/** @file Declaration of internal functions in BaseLib. Copyright (c) 2006 - 2017, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php. THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #ifndef __BASE_LIB_INTERNALS__ #define __BASE_LIB_INTERNALS__ #include #include #include #include #include // // Math functions // /** Shifts a 64-bit integer left between 0 and 63 bits. The low bits are filled with zeros. The shifted value is returned. This function shifts the 64-bit value Operand to the left by Count bits. The low Count bits are set to zero. The shifted value is returned. @param Operand The 64-bit operand to shift left. @param Count The number of bits to shift left. @return Operand << Count **/ UINT64 EFIAPI InternalMathLShiftU64 ( IN UINT64 Operand, IN UINTN Count ); /** Shifts a 64-bit integer right between 0 and 63 bits. The high bits are filled with zeros. The shifted value is returned. This function shifts the 64-bit value Operand to the right by Count bits. The high Count bits are set to zero. The shifted value is returned. @param Operand The 64-bit operand to shift right. @param Count The number of bits to shift right. @return Operand >> Count **/ UINT64 EFIAPI InternalMathRShiftU64 ( IN UINT64 Operand, IN UINTN Count ); /** Shifts a 64-bit integer right between 0 and 63 bits. The high bits are filled with original integer's bit 63. The shifted value is returned. This function shifts the 64-bit value Operand to the right by Count bits. The high Count bits are set to bit 63 of Operand. The shifted value is returned. @param Operand The 64-bit operand to shift right. @param Count The number of bits to shift right. @return Operand arithmetically shifted right by Count **/ UINT64 EFIAPI InternalMathARShiftU64 ( IN UINT64 Operand, IN UINTN Count ); /** Rotates a 64-bit integer left between 0 and 63 bits, filling the low bits with the high bits that were rotated. This function rotates the 64-bit value Operand to the left by Count bits. The low Count bits are filled with the high Count bits of Operand. The rotated value is returned. @param Operand The 64-bit operand to rotate left. @param Count The number of bits to rotate left. @return Operand <<< Count **/ UINT64 EFIAPI InternalMathLRotU64 ( IN UINT64 Operand, IN UINTN Count ); /** Rotates a 64-bit integer right between 0 and 63 bits, filling the high bits with the high low bits that were rotated. This function rotates the 64-bit value Operand to the right by Count bits. The high Count bits are filled with the low Count bits of Operand. The rotated value is returned. @param Operand The 64-bit operand to rotate right. @param Count The number of bits to rotate right. @return Operand >>> Count **/ UINT64 EFIAPI InternalMathRRotU64 ( IN UINT64 Operand, IN UINTN Count ); /** Switches the endianess of a 64-bit integer. This function swaps the bytes in a 64-bit unsigned value to switch the value from little endian to big endian or vice versa. The byte swapped value is returned. @param Operand A 64-bit unsigned value. @return The byte swapped Operand. **/ UINT64 EFIAPI InternalMathSwapBytes64 ( IN UINT64 Operand ); /** Multiplies a 64-bit unsigned integer by a 32-bit unsigned integer and generates a 64-bit unsigned result. This function multiplies the 64-bit unsigned value Multiplicand by the 32-bit unsigned value Multiplier and generates a 64-bit unsigned result. This 64- bit unsigned result is returned. @param Multiplicand A 64-bit unsigned value. @param Multiplier A 32-bit unsigned value. @return Multiplicand * Multiplier **/ UINT64 EFIAPI InternalMathMultU64x32 ( IN UINT64 Multiplicand, IN UINT32 Multiplier ); /** Multiplies a 64-bit unsigned integer by a 64-bit unsigned integer and generates a 64-bit unsigned result. This function multiples the 64-bit unsigned value Multiplicand by the 64-bit unsigned value Multiplier and generates a 64-bit unsigned result. This 64- bit unsigned result is returned. @param Multiplicand A 64-bit unsigned value. @param Multiplier A 64-bit unsigned value. @return Multiplicand * Multiplier **/ UINT64 EFIAPI InternalMathMultU64x64 ( IN UINT64 Multiplicand, IN UINT64 Multiplier ); /** Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates a 64-bit unsigned result. This function divides the 64-bit unsigned value Dividend by the 32-bit unsigned value Divisor and generates a 64-bit unsigned quotient. This function returns the 64-bit unsigned quotient. @param Dividend A 64-bit unsigned value. @param Divisor A 32-bit unsigned value. @return Dividend / Divisor **/ UINT64 EFIAPI InternalMathDivU64x32 ( IN UINT64 Dividend, IN UINT32 Divisor ); /** Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates a 32-bit unsigned remainder. This function divides the 64-bit unsigned value Dividend by the 32-bit unsigned value Divisor and generates a 32-bit remainder. This function returns the 32-bit unsigned remainder. @param Dividend A 64-bit unsigned value. @param Divisor A 32-bit unsigned value. @return Dividend % Divisor **/ UINT32 EFIAPI InternalMathModU64x32 ( IN UINT64 Dividend, IN UINT32 Divisor ); /** Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates a 64-bit unsigned result and an optional 32-bit unsigned remainder. This function divides the 64-bit unsigned value Dividend by the 32-bit unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder is not NULL, then the 32-bit unsigned remainder is returned in Remainder. This function returns the 64-bit unsigned quotient. @param Dividend A 64-bit unsigned value. @param Divisor A 32-bit unsigned value. @param Remainder A pointer to a 32-bit unsigned value. This parameter is optional and may be NULL. @return Dividend / Divisor **/ UINT64 EFIAPI InternalMathDivRemU64x32 ( IN UINT64 Dividend, IN UINT32 Divisor, OUT UINT32 *Remainder OPTIONAL ); /** Divides a 64-bit unsigned integer by a 64-bit unsigned integer and generates a 64-bit unsigned result and an optional 64-bit unsigned remainder. This function divides the 64-bit unsigned value Dividend by the 64-bit unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder is not NULL, then the 64-bit unsigned remainder is returned in Remainder. This function returns the 64-bit unsigned quotient. @param Dividend A 64-bit unsigned value. @param Divisor A 64-bit unsigned value. @param Remainder A pointer to a 64-bit unsigned value. This parameter is optional and may be NULL. @return Dividend / Divisor **/ UINT64 EFIAPI InternalMathDivRemU64x64 ( IN UINT64 Dividend, IN UINT64 Divisor, OUT UINT64 *Remainder OPTIONAL ); /** Divides a 64-bit signed integer by a 64-bit signed integer and generates a 64-bit signed result and an optional 64-bit signed remainder. This function divides the 64-bit signed value Dividend by the 64-bit signed value Divisor and generates a 64-bit signed quotient. If Remainder is not NULL, then the 64-bit signed remainder is returned in Remainder. This function returns the 64-bit signed quotient. @param Dividend A 64-bit signed value. @param Divisor A 64-bit signed value. @param Remainder A pointer to a 64-bit signed value. This parameter is optional and may be NULL. @return Dividend / Divisor **/ INT64 EFIAPI InternalMathDivRemS64x64 ( IN INT64 Dividend, IN INT64 Divisor, OUT INT64 *Remainder OPTIONAL ); /** Transfers control to a function starting with a new stack. