EMMC_TIMEOUT ); if (EFI_ERROR (Status)) { return Status; } // // Set SD Clock Enable in the Clock Control register to 0 // ClockCtrl = (UINT16)~BIT2; Status = EmmcPeimHcAndMmio (Bar + EMMC_HC_CLOCK_CTRL, sizeof (ClockCtrl), &ClockCtrl); return Status; } /** EMMC card clock supply. Refer to SD Host Controller Simplified spec 3.0 Section 3.2.1 for details. @param[in] Bar The mmio base address of the slot to be accessed. @param[in] ClockFreq The max clock frequency to be set. The unit is KHz. @retval EFI_SUCCESS The clock is supplied successfully. @retval Others The clock isn't supplied successfully. **/ EFI_STATUS EmmcPeimHcClockSupply ( IN UINTN Bar, IN UINT64 ClockFreq ) { EFI_STATUS Status; EMMC_HC_SLOT_CAP Capability; UINT32 BaseClkFreq; UINT32 SettingFreq; UINT32 Divisor; UINT32 Remainder; UINT16 ControllerVer; UINT16 ClockCtrl; // // Calculate a divisor for SD clock frequency // Status = EmmcPeimHcGetCapability (Bar, &Capability); if (EFI_ERROR (Status)) { return Status; } ASSERT (Capability.BaseClkFreq != 0); BaseClkFreq = Capability.BaseClkFreq; if (ClockFreq == 0) { return EFI_INVALID_PARAMETER; } if (ClockFreq > (BaseClkFreq * 1000)) { ClockFreq = BaseClkFreq * 1000; } // // Calculate the divisor of base frequency. // Divisor = 0; SettingFreq = BaseClkFreq * 1000; while (ClockFreq < SettingFreq) { Divisor++; SettingFreq = (BaseClkFreq * 1000) / (2 * Divisor); Remainder = (BaseClkFreq * 1000) % (2 * Divisor); if ((ClockFreq == SettingFreq) && (Remainder == 0)) { break; } if ((ClockFreq == SettingFreq) && (Remainder != 0)) { SettingFreq ++; } } DEBUG ((EFI_D_INFO, "BaseClkFreq %dMHz Divisor %d ClockFreq %dKhz\n", BaseClkFreq, Divisor, ClockFreq)); Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_CTRL_VER, TRUE, sizeof (ControllerVer), &ControllerVer); if (EFI_ERROR (Status)) { return Status; } // // Set SDCLK Frequency Select and Internal Clock Enable fields in Clock Control register. // if ((ControllerVer & 0xFF) == 2) { ASSERT (Divisor <= 0x3FF); ClockCtrl = ((Divisor & 0xFF) << 8) | ((Divisor & 0x300) >> 2); } else if (((ControllerVer & 0xFF) == 0) || ((ControllerVer & 0xFF) == 1)) { // // Only the most significant bit can be used as divisor. // if (((Divisor - 1) & Divisor) != 0) { Divisor = 1 << (HighBitSet32 (Divisor) + 1); } ASSERT (Divisor <= 0x80); ClockCtrl = (Divisor & 0xFF) << 8; } else { DEBUG ((EFI_D_ERROR, "Unknown SD Host Controller Spec version [0x%x]!!!\n", ControllerVer)); return EFI_UNSUPPORTED; } // // Stop bus clock at first // Status = EmmcPeimHcStopClock (Bar); if (EFI_ERROR (Status)) { return Status; } // // Supply clock frequency with specified divisor // ClockCtrl |= BIT0; Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_CLOCK_CTRL, FALSE, sizeof (ClockCtrl), &ClockCtrl); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "Set SDCLK Frequency Select and Internal Clock Enable fields fails\n")); return Status; } // // Wait Internal Clock Stable in the Clock Control register to be 1 // Status = EmmcPeimHcWaitMmioSet ( Bar + EMMC_HC_CLOCK_CTRL, sizeof (ClockCtrl), BIT1, BIT1, EMMC_TIMEOUT ); if (EFI_ERROR (Status)) { return Status; } // // Set SD Clock Enable in the Clock Control register to 1 // ClockCtrl = BIT2; Status = EmmcPeimHcOrMmio (Bar + EMMC_HC_CLOCK_CTRL, sizeof (ClockCtrl), &ClockCtrl); return Status; } /** EMMC bus power control. Refer to SD Host Controller Simplified spec 3.0 Section 3.3 for details. @param[in] Bar The mmio base address of the slot to be accessed. @param[in] PowerCtrl The value setting to the power control register. @retval TRUE There is a EMMC card attached. @retval FALSE There is no a EMMC card attached. **/ EFI_STATUS EmmcPeimHcPowerControl ( IN UINTN Bar, IN UINT8 PowerCtrl ) { EFI_STATUS Status; // // Clr SD Bus Power // PowerCtrl &= (UINT8)~BIT0; Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_POWER_CTRL, FALSE, sizeof (PowerCtrl), &PowerCtrl); if (EFI_ERROR (Status)) { return Status; } // // Set SD Bus Voltage Select and SD Bus Power fields in Power Control Register // PowerCtrl |= BIT0; Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_POWER_CTRL, FALSE, sizeof (PowerCtrl), &PowerCtrl); return Status; } /** Set the EMMC bus width. Refer to SD Host Controller Simplified spec 3.0 Section 3.4 for details. @param[in] Bar The mmio base address of the slot to be accessed. @param[in] BusWidth The bus width used by the EMMC device, it must be 1, 4 or 8. @retval EFI_SUCCESS The bus width is set successfully. @retval Others The bus width isn't set successfully. **/ EFI_STATUS EmmcPeimHcSetBusWidth ( IN UINTN Bar, IN UINT16 BusWidth ) { EFI_STATUS Status; UINT8 HostCtrl1; if (BusWidth == 1) { HostCtrl1 = (UINT8)~(BIT5 | BIT1); Status = EmmcPeimHcAndMmio (Bar + EMMC_HC_HOST_CTRL1, sizeof (HostCtrl1), &HostCtrl1); } else if (BusWidth == 4) { Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_HOST_CTRL1, TRUE, sizeof (HostCtrl1), &HostCtrl1); if (EFI_ERROR (Status)) { return Status; } HostCtrl1 |= BIT1; HostCtrl1 &= (UINT8)~BIT5; Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_HOST_CTRL1, FALSE, sizeof (HostCtrl1), &HostCtrl1); } else if (BusWidth == 8) { Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_HOST_CTRL1, TRUE, sizeof (HostCtrl1), &HostCtrl1); if (EFI_ERROR (Status)) { return Status; } HostCtrl1 &= (UINT8)~BIT1; HostCtrl1 |= BIT5; Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_HOST_CTRL1, FALSE, sizeof (HostCtrl1), &HostCtrl1); } else { ASSERT (FALSE); return EFI_INVALID_PARAMETER; } return Status; } /** Supply EMMC card with lowest clock frequency at initialization. @param[in] Bar The mmio base address of the slot to be accessed. @retval EFI_SUCCESS The clock is supplied successfully. @retval Others The clock isn't supplied successfully. **/ EFI_STATUS EmmcPeimHcInitClockFreq ( IN UINTN Bar ) { EFI_STATUS Status; EMMC_HC_SLOT_CAP Capability; UINT32 InitFreq; // // Calculate a divisor for SD clock frequency // Status = EmmcPeimHcGetCapability (Bar, &Capability); if (EFI_ERROR (Status)) { return Status; } if (Capability.BaseClkFreq == 0) { // // Don't support get Base Clock Frequency information via another method // return EFI_UNSUPPORTED; } // // Supply 400KHz clock frequency at initialization phase. // InitFreq = 400; Status = EmmcPeimHcClockSupply (Bar, InitFreq); return Status; } /** Supply EMMC card with maximum voltage at initialization. Refer to SD Host Controller Simplified spec 3.0 Section 3.3 for details. @param[in] Bar The mmio base address of the slot to be accessed. @retval EFI_SUCCESS The voltage is supplied successfully. @retval Others The voltage isn't supplied successfully. **/ EFI_STATUS EmmcPeimHcInitPowerVoltage ( IN UINTN Bar ) { EFI_STATUS Status; EMMC_HC_SLOT_CAP Capability; UINT8 MaxVoltage; UINT8 HostCtrl2; // // Get the support voltage of the Host Controller // Status = EmmcPeimHcGetCapability (Bar, &Capability); if (EFI_ERROR (Status)) { return Status; } // // Calculate supported maximum voltage according to SD Bus Voltage Select // if (Capability.Voltage33 != 0) { // // Support 3.3V // MaxVoltage = 0x0E; } else if (Capability.Voltage30 != 0) { // // Support 3.0V // MaxVoltage = 0x0C; } else if (Capability.Voltage18 != 0) { // // Support 1.8V // MaxVoltage = 0x0A; HostCtrl2 = BIT3; Status = EmmcPeimHcOrMmio (Bar + EMMC_HC_HOST_CTRL2, sizeof (HostCtrl2), &HostCtrl2); if (EFI_ERROR (Status)) { return Status; } MicroSecondDelay (5000); } else { ASSERT (FALSE); return EFI_DEVICE_ERROR; } // // Set SD Bus Voltage Select and SD Bus Power fields in Power Control Register // Status = EmmcPeimHcPowerControl (Bar, MaxVoltage); return Status; } /** Initialize the Timeout Control register with most conservative value at initialization. Refer to SD Host Controller Simplified spec 3.0 Section 2.2.15 for details. @param[in] Bar The mmio base address of the slot to be accessed. @retval EFI_SUCCESS The timeout control register is configured successfully. @retval Others The timeout control register isn't configured successfully. **/ EFI_STATUS EmmcPeimHcInitTimeoutCtrl ( IN UINTN Bar ) { EFI_STATUS Status; UINT8 Timeout; Timeout = 0x0E; Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_TIMEOUT_CTRL, FALSE, sizeof (Timeout), &Timeout); return Status; } /** Initial EMMC host controller with lowest clock frequency, max power and max timeout value at initialization. @param[in] Bar The mmio base address of the slot to be accessed. @retval EFI_SUCCESS The host controller is initialized successfully. @retval Others The host controller isn't initialized successfully. **/ EFI_STATUS EmmcPeimHcInitHost ( IN UINTN Bar ) { EFI_STATUS Status; Status = EmmcPeimHcInitClockFreq (Bar); if (EFI_ERROR (Status)) { return Status; } Status = EmmcPeimHcInitPowerVoltage (Bar); if (EFI_ERROR (Status)) { return Status; } Status = EmmcPeimHcInitTimeoutCtrl (Bar); return Status; } /** Turn on/off LED. @param[in] Bar The mmio base address of the slot to be accessed. @param[in] On The boolean to turn on/off LED. @retval EFI_SUCCESS The LED is turned on/off successfully. @retval Others The LED isn't turned on/off successfully. **/ EFI_STATUS EmmcPeimHcLedOnOff ( IN UINTN Bar, IN BOOLEAN On ) { EFI_STATUS Status; UINT8 HostCtrl1; if (On) { HostCtrl1 = BIT0; Status = EmmcPeimHcOrMmio (Bar + EMMC_HC_HOST_CTRL1, sizeof (HostCtrl1), &HostCtrl1); } else { HostCtrl1 = (UINT8)~BIT0; Status = EmmcPeimHcAndMmio (Bar + EMMC_HC_HOST_CTRL1, sizeof (HostCtrl1), &HostCtrl1); } return Status; } /** Build ADMA descriptor table for transfer. Refer to SD Host Controller Simplified spec 3.0 Section 1.13 for details. @param[in] Trb The pointer to the EMMC_TRB instance. @retval EFI_SUCCESS The ADMA descriptor table is created successfully. @retval Others The ADMA descriptor table isn't created successfully. **/ EFI_STATUS BuildAdmaDescTable ( IN EMMC_TRB *Trb ) { EFI_PHYSICAL_ADDRESS Data; UINT64 DataLen; UINT64 Entries; UINT32 Index; UINT64 Remaining; UINT32 Address; Data = (EFI_PHYSICAL_ADDRESS)(UINTN)Trb->Data; DataLen = Trb->DataLen; // // Only support 32bit ADMA Descriptor Table // if ((Data >= 0x100000000ul) || ((Data + DataLen) > 0x100000000ul)) { return EFI_INVALID_PARAMETER; } // // Address field shall be set on 32-bit boundary (Lower 2-bit is always set to 0) // for 32-bit address descriptor table. // if ((Data & (BIT0 | BIT1)) != 0) { DEBUG ((EFI_D_INFO, "The buffer [0x%x] to construct ADMA desc is not aligned to 4 bytes boundary!\n", Data)); } Entries = DivU64x32 ((DataLen + ADMA_MAX_DATA_PER_LINE - 1), ADMA_MAX_DATA_PER_LINE); Trb->AdmaDescSize = (UINTN)MultU64x32 (Entries, sizeof (EMMC_HC_ADMA_DESC_LINE)); Trb->AdmaDesc = EmmcPeimAllocateMem (Trb->Slot->Private->Pool, Trb->AdmaDescSize); if (Trb->AdmaDesc == NULL) { return EFI_OUT_OF_RESOURCES; } Remaining = DataLen; Address = (UINT32)Data; for (Index = 0; Index < Entries; Index++) { if (Remaining <= ADMA_MAX_DATA_PER_LINE) { Trb->AdmaDesc[Index].Valid = 1; Trb->AdmaDesc[Index].Act = 2; Trb->AdmaDesc[Index].Length = (UINT16)Remaining; Trb->AdmaDesc[Index].Address = Address; break; } else { Trb->AdmaDesc[Index].Valid = 1; Trb->AdmaDesc[Index].Act = 2; Trb->AdmaDesc[Index].Length = 0; Trb->AdmaDesc[Index].Address = Address; } Remaining -= ADMA_MAX_DATA_PER_LINE; Address += ADMA_MAX_DATA_PER_LINE; } // // Set the last descriptor line as end of descriptor table // Trb->AdmaDesc[Index].End = 1; return EFI_SUCCESS; } /** Create a new TRB for the EMMC cmd request. @param[in] Slot The slot number of the EMMC card to send the command to. @param[in] Packet A pointer to the SD command data structure. @return Created Trb or NULL. **/ EMMC_TRB * EmmcPeimCreateTrb ( IN EMMC_PEIM_HC_SLOT *Slot, IN EMMC_COMMAND_PACKET *Packet ) { EMMC_TRB *Trb; EFI_STATUS Status; EMMC_HC_SLOT_CAP Capability; // // Calculate a divisor for SD clock frequency // Status = EmmcPeimHcGetCapability (Slot->EmmcHcBase, &Capability); if (EFI_ERROR (Status)) { return NULL; } Trb = EmmcPeimAllocateMem (Slot->Private->Pool, sizeof (EMMC_TRB)); if (Trb == NULL) { return NULL; } Trb->Slot = Slot; Trb->BlockSize = 0x200; Trb->Packet = Packet; Trb->Timeout = Packet->Timeout; if ((Packet->InTransferLength != 0) && (Packet->InDataBuffer != NULL)) { Trb->Data = Packet->InDataBuffer; Trb->DataLen = Packet->InTransferLength; Trb->Read = TRUE; } else if ((Packet->OutTransferLength != 0) && (Packet->OutDataBuffer != NULL)) { Trb->Data = Packet->OutDataBuffer; Trb->DataLen = Packet->OutTransferLength; Trb->Read = FALSE; } else if ((Packet->InTransferLength == 0) && (Packet->OutTransferLength == 0)) { Trb->Data = NULL; Trb->DataLen = 0; } else { goto Error; } if ((Trb->DataLen != 0) && (Trb->DataLen < Trb->BlockSize)) { Trb->BlockSize = (UINT16)Trb->DataLen; } if (Packet->EmmcCmdBlk->CommandIndex == EMMC_SEND_TUNING_BLOCK) { Trb->Mode = EmmcPioMode; } else { if (Trb->DataLen == 0) { Trb->Mode = EmmcNoData; } else if (Capability.Adma2 != 0) { Trb->Mode = EmmcAdmaMode; Status = BuildAdmaDescTable (Trb); if (EFI_ERROR (Status)) { goto Error; } } else if (Capability.Sdma != 0) { Trb->Mode = EmmcSdmaMode; } else { Trb->Mode = EmmcPioMode; } } return Trb; Error: EmmcPeimFreeTrb (Trb); return NULL; } /** Free the resource used by the TRB. @param[in] Trb The pointer to the EMMC_TRB instance. **/ VOID EmmcPeimFreeTrb ( IN EMMC_TRB *Trb ) { if ((Trb != NULL) && (Trb->AdmaDesc != NULL)) { EmmcPeimFreeMem (Trb->Slot->Private->Pool, Trb->AdmaDesc, Trb->AdmaDescSize); } if (Trb != NULL) { EmmcPeimFreeMem (Trb->Slot->Private->Pool, Trb, sizeof (EMMC_TRB)); } return; } /** Check if the env is ready for execute specified TRB. @param[in] Bar The mmio base address of the slot to be accessed. @param[in] Trb The pointer to the EMMC_TRB instance. @retval EFI_SUCCESS The env is ready for TRB execution. @retval EFI_NOT_READY The env is not ready for TRB execution. @retval Others Some erros happen. **/ EFI_STATUS EmmcPeimCheckTrbEnv ( IN UINTN Bar, IN EMMC_TRB *Trb ) { EFI_STATUS Status; EMMC_COMMAND_PACKET *Packet; UINT32 PresentState; Packet = Trb->Packet; if ((Packet->EmmcCmdBlk->CommandType == EmmcCommandTypeAdtc) || (Packet->EmmcCmdBlk->ResponseType == EmmcResponceTypeR1b) || (Packet->EmmcCmdBlk->ResponseType == EmmcResponceTypeR5b)) { // // Wait Command Inhibit (CMD) and Command Inhibit (DAT) in // the Present State register to be 0 // PresentState = BIT0 | BIT1; } else { // // Wait Command Inhibit (CMD) in the Present State register // to be 0 // PresentState = BIT0; } Status = EmmcPeimHcCheckMmioSet ( Bar + EMMC_HC_PRESENT_STATE, sizeof (PresentState), PresentState, 0 ); return Status; } /** Wait for the env to be ready for execute specified TRB. @param[in] Bar The mmio base address of the slot to be accessed. @param[in] Trb The pointer to the EMMC_TRB instance. @retval EFI_SUCCESS The env is ready for TRB execution. @retval EFI_TIMEOUT The env is not ready for TRB execution in time. @retval Others Some erros happen. **/ EFI_STATUS EmmcPeimWaitTrbEnv ( IN UINTN Bar, IN EMMC_TRB *Trb ) { EFI_STATUS Status; EMMC_COMMAND_PACKET *Packet; UINT64 Timeout; BOOLEAN InfiniteWait; // // Wait Command Complete Interrupt Status bit in Normal Interrupt Status Register // Packet = Trb->Packet; Timeout = Packet->Timeout; if (Timeout == 0) { InfiniteWait = TRUE; } else { InfiniteWait = FALSE; } while (InfiniteWait || (Timeout > 0)) { // // Check Trb execution result by reading Normal Interrupt Status register. // Status = EmmcPeimCheckTrbEnv (Bar, Trb); if (Status != EFI_NOT_READY) { return Status; } // // Stall for 1 microsecond. // MicroSecondDelay (1); Timeout--; } return EFI_TIMEOUT; } /** Execute the specified TRB. @param[in] Bar The mmio base address of the slot to be accessed. @param[in] Trb The pointer to the EMMC_TRB instance. @retval EFI_SUCCESS The TRB is sent to host controller successfully. @retval Others Some erros happen when sending this request to the host controller. **/ EFI_STATUS EmmcPeimExecTrb ( IN UINTN Bar, IN EMMC_TRB *Trb ) { EFI_STATUS Status; EMMC_COMMAND_PACKET *Packet; UINT16 Cmd; UINT16 IntStatus; UINT32 Argument; UINT16 BlkCount; UINT16 BlkSize; UINT16 TransMode; UINT8 HostCtrl1; UINT32 SdmaAddr; UINT64 AdmaAddr; Packet = Trb->Packet; // // Clear all bits in Error Interrupt Status Register // IntStatus = 0xFFFF; Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_ERR_INT_STS, FALSE, sizeof (IntStatus), &IntStatus); if (EFI_ERROR (Status)) { return Status; } // // Clear all bits in Normal Interrupt Status Register // IntStatus = 0xFFFF; Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_NOR_INT_STS, FALSE, sizeof (IntStatus), &IntStatus); if (EFI_ERROR (Status)) { return Status; } // // Set Host Control 1 register DMA Select field // if (Trb->Mode == EmmcAdmaMode) { HostCtrl1 = BIT4; Status = EmmcPeimHcOrMmio (Bar + EMMC_HC_HOST_CTRL1, sizeof (HostCtrl1), &HostCtrl1); if (EFI_ERROR (Status)) { return Status; } } EmmcPeimHcLedOnOff (Bar, TRUE); if (Trb->Mode == EmmcSdmaMode) { if ((UINT64)(UINTN)Trb->Data >= 0x100000000ul) { return EFI_INVALID_PARAMETER; } SdmaAddr = (UINT32)(UINTN)Trb->Data; Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_SDMA_ADDR, FALSE, sizeof (SdmaAddr), &SdmaAddr); if (EFI_ERROR (Status)) { return Status; } } else if (Trb->Mode == EmmcAdmaMode) { AdmaAddr = (UINT64)(UINTN)Trb->AdmaDesc; Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_ADMA_SYS_ADDR, FALSE, sizeof (AdmaAddr), &AdmaAddr); if (EFI_ERROR (Status)) { return Status; } } BlkSize = Trb->BlockSize; if (Trb->Mode == EmmcSdmaMode) { // // Set SDMA boundary to be 512K bytes. // BlkSize |= 0x7000; } Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_BLK_SIZE, FALSE, sizeof (BlkSize), &BlkSize); if (EFI_ERROR (Status)) { return Status; } BlkCount = 0; if (Trb->Mode != EmmcNoData) { // // Calcuate Block Count. // BlkCount = (UINT16)(Trb->DataLen / Trb->BlockSize); } Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_BLK_COUNT, FALSE, sizeof (BlkCount), &BlkCount); if (EFI_ERROR (Status)) { return Status; } Argument = Packet->EmmcCmdBlk->CommandArgument; Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_ARG1, FALSE, sizeof (Argument), &Argument); if (EFI_ERROR (Status)) { return Status; } TransMode = 0; if (Trb->Mode != EmmcNoData) { if (Trb->Mode != EmmcPioMode) { TransMode |= BIT0; } if (Trb->Read) { TransMode |= BIT4; } if (BlkCount > 1) { TransMode |= BIT5 | BIT1; } } Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_TRANS_MOD, FALSE, sizeof (TransMode), &TransMode); if (EFI_ERROR (Status)) { return Status; } Cmd = (UINT16)LShiftU64(Packet->EmmcCmdBlk->CommandIndex, 8); if (Packet->EmmcCmdBlk->CommandType == EmmcCommandTypeAdtc) { Cmd |= BIT5; } // // Convert ResponseType to value // if (Packet->EmmcCmdBlk->CommandType != EmmcCommandTypeBc) { switch (Packet->EmmcCmdBlk->ResponseType) { case EmmcResponceTypeR1: case EmmcResponceTypeR5: case EmmcResponceTypeR6: case EmmcResponceTypeR7: Cmd |= (BIT1 | BIT3 | BIT4); break; case EmmcResponceTypeR2: Cmd |= (BIT0 | BIT3); break; case EmmcResponceTypeR3: case EmmcResponceTypeR4: Cmd |= BIT1; break; case EmmcResponceTypeR1b: case EmmcResponceTypeR5b: Cmd |= (BIT0 | BIT1 | BIT3 | BIT4); break; default: ASSERT (FALSE); break; } } // // Execute cmd // Status = EmmcPeimHcRwMmio (Bar + EMMC_HC_COMMAND, FALSE, sizeof (Cmd), &Cmd); return Status; } /** Check the TRB execution result. @param[in] Bar The mmio base address of the slot to be accessed. @param[in] Trb The pointer to the EMMC_TRB instance. @retval EFI_SUCCESS The TRB is executed successfully. @retval EFI_NOT_READY The TRB is not completed for execution. @retval Others Some erros happen when executing this request. **/ EFI_STATUS EmmcPeimCheckTrbResult ( IN UINTN Bar, IN EMMC_TRB *Trb ) { EFI_STATUS Status; EMMC_COMMAND_PACKET *Packet; UINT16 IntStatus; UINT32 Response[4]; UINT32 SdmaAddr; UINT8 Index; UINT8 SwReset; UINT32 PioLength; SwReset = 0; Packet = Trb->Packet; // // Check Trb execution result by reading Normal Interrupt Status register. // Status = EmmcPeimHcRwMmio ( Bar + EMMC_HC_NOR_INT_STS, TRUE, sizeof (IntStatus), &IntStatus ); if (EFI_ERROR (Status)) { goto Done; } // // Check Transfer Complete bit is set or not. // if ((IntStatus & BIT1) == BIT1) { if ((IntStatus & BIT15) == BIT15) { // // Read Error Interrupt Status register to check if the error is // Data Timeout Error. // If yes, treat it as success as Transfer Complete has higher // priority than Data Timeout Error. // Status = EmmcPeimHcRwMmio ( Bar + EMMC_HC_ERR_INT_STS, TRUE, sizeof (IntStatus), &IntStatus ); if (!EFI_ERROR (Status)) { if ((IntStatus & BIT4) == BIT4) { Status = EFI_SUCCESS; } else { Status = EFI_DEVICE_ERROR; } } } goto Done; } // // Check if there is a error happened during cmd execution. // If yes, then do error recovery procedure to follow SD Host Controller // Simplified Spec 3.0 section 3.10.1. // if ((IntStatus & BIT15) == BIT15) { Status = EmmcPeimHcRwMmio ( Bar + EMMC_HC_ERR_INT_STS, TRUE, sizeof (IntStatus), &IntStatus ); if (EFI_ERROR (Status)) { goto Done; } if ((IntStatus & 0x0F) != 0) { SwReset |= BIT1; } if ((IntStatus & 0xF0) != 0) { SwReset |= BIT2; } Status = EmmcPeimHcRwMmio ( Bar + EMMC_HC_SW_RST, FALSE, sizeof (SwReset), &SwReset ); if (EFI_ERROR (Status)) { goto Done; } Status = EmmcPeimHcWaitMmioSet ( Bar + EMMC_HC_SW_RST, sizeof (SwReset), 0xFF, 0, EMMC_TIMEOUT ); if (EFI_ERROR (Status)) { goto Done; } Status = EFI_DEVICE_ERROR; goto Done; } // // Check if DMA interrupt is signalled for the SDMA transfer. // if ((Trb->Mode == EmmcSdmaMode) && ((IntStatus & BIT3) == BIT3)) { // // Clear DMA interrupt bit. // IntStatus = BIT3; Status = EmmcPeimHcRwMmio ( Bar + EMMC_HC_NOR_INT_STS, FALSE, sizeof (IntStatus), &IntStatus ); if (EFI_ERROR (Status)) { goto Done; } // // Update SDMA Address register. // SdmaAddr = EMMC_SDMA_ROUND_UP ((UINT32)(UINTN)Trb->Data, EMMC_SDMA_BOUNDARY); Status = EmmcPeimHcRwMmio ( Bar + EMMC_HC_SDMA_ADDR, FALSE, sizeof (UINT32), &SdmaAddr ); if (EFI_ERROR (Status)) { goto Done; } Trb->Data = (VOID*)(UINTN)SdmaAddr; } if ((Packet->EmmcCmdBlk->CommandType != EmmcCommandTypeAdtc) && (Packet->EmmcCmdBlk->ResponseType != EmmcResponceTypeR1b) && (Packet->EmmcCmdBlk->ResponseType != EmmcResponceTypeR5b)) { if ((IntStatus & BIT0) == BIT0) { Status = EFI_SUCCESS; goto Done; } } if (Packet->EmmcCmdBlk->CommandIndex == EMMC_SEND_TUNING_BLOCK) { // // When performing tuning procedure (Execute Tuning is set to 1) through PIO mode, // wait Buffer Read Ready bit of Normal Interrupt Status Register to be 1. // Refer to SD Host Controller Simplified Specification 3.0 figure 2-29 for details. // if ((IntStatus & BIT5) == BIT5) { // // Clear Buffer Read Ready interrupt at first. // IntStatus = BIT5; EmmcPeimHcRwMmio (Bar + EMMC_HC_NOR_INT_STS, FALSE, sizeof (IntStatus), &IntStatus); // // Read data out from Buffer Port register // for (PioLength = 0; PioLength < Trb->DataLen; PioLength += 4) { EmmcPeimHcRwMmio (Bar + EMMC_HC_BUF_DAT_PORT, TRUE, 4, (UINT8*)Trb->Data + PioLength); } Status = EFI_SUCCESS; goto Done; } } Status = EFI_NOT_READY; Done: // // Get response data when the cmd is executed successfully. // if (!EFI_ERROR (Status)) { if (Packet->EmmcCmdBlk->CommandType != EmmcCommandTypeBc) { for (Index = 0; Index < 4; Index++) { Status = EmmcPeimHcRwMmio ( Bar + EMMC_HC_RESPONSE + Index * 4, TRUE, sizeof (UINT32), &Response[Index] ); if (EFI_ERROR (Status)) { EmmcPeimHcLedOnOff (Bar, FALSE); return Status; } } CopyMem (Packet->EmmcStatusBlk, Response, sizeof (Response)); } } if (Status != EFI_NOT_READY) { EmmcPeimHcLedOnOff (Bar, FALSE); } return Status; } /** Wait for the TRB execution result. @param[in] Bar The mmio base address of the slot to be accessed. @param[in] Trb The pointer to the EMMC_TRB instance. @retval EFI_SUCCESS The TRB is executed successfully. @retval Others Some erros happen when executing this request. **/ EFI_STATUS EmmcPeimWaitTrbResult ( IN UINTN Bar, IN EMMC_TRB *Trb ) { EFI_STATUS Status; EMMC_COMMAND_PACKET *Packet; UINT64 Timeout; BOOLEAN InfiniteWait; Packet = Trb->Packet; // // Wait Command Complete Interrupt Status bit in Normal Interrupt Status Register // Timeout = Packet->Timeout; if (Timeout == 0) { InfiniteWait = TRUE; } else { InfiniteWait = FALSE; } while (InfiniteWait || (Timeout > 0)) { // // Check Trb execution result by reading Normal Interrupt Status register. // Status = EmmcPeimCheckTrbResult (Bar, Trb); if (Status != EFI_NOT_READY) { return Status; } // // Stall for 1 microsecond. // MicroSecondDelay (1); Timeout--; } return EFI_TIMEOUT; } /** Sends EMMC command to an EMMC card that is attached to the EMMC controller. If Packet is successfully sent to the EMMC card, then EFI_SUCCESS is returned. If a device error occurs while sending the Packet, then EFI_DEVICE_ERROR is returned. If Slot is not in a valid range for the EMMC controller, then EFI_INVALID_PARAMETER is returned. If Packet defines a data command but both InDataBuffer and OutDataBuffer are NULL, EFI_INVALID_PARAMETER is returned. @param[in] Slot The slot number of the Emmc card to send the command to. @param[in,out] Packet A pointer to the EMMC command data structure. @retval EFI_SUCCESS The EMMC Command Packet was sent by the host. @retval EFI_DEVICE_ERROR A device error occurred while attempting to send the SD command Packet. @retval EFI_INVALID_PARAMETER Packet, Slot, or the contents of the Packet is invalid. @retval EFI_INVALID_PARAMETER Packet defines a data command but both InDataBuffer and OutDataBuffer are NULL. @retval EFI_NO_MEDIA SD Device not present in the Slot. @retval EFI_UNSUPPORTED The command described by the EMMC Command Packet is not supported by the host controller. @retval EFI_BAD_BUFFER_SIZE The InTransferLength or OutTransferLength exceeds the limit supported by EMMC card ( i.e. if the number of bytes exceed the Last LBA). **/ EFI_STATUS EFIAPI EmmcPeimExecCmd ( IN EMMC_PEIM_HC_SLOT *Slot, IN OUT EMMC_COMMAND_PACKET *Packet ) { EFI_STATUS Status; EMMC_TRB *Trb; if (Packet == NULL) { return EFI_INVALID_PARAMETER; } if ((Packet->EmmcCmdBlk == NULL) || (Packet->EmmcStatusBlk == NULL)) { return EFI_INVALID_PARAMETER; } if ((Packet->OutDataBuffer == NULL) && (Packet->OutTransferLength != 0)) { return EFI_INVALID_PARAMETER; } if ((Packet->InDataBuffer == NULL) && (Packet->InTransferLength != 0)) { return EFI_INVALID_PARAMETER; } Trb = EmmcPeimCreateTrb (Slot, Packet); if (Trb == NULL) { return EFI_OUT_OF_RESOURCES; } Status = EmmcPeimWaitTrbEnv (Slot->EmmcHcBase, Trb); if (EFI_ERROR (Status)) { goto Done; } Status = EmmcPeimExecTrb (Slot->EmmcHcBase, Trb); if (EFI_ERROR (Status)) { goto Done; } Status = EmmcPeimWaitTrbResult (Slot->EmmcHcBase, Trb); if (EFI_ERROR (Status)) { goto Done; } Done: EmmcPeimFreeTrb (Trb); return Status; } /** Send command GO_IDLE_STATE (CMD0 with argument of 0x00000000) to the device to make it go to Idle State. Refer to EMMC Electrical Standard Spec 5.1 Section 6.4 for details. @param[in] Slot The slot number of the Emmc card to send the command to. @retval EFI_SUCCESS The EMMC device is reset correctly. @retval Others The device reset fails. **/ EFI_STATUS EmmcPeimReset ( IN EMMC_PEIM_HC_SLOT *Slot ) { EMMC_COMMAND_BLOCK EmmcCmdBlk; EMMC_STATUS_BLOCK EmmcStatusBlk; EMMC_COMMAND_PACKET Packet; EFI_STATUS Status; ZeroMem (&EmmcCmdBlk, sizeof (EmmcCmdBlk)); ZeroMem (&EmmcStatusBlk, sizeof (EmmcStatusBlk)); ZeroMem (&Packet, sizeof (Packet)); Packet.EmmcCmdBlk = &EmmcCmdBlk; Packet.EmmcStatusBlk = &EmmcStatusBlk; Packet.Timeout = EMMC_TIMEOUT; EmmcCmdBlk.CommandIndex = EMMC_GO_IDLE_STATE; EmmcCmdBlk.CommandType = EmmcCommandTypeBc; EmmcCmdBlk.ResponseType = 0; EmmcCmdBlk.CommandArgument = 0; Status = EmmcPeimExecCmd (Slot, &Packet); return Status; } /** Send command SEND_OP_COND to the EMMC device to get the data of the OCR register. Refer to EMMC Electrical Standard Spec 5.1 Section 6.4 for details. @param[in] Slot The slot number of the Emmc card to send the command to. @param[in, out] Argument On input, the argument of SEND_OP_COND is to send to the device. On output, the argument is the value of OCR register. @retval EFI_SUCCESS The operation is done correctly. @retval Others The operation fails. **/ EFI_STATUS EmmcPeimGetOcr ( IN EMMC_PEIM_HC_SLOT *Slot, IN OUT UINT32 *Argument ) { EMMC_COMMAND_BLOCK EmmcCmdBlk; EMMC_STATUS_BLOCK EmmcStatusBlk; EMMC_COMMAND_PACKET Packet; EFI_STATUS Status; ZeroMem (&EmmcCmdBlk, sizeof (EmmcCmdBlk)); ZeroMem (&EmmcStatusBlk, sizeof (EmmcStatusBlk)); ZeroMem (&Packet, sizeof (Packet)); Packet.EmmcCmdBlk = &EmmcCmdBlk; Packet.EmmcStatusBlk = &EmmcStatusBlk; Packet.Timeout = EMMC_TIMEOUT; EmmcCmdBlk.CommandIndex = EMMC_SEND_OP_COND; EmmcCmdBlk.CommandType = EmmcCommandTypeBcr; EmmcCmdBlk.ResponseType = EmmcResponceTypeR3; EmmcCmdBlk.CommandArgument = *Argument; Status = EmmcPeimExecCmd (Slot, &Packet); if (!EFI_ERROR (Status)) { // // For details, refer to SD Host Controller Simplified Spec 3.0 Table 2-12. // *Argument = EmmcStatusBlk.Resp0; } return Status; } /** Broadcast command ALL_SEND_CID to the bus to ask all the EMMC devices to send the data of their CID registers. Refer to EMMC Electrical Standard Spec 5.1 Section 6.4 for details. @param[in] Slot The slot number of the Emmc card to send the command to. @retval EFI_SUCCESS The operation is done correctly. @retval Others The operation fails. **/ EFI_STATUS EmmcPeimGetAllCid ( IN EMMC_PEIM_HC_SLOT *Slot ) { EMMC_COMMAND_BLOCK EmmcCmdBlk; EMMC_STATUS_BLOCK EmmcStatusBlk; EMMC_COMMAND_PACKET Packet; EFI_STATUS Status; ZeroMem (&EmmcCmdBlk, sizeof (EmmcCmdBlk)); ZeroMem (&EmmcStatusBlk, sizeof (EmmcStatusBlk)); ZeroMem (&Packet, sizeof (Packet)); Packet.EmmcCmdBlk = &EmmcCmdBlk; Packet.EmmcStatusBlk = &EmmcStatusBlk; Packet.Timeout = EMMC_TIMEOUT; EmmcCmdBlk.CommandIndex = EMMC_ALL_SEND_CID; EmmcCmdBlk.CommandType = EmmcCommandTypeBcr; EmmcCmdBlk.ResponseType = EmmcResponceTypeR2; EmmcCmdBlk.CommandArgument = 0; Status = EmmcPeimExecCmd (Slot, &Packet); return Status; } /** Send command SET_RELATIVE_ADDR to the EMMC device to assign a Relative device Address (RCA). Refer to EMMC Electrical Standard Spec 5.1 Section 6.4 for details. @param[in] Slot The slot number of the Emmc card to send the command to. @param[in] Rca The relative device address to be assigned. @retval EFI_SUCCESS The operation is done correctly. @retval Others The operation fails. **/ EFI_STATUS EmmcPeimSetRca ( IN EMMC_PEIM_HC_SLOT *Slot, IN UINT32 Rca ) { EMMC_COMMAND_BLOCK EmmcCmdBlk; EMMC_STATUS_BLOCK EmmcStatusBlk; EMMC_COMMAND_PACKET Packet; EFI_STATUS Status; ZeroMem (&EmmcCmdBlk, sizeof (EmmcCmdBlk)); ZeroMem (&EmmcStatusBlk, sizeof (EmmcStatusBlk)); ZeroMem (&Packet, sizeof (Packet)); Packet.EmmcCmdBlk = &EmmcCmdBlk; Packet.EmmcStatusBlk = &EmmcStatusBlk; Packet.Timeout = EMMC_TIMEOUT; EmmcCmdBlk.CommandIndex = EMMC_SET_RELATIVE_ADDR; EmmcCmdBlk.CommandType = EmmcCommandTypeAc; EmmcCmdBlk.ResponseType = EmmcResponceTypeR1; EmmcCmdBlk.CommandArgument = Rca << 16; Status = EmmcPeimExecCmd (Slot, &Packet); return Status; } /** Send command SEND_CSD to the EMMC device to get the data of the CSD register. Refer to EMMC Electrical Standard Spec 5.1 Section 6.10.4 for details. @param[in] Slot The slot number of the Emmc card to send the command to. @param[in] Rca The relative device address of selected device. @param[out] Csd The buffer to store the content of the CSD register. Note the caller should ignore the lowest byte of this buffer as the content of this byte is meaningless even if the operation succeeds. @retval EFI_SUCCESS The operation is done correctly. @retval Others The operation fails. **/ EFI_STATUS EmmcPeimGetCsd ( IN EMMC_PEIM_HC_SLOT *Slot, IN UINT32 Rca, OUT EMMC_CSD *Csd ) { EMMC_COMMAND_BLOCK EmmcCmdBlk; EMMC_STATUS_BLOCK EmmcStatusBlk; EMMC_COMMAND_PACKET Packet; EFI_STATUS Status; ZeroMem (&EmmcCmdBlk, sizeof (EmmcCmdBlk)); ZeroMem (&EmmcStatusBlk, sizeof (EmmcStatusBlk)); ZeroMem (&Packet, sizeof (Packet)); Packet.EmmcCmdBlk = &EmmcCmdBlk; Packet.EmmcStatusBlk = &EmmcStatusBlk; Packet.Timeout = EMMC_TIMEOUT; EmmcCmdBlk.CommandIndex = EMMC_SEND_CSD; EmmcCmdBlk.CommandType = EmmcCommandTypeAc; EmmcCmdBlk.ResponseType = EmmcResponceTypeR2; EmmcCmdBlk.CommandArgument = Rca << 16; Status = EmmcPeimExecCmd (Slot, &Packet); if (!EFI_ERROR (Status)) { // // For details, refer to SD Host Controller Simplified Spec 3.0 Table 2-12. // CopyMem (((UINT8*)Csd) + 1, &EmmcStatusBlk.Resp0, sizeof (EMMC_CSD) - 1); } return Status; } /** Send command SELECT_DESELECT_CARD to the EMMC device to select/deselect it. Refer to EMMC Electrical Standard Spec 5.1 Section 6.10.4 for details. @param[in] Slot The slot number of the Emmc card to send the command to. @param[in] Rca The relative device address of selected device. @retval EFI_SUCCESS The operation is done correctly. @retval Others The operation fails. **/ EFI_STATUS EmmcPeimSelect ( IN EMMC_PEIM_HC_SLOT *Slot, IN UINT32 Rca ) { EMMC_COMMAND_BLOCK EmmcCmdBlk; EMMC_STATUS_BLOCK EmmcStatusBlk; EMMC_COMMAND_PACKET Packet; EFI_STATUS Status; ZeroMem (&EmmcCmdBlk, sizeof (EmmcCmdBlk)); ZeroMem (&EmmcStatusBlk, sizeof (EmmcStatusBlk)); ZeroMem (&Packet, sizeof (Packet)); Packet.EmmcCmdBlk = &EmmcCmdBlk; Packet.EmmcStatusBlk = &EmmcStatusBlk; Packet.Timeout = EMMC_TIMEOUT; EmmcCmdBlk.CommandIndex = EMMC_SELECT_DESELECT_CARD; EmmcCmdBlk.CommandType = EmmcCommandTypeAc; EmmcCmdBlk.ResponseType = EmmcResponceTypeR1; EmmcCmdBlk.CommandArgument = Rca << 16; Status = EmmcPeimExecCmd (Slot, &Packet); return Status; } /** Send command SEND_EXT_CSD to the EMMC device to get the data of the EXT_CSD register. Refer to EMMC Electrical Standard Spec 5.1 Section 6.10.4 for details. @param[in] Slot The slot number of the Emmc card to send the command to. @param[out] ExtCsd The buffer to store the content of the EXT_CSD register. @retval EFI_SUCCESS The operation is done correctly. @retval Others The operation fails. **/ EFI_STATUS EmmcPeimGetExtCsd ( IN EMMC_PEIM_HC_SLOT *Slot, OUT EMMC_EXT_CSD *ExtCsd ) { EMMC_COMMAND_BLOCK EmmcCmdBlk; EMMC_STATUS_BLOCK EmmcStatusBlk; EMMC_COMMAND_PACKET Packet; EFI_STATUS Status; ZeroMem (&EmmcCmdBlk, sizeof (EmmcCmdBlk)); ZeroMem (&EmmcStatusBlk, sizeof (EmmcStatusBlk)); ZeroMem (&Packet, sizeof (Packet)); Packet.EmmcCmdBlk = &EmmcCmdBlk; Packet.EmmcStatusBlk = &EmmcStatusBlk; Packet.Timeout = EMMC_TIMEOUT; EmmcCmdBlk.CommandIndex = EMMC_SEND_EXT_CSD; EmmcCmdBlk.CommandType = EmmcCommandTypeAdtc; EmmcCmdBlk.ResponseType = EmmcResponceTypeR1; EmmcCmdBlk.CommandArgument = 0x00000000; Packet.InDataBuffer = ExtCsd; Packet.InTransferLength = sizeof (EMMC_EXT_CSD); Status = EmmcPeimExecCmd (Slot, &Packet); return Status; } /** Send command SWITCH to the EMMC device to switch the mode of operation of the selected Device or modifies the EXT_CSD registers. Refer to EMMC Electrical Standard Spec 5.1 Section 6.10.4 for details. @param[in] Slot The slot number of the Emmc card to send the command to. @param[in] Access The access mode of SWTICH command. @param[in] Index The offset of the field to be access. @param[in] Value The value to be set to the specified field of EXT_CSD register. @param[in] CmdSet The value of CmdSet field of EXT_CSD register. @retval EFI_SUCCESS The operation is done correctly. @retval Others The operation fails. **/ EFI_STATUS EmmcPeimSwitch ( IN EMMC_PEIM_HC_SLOT *Slot, IN UINT8 Access, IN UINT8 Index, IN UINT8 Value, IN UINT8 CmdSet ) { EMMC_COMMAND_BLOCK EmmcCmdBlk; EMMC_STATUS_BLOCK EmmcStatusBlk; EMMC_COMMAND_PACKET Packet; EFI_STATUS Status; ZeroMem (&EmmcCmdBlk, sizeof (EmmcCmdBlk)); ZeroMem (&EmmcStatusBlk, sizeof (EmmcStatusBlk)); ZeroMem (&Packet, sizeof (Packet)); Packet.EmmcCmdBlk = &EmmcCmdBlk; Packet.EmmcStatusBlk = &EmmcStatusBlk; Packet.Timeout = EMMC_TIMEOUT; EmmcCmdBlk.CommandIndex = EMMC_SWITCH; EmmcCmdBlk.CommandType = EmmcCommandTypeAc; EmmcCmdBlk.ResponseType = EmmcResponceTypeR1b; EmmcCmdBlk.CommandArgument = (Access << 24) | (Index << 16) | (Value << 8) | CmdSet; Status = EmmcPeimExecCmd (Slot, &Packet); return Status; } /** Send command SEND_STATUS to the addressed EMMC device to get its status register. Refer to EMMC Electrical Standard Spec 5.1 Section 6.10.4 for details. @param[in] Slot The slot number of the Emmc card to send the command to. @param[in] Rca The relative device address of addressed device. @param[out] DevStatus The returned device status. @retval EFI_SUCCESS The operation is done correctly. @retval Others The operation fails. **/ EFI_STATUS EmmcPeimSendStatus ( IN EMMC_PEIM_HC_SLOT *Slot, IN UINT32 Rca, OUT UINT32 *DevStatus ) { EMMC_COMMAND_BLOCK EmmcCmdBlk; EMMC_STATUS_BLOCK EmmcStatusBlk; EMMC_COMMAND_PACKET Packet; EFI_STATUS Status; ZeroMem (&EmmcCmdBlk, sizeof (EmmcCmdBlk)); ZeroMem (&EmmcStatusBlk, sizeof (EmmcStatusBlk)); ZeroMem (&Packet, sizeof (Packet)); Packet.EmmcCmdBlk = &EmmcCmdBlk; Packet.EmmcStatusBlk = &EmmcStatusBlk; Packet.Timeout = EMMC_TIMEOUT; EmmcCmdBlk.CommandIndex = EMMC_SEND_STATUS; EmmcCmdBlk.CommandType = EmmcCommandTypeAc; EmmcCmdBlk.ResponseType = EmmcResponceTypeR1; EmmcCmdBlk.CommandArgument = Rca << 16; Status = EmmcPeimExecCmd (Slot, &Packet); if (!EFI_ERROR (Status)) { *DevStatus = EmmcStatusBlk.Resp0; } return Status; } /** Send command SET_BLOCK_COUNT to the addressed EMMC device to set the number of blocks for the following block read/write cmd. Refer to EMMC Electrical Standard Spec 5.1 Section 6.10.4 for details. @param[in] Slot The slot number of the Emmc card to send the command to. @param[in] BlockCount The number of the logical block to access. @retval EFI_SUCCESS The operation is done correctly. @retval Others The operation fails. **/ EFI_STATUS EmmcPeimSetBlkCount ( IN EMMC_PEIM_HC_SLOT *Slot, IN UINT16 BlockCount ) { EMMC_COMMAND_BLOCK EmmcCmdBlk; EMMC_STATUS_BLOCK EmmcStatusBlk; EMMC_COMMAND_PACKET Packet; EFI_STATUS Status; ZeroMem (&EmmcCmdBlk, sizeof (EmmcCmdBlk)); ZeroMem (&EmmcStatusBlk, sizeof (EmmcStatusBlk)); ZeroMem (&Packet, sizeof (Packet)); Packet.EmmcCmdBlk = &EmmcCmdBlk; Packet.EmmcStatusBlk = &EmmcStatusBlk; Packet.Timeout = EMMC_TIMEOUT; EmmcCmdBlk.CommandIndex = EMMC_SET_BLOCK_COUNT; EmmcCmdBlk.CommandType = EmmcCommandTypeAc; EmmcCmdBlk.ResponseType = EmmcResponceTypeR1; EmmcCmdBlk.CommandArgument = BlockCount; Status = EmmcPeimExecCmd (Slot, &Packet); return Status; } /** Send command READ_MULTIPLE_BLOCK/WRITE_MULTIPLE_BLOCK to the addressed EMMC device to read/write the specified number of blocks. Refer to EMMC Electrical Standard Spec 5.1 Section 6.10.4 for details. @param[in] Slot The slot number of the Emmc card to send the command to. @param[in] Lba The logical block address of starting access. @param[in] BlockSize The block size of specified EMMC device partition. @param[in] Buffer The pointer to the transfer buffer. @param[in] BufferSize The size of transfer buffer. @param[in] IsRead Boolean to show the operation direction. @retval EFI_SUCCESS The operation is done correctly. @retval Others The operation fails. **/ EFI_STATUS EmmcPeimRwMultiBlocks ( IN EMMC_PEIM_HC_SLOT *Slot, IN EFI_LBA Lba, IN UINT32 BlockSize, IN VOID *Buffer, IN UINTN BufferSize, IN BOOLEAN IsRead ) { EMMC_COMMAND_BLOCK EmmcCmdBlk; EMMC_STATUS_BLOCK EmmcStatusBlk; EMMC_COMMAND_PACKET Packet; EFI_STATUS Status; ZeroMem (&EmmcCmdBlk, sizeof (EmmcCmdBlk)); ZeroMem (&EmmcStatusBlk, sizeof (EmmcStatusBlk)); ZeroMem (&Packet, sizeof (Packet)); Packet.EmmcCmdBlk = &EmmcCmdBlk; Packet.EmmcStatusBlk = &EmmcStatusBlk; // // Calculate timeout value through the below formula. // Timeout = (transfer size) / (2MB/s). // Taking 2MB/s as divisor is because it's nearest to the eMMC lowest // transfer speed (2.4MB/s). // Refer to eMMC 5.0 spec section 6.9.1 for details. // Packet.Timeout = (BufferSize / (2 * 1024 * 1024) + 1) * 1000 * 1000;; if (IsRead) { Packet.InDataBuffer = Buffer; Packet.InTransferLength = (UINT32)BufferSize; EmmcCmdBlk.CommandIndex = EMMC_READ_MULTIPLE_BLOCK; EmmcCmdBlk.CommandType = EmmcCommandTypeAdtc; EmmcCmdBlk.ResponseType = EmmcResponceTypeR1; } else { Packet.OutDataBuffer = Buffer; Packet.OutTransferLength = (UINT32)BufferSize; EmmcCmdBlk.CommandIndex = EMMC_WRITE_MULTIPLE_BLOCK; EmmcCmdBlk.CommandType = EmmcCommandTypeAdtc; EmmcCmdBlk.ResponseType = EmmcResponceTypeR1; } if (Slot->SectorAddressing) { EmmcCmdBlk.CommandArgument = (UINT32)Lba; } else { EmmcCmdBlk.CommandArgument = (UINT32)MultU64x32 (Lba, BlockSize); } Status = EmmcPeimExecCmd (Slot, &Packet); return Status; } /** Send command SEND_TUNING_BLOCK to the EMMC device for HS200 optimal sampling point detection. It may be sent up to 40 times until the host finishes the tuning procedure. Refer to EMMC Electrical Standard Spec 5.1 Section 6.6.8 for details. @param[in] Slot The slot number of the Emmc card to send the command to. @param[in] BusWidth The bus width to work. @retval EFI_SUCCESS The operation is done correctly. @retval Others The operation fails. **/ EFI_STATUS EmmcPeimSendTuningBlk ( IN EMMC_PEIM_HC_SLOT *Slot, IN UINT8 BusWidth ) { EMMC_COMMAND_BLOCK EmmcCmdBlk; EMMC_STATUS_BLOCK EmmcStatusBlk; EMMC_COMMAND_PACKET Packet; EFI_STATUS Status; UINT8 TuningBlock[128]; ZeroMem (&EmmcCmdBlk, sizeof (EmmcCmdBlk)); ZeroMem (&EmmcStatusBlk, sizeof (EmmcStatusBlk)); ZeroMem (&Packet, sizeof (Packet)); Packet.EmmcCmdBlk = &EmmcCmdBlk; Packet.EmmcStatusBlk = &EmmcStatusBlk; Packet.Timeout = EMMC_TIMEOUT; EmmcCmdBlk.CommandIndex = EMMC_SEND_TUNING_BLOCK; EmmcCmdBlk.CommandType = EmmcCommandTypeAdtc; EmmcCmdBlk.ResponseType = EmmcResponceTypeR1; EmmcCmdBlk.CommandArgument = 0; Packet.InDataBuffer = TuningBlock; if (BusWidth == 8) { Packet.InTransferLength = sizeof (TuningBlock); } else { Packet.InTransferLength = 64; } Status = EmmcPeimExecCmd (Slot, &Packet); return Status; } /** Tunning the clock to get HS200 optimal sampling point. Command SEND_TUNING_BLOCK may be sent up to 40 times until the host finishes the tuning procedure. Refer to EMMC Electrical Standard Spec 5.1 Section 6.6.8 and SD Host Controller Simplified Spec 3.0 section Figure 2-29 for details. @param[in] Slot The slot number of the Emmc card to send the command to. @param[in] BusWidth The bus width to work. @retval EFI_SUCCESS The operation is done correctly. @retval Others The operation fails. **/ EFI_STATUS EmmcPeimTuningClkForHs200 ( IN EMMC_PEIM_HC_SLOT *Slot, IN UINT8 BusWidth ) { EFI_STATUS Status; UINT8 HostCtrl2; UINT8 Retry; // // Notify the host that the sampling clock tuning procedure starts. // HostCtrl2 = BIT6; Status = EmmcPeimHcOrMmio (Slot->EmmcHcBase + EMMC_HC_HOST_CTRL2, sizeof (HostCtrl2), &HostCtrl2); if (EFI_ERROR (Status)) { return Status; } // // Ask the device to send a sequence of tuning blocks till the tuning procedure is done. // Retry = 0; do { Status = EmmcPeimSendTuningBlk (Slot, BusWidth); if (EFI_ERROR (Status)) { return Status; } Status = EmmcPeimHcRwMmio (Slot->EmmcHcBase + EMMC_HC_HOST_CTRL2, TRUE, sizeof (HostCtrl2), &HostCtrl2); if (EFI_ERROR (Status)) { return Status; } if ((HostCtrl2 & (BIT6 | BIT7)) == 0) { break; } if ((HostCtrl2 & (BIT6 | BIT7)) == BIT7) { return EFI_SUCCESS; } } while (++Retry < 40); DEBUG ((EFI_D_ERROR, "EmmcPeimTuningClkForHs200: Send tuning block fails at %d times with HostCtrl2 %02x\n", Retry, HostCtrl2)); // // Abort the tuning procedure and reset the tuning circuit. // HostCtrl2 = (UINT8)~(BIT6 | BIT7); Status = EmmcPeimHcAndMmio (Slot->EmmcHcBase + EMMC_HC_HOST_CTRL2, sizeof (HostCtrl2), &HostCtrl2); if (EFI_ERROR (Status)) { return Status; } return EFI_DEVICE_ERROR; } /** Switch the bus width to specified width. Refer to EMMC Electrical Standard Spec 5.1 Section 6.6.9 and SD Host Controller Simplified Spec 3.0 section Figure 3-7 for details. @param[in] Slot The slot number of the Emmc card to send the command to. @param[in] Rca The relative device address to be assigned. @param[in] IsDdr If TRUE, use dual data rate data simpling method. Otherwise use single data rate data simpling method. @param[in] BusWidth The bus width to be set, it could be 4 or 8. @retval EFI_SUCCESS The operation is done correctly. @retval Others The operation fails. **/ EFI_STATUS EmmcPeimSwitchBusWidth ( IN EMMC_PEIM_HC_SLOT *Slot, IN UINT32 Rca, IN BOOLEAN IsDdr, IN UINT8 BusWidth ) { EFI_STATUS Status; UINT8 Access; UINT8 Index; UINT8 Value; UINT8 CmdSet; UINT32 DevStatus; // // Write Byte, the Value field is written into the byte pointed by Index. // Access = 0x03; Index = OFFSET_OF (EMMC_EXT_CSD, BusWidth); if (BusWidth == 4) { Value = 1; } else if (BusWidth == 8) { Value = 2; } else { return EFI_INVALID_PARAMETER; } if (IsDdr) { Value += 4; } CmdSet = 0; Status = EmmcPeimSwitch (Slot, Access, Index, Value, CmdSet); if (EFI_ERROR (Status)) { return Status; } Status = EmmcPeimSendStatus (Slot, Rca, &DevStatus); if (EFI_ERROR (Status)) { return Status; } // // Check the switch operation is really successful or not. // if ((DevStatus & BIT7) != 0) { return EFI_DEVICE_ERROR; } Status = EmmcPeimHcSetBusWidth (Slot->EmmcHcBase, BusWidth); return Status; } /** Switch the clock frequency to the specified value. Refer to EMMC Electrical Standard Spec 5.1 Section 6.6 and SD Host Controller Simplified Spec 3.0 section Figure 3-3 for details. @param[in] Slot The slot number of the Emmc card to send the command to. @param[in] Rca The relative device address to be assigned. @param[in] HsTiming The value to be written to HS_TIMING field of EXT_CSD register. @param[in] ClockFreq The max clock frequency to be set, the unit is MHz. @retval EFI_SUCCESS The operation is done correctly. @retval Others The operation fails. **/ EFI_STATUS EmmcPeimSwitchClockFreq ( IN EMMC_PEIM_HC_SLOT *Slot, IN UINT32 Rca, IN UINT8 HsTiming, IN UINT32 ClockFreq ) { EFI_STATUS Status; UINT8 Access; UINT8 Index; UINT8 Value; UINT8 CmdSet; UINT32 DevStatus; // // Write Byte, the Value field is written into the byte pointed by Index. // Access = 0x03; Index = OFFSET_OF (EMMC_EXT_CSD, HsTiming); Value = HsTiming; CmdSet = 0; Status = EmmcPeimSwitch (Slot, Access, Index, Value, CmdSet); if (EFI_ERROR (Status)) { return Status; } Status = EmmcPeimSendStatus (Slot, Rca, &DevStatus); if (EFI_ERROR (Status)) { return Status; } // // Check the switch operation is really successful or not. // if ((DevStatus & BIT7) != 0) { return EFI_DEVICE_ERROR; } // // Convert the clock freq unit from MHz to KHz. // Status = EmmcPeimHcClockSupply (Slot->EmmcHcBase, ClockFreq * 1000); return Status; } /** Switch to the High Speed timing according to request. Refer to EMMC Electrical Standard Spec 5.1 Section 6.6.8 and SD Host Controller Simplified Spec 3.0 section Figure 2-29 for details. @param[in] Slot The slot number of the Emmc card to send the command to. @param[in] Rca The relative device address to be assigned. @param[in] ClockFreq The max clock frequency to be set. @param[in] IsDdr If TRUE, use dual data rate data simpling method. Otherwise use single data rate data simpling method. @param[in] BusWidth The bus width to be set, it could be 4 or 8. @retval EFI_SUCCESS The operation is done correctly. @retval Others The operation fails. **/ EFI_STATUS EmmcPeimSwitchToHighSpeed ( IN EMMC_PEIM_HC_SLOT *Slot, IN UINT32 Rca, IN UINT32 ClockFreq, IN BOOLEAN IsDdr, IN UINT8 BusWidth ) { EFI_STATUS Status; UINT8 HsTiming; UINT8 HostCtrl1; UINT8 HostCtrl2; Status = EmmcPeimSwitchBusWidth (Slot, Rca, IsDdr, BusWidth); if (EFI_ERROR (Status)) { return Status; } // // Set to Hight Speed timing // HostCtrl1 = BIT2; Status = EmmcPeimHcOrMmio (Slot->EmmcHcBase + EMMC_HC_HOST_CTRL1, sizeof (HostCtrl1), &HostCtrl1); if (EFI_ERROR (Status)) { return Status; } HostCtrl2 = (UINT8)~0x7; Status = EmmcPeimHcAndMmio (Slot->EmmcHcBase + EMMC_HC_HOST_CTRL2, sizeof (HostCtrl2), &HostCtrl2); if (EFI_ERROR (Status)) { return Status; } if (IsDdr) { HostCtrl2 = BIT2; } else if (ClockFreq == 52) { HostCtrl2 = BIT0; } else { HostCtrl2 = 0; } Status = EmmcPeimHcOrMmio (Slot->EmmcHcBase + EMMC_HC_HOST_CTRL2, sizeof (HostCtrl2), &HostCtrl2); if (EFI_ERROR (Status)) { return Status; } HsTiming = 1; Status = EmmcPeimSwitchClockFreq (Slot, Rca, HsTiming, ClockFreq); return Status; } /** Switch to the HS200 timing according to request. Refer to EMMC Electrical Standard Spec 5.1 Section 6.6.8 and SD Host Controller Simplified Spec 3.0 section Figure 2-29 for details. @param[in] Slot The slot number of the Emmc card to send the command to. @param[in] Rca The relative device address to be assigned. @param[in] ClockFreq The max clock frequency to be set. @param[in] BusWidth The bus width to be set, it could be 4 or 8. @retval EFI_SUCCESS The operation is done correctly. @retval Others The operation fails. **/ EFI_STATUS EmmcPeimSwitchToHS200 ( IN EMMC_PEIM_HC_SLOT *Slot, IN UINT32 Rca, IN UINT32 ClockFreq, IN UINT8 BusWidth ) { EFI_STATUS Status; UINT8 HsTiming; UINT8 HostCtrl2; UINT16 ClockCtrl; if ((BusWidth != 4) && (BusWidth != 8)) { return EFI_INVALID_PARAMETER; } Status = EmmcPeimSwitchBusWidth (Slot, Rca, FALSE, BusWidth); if (EFI_ERROR (Status)) { return Status; } // // Set to HS200/SDR104 timing // // // Stop bus clock at first // Status = EmmcPeimHcStopClock (Slot->EmmcHcBase); if (EFI_ERROR (Status)) { return Status; } HostCtrl2 = (UINT8)~0x7; Status = EmmcPeimHcAndMmio (Slot->EmmcHcBase + EMMC_HC_HOST_CTRL2, sizeof (HostCtrl2), &HostCtrl2); if (EFI_ERROR (Status)) { return Status; } HostCtrl2 = BIT0 | BIT1; Status = EmmcPeimHcOrMmio (Slot->EmmcHcBase + EMMC_HC_HOST_CTRL2, sizeof (HostCtrl2), &HostCtrl2); if (EFI_ERROR (Status)) { return Status; } // // Wait Internal Clock Stable in the Clock Control register to be 1 before set SD Clock Enable bit // Status = EmmcPeimHcWaitMmioSet ( Slot->EmmcHcBase + EMMC_HC_CLOCK_CTRL, sizeof (ClockCtrl), BIT1, BIT1, EMMC_TIMEOUT ); if (EFI_ERROR (Status)) { return Status; } // // Set SD Clock Enable in the Clock Control register to 1 // ClockCtrl = BIT2; Status = EmmcPeimHcOrMmio (Slot->EmmcHcBase + EMMC_HC_CLOCK_CTRL, sizeof (ClockCtrl), &ClockCtrl); HsTiming = 2; Status = EmmcPeimSwitchClockFreq (Slot, Rca, HsTiming, ClockFreq); if (EFI_ERROR (Status)) { return Status; } Status = EmmcPeimTuningClkForHs200 (Slot, BusWidth); return Status; } /** Switch to the HS400 timing according to request. Refer to EMMC Electrical Standard Spec 5.1 Section 6.6.8 and SD Host Controller Simplified Spec 3.0 section Figure 2-29 for details. @param[in] Slot The slot number of the Emmc card to send the command to. @param[in] Rca The relative device address to be assigned. @param[in] ClockFreq The max clock frequency to be set. @retval EFI_SUCCESS The operation is done correctly. @retval Others The operation fails. **/ EFI_STATUS EmmcPeimSwitchToHS400 ( IN EMMC_PEIM_HC_SLOT *Slot, IN UINT32 Rca, IN UINT32 ClockFreq ) { EFI_STATUS Status; UINT8 HsTiming; UINT8 HostCtrl2; Status = EmmcPeimSwitchToHS200 (Slot, Rca, ClockFreq, 8); if (EFI_ERROR (Status)) { return Status; } // // Set to Hight Speed timing and set the clock frequency to a value less than 52MHz. // HsTiming = 1; Status = EmmcPeimSwitchClockFreq (Slot, Rca, HsTiming, 52); if (EFI_ERROR (Status)) { return Status; } // // HS400 mode must use 8 data lines. // Status = EmmcPeimSwitchBusWidth (Slot, Rca, TRUE, 8); if (EFI_ERROR (Status)) { return Status; } // // Set to HS400 timing // HostCtrl2 = (UINT8)~0x7; Status = EmmcPeimHcAndMmio (Slot->EmmcHcBase + EMMC_HC_HOST_CTRL2, sizeof (HostCtrl2), &HostCtrl2); if (EFI_ERROR (Status)) { return Status; } HostCtrl2 = BIT0 | BIT2; Status = EmmcPeimHcOrMmio (Slot->EmmcHcBase + EMMC_HC_HOST_CTRL2, sizeof (HostCtrl2), &HostCtrl2); if (EFI_ERROR (Status)) { return Status; } HsTiming = 3; Status = EmmcPeimSwitchClockFreq (Slot, Rca, HsTiming, ClockFreq); return Status; } /** Switch the high speed timing according to request. Refer to EMMC Electrical Standard Spec 5.1 Section 6.6.8 and SD Host Controller Simplified Spec 3.0 section Figure 2-29 for details. @param[in] Slot The slot number of the Emmc card to send the command to. @param[in] Rca The relative device address to be assigned. @retval EFI_SUCCESS The operation is done correctly. @retval Others The operation fails. **/ EFI_STATUS EmmcPeimSetBusMode ( IN EMMC_PEIM_HC_SLOT *Slot, IN UINT32 Rca ) { EFI_STATUS Status; EMMC_HC_SLOT_CAP Capability; UINT8 HsTiming; BOOLEAN IsDdr; UINT32 ClockFreq; UINT8 BusWidth; Status = EmmcPeimGetCsd (Slot, Rca, &Slot->Csd); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "EmmcPeimSetBusMode: EmmcPeimGetCsd fails with %r\n", Status)); return Status; } if ((Slot->Csd.CSizeLow | Slot->Csd.CSizeHigh << 2) == 0xFFF) { Slot->SectorAddressing = TRUE; } else { Slot->SectorAddressing = FALSE; } Status = EmmcPeimSelect (Slot, Rca); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "EmmcPeimSetBusMode: EmmcPeimSelect fails with %r\n", Status)); return Status; } Status = EmmcPeimHcGetCapability (Slot->EmmcHcBase, &Capability); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "EmmcPeimSetBusMode: EmmcPeimHcGetCapability fails with %r\n", Status)); return Status; } ASSERT (Capability.BaseClkFreq != 0); // // Check if the Host Controller support 8bits bus width. // if (Capability.BusWidth8 != 0) { BusWidth = 8; } else { BusWidth = 4; } // // Get Deivce_Type from EXT_CSD register. // Status = EmmcPeimGetExtCsd (Slot, &Slot->ExtCsd); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "EmmcPeimSetBusMode: EmmcPeimGetExtCsd fails with %r\n", Status)); return Status; } // // Calculate supported bus speed/bus width/clock frequency. // HsTiming = 0; IsDdr = FALSE; ClockFreq = 0; if (((Slot->ExtCsd.DeviceType & (BIT4 | BIT5)) != 0) && (Capability.Sdr104 != 0)) { HsTiming = 2; IsDdr = FALSE; ClockFreq = 200; } else if (((Slot->ExtCsd.DeviceType & (BIT2 | BIT3)) != 0) && (Capability.Ddr50 != 0)) { HsTiming = 1; IsDdr = TRUE; ClockFreq = 52; } else if (((Slot->ExtCsd.DeviceType & BIT1) != 0) && (Capability.HighSpeed != 0)) { HsTiming = 1; IsDdr = FALSE; ClockFreq = 52; } else if (((Slot->ExtCsd.DeviceType & BIT0) != 0) && (Capability.HighSpeed != 0)) { HsTiming = 1; IsDdr = FALSE; ClockFreq = 26; } // // Check if both of the device and the host controller support HS400 DDR mode. // if (((Slot->ExtCsd.DeviceType & (BIT6 | BIT7)) != 0) && (Capability.Hs400 != 0)) { // // The host controller supports 8bits bus. // ASSERT (BusWidth == 8); HsTiming = 3; IsDdr = TRUE; ClockFreq = 200; } if ((ClockFreq == 0) || (HsTiming == 0)) { // // Continue using default setting. // return EFI_SUCCESS; } DEBUG ((EFI_D_INFO, "HsTiming %d ClockFreq %d BusWidth %d Ddr %a\n", HsTiming, ClockFreq, BusWidth, IsDdr ? "TRUE":"FALSE")); if (HsTiming == 3) { // // Execute HS400 timing switch procedure // Status = EmmcPeimSwitchToHS400 (Slot, Rca, ClockFreq); } else if (HsTiming == 2) { // // Execute HS200 timing switch procedure // Status = EmmcPeimSwitchToHS200 (Slot, Rca, ClockFreq, BusWidth); } else { // // Execute High Speed timing switch procedure // Status = EmmcPeimSwitchToHighSpeed (Slot, Rca, ClockFreq, IsDdr, BusWidth); } return Status; } /** Execute EMMC device identification procedure. Refer to EMMC Electrical Standard Spec 5.1 Section 6.4 for details. @param[in] Slot The slot number of the Emmc card to send the command to. @retval EFI_SUCCESS There is a EMMC card. @retval Others There is not a EMMC card. **/ EFI_STATUS EmmcPeimIdentification ( IN EMMC_PEIM_HC_SLOT *Slot ) { EFI_STATUS Status; UINT32 Ocr; UINT32 Rca; UINTN Retry; Status = EmmcPeimReset (Slot); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "EmmcPeimIdentification: EmmcPeimReset fails with %r\n", Status)); return Status; } Ocr = 0; Retry = 0; do { Status = EmmcPeimGetOcr (Slot, &Ocr); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "EmmcPeimIdentification: EmmcPeimGetOcr fails with %r\n", Status)); return Status; } if (Retry++ == 100) { DEBUG ((EFI_D_ERROR, "EmmcPeimIdentification: EmmcPeimGetOcr fails too many times\n")); return EFI_DEVICE_ERROR; } MicroSecondDelay (10 * 1000); } while ((Ocr & BIT31) == 0); Status = EmmcPeimGetAllCid (Slot); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "EmmcPeimIdentification: EmmcPeimGetAllCid fails with %r\n", Status)); return Status; } // // Don't support multiple devices on the slot, that is // shared bus slot feature. // Rca = 1; Status = EmmcPeimSetRca (Slot, Rca); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "EmmcPeimIdentification: EmmcPeimSetRca fails with %r\n", Status)); return Status; } // // Enter Data Tranfer Mode. // DEBUG ((EFI_D_INFO, "Found a EMMC device at slot [%d], RCA [%d]\n", Slot, Rca)); Status = EmmcPeimSetBusMode (Slot, Rca); return Status; }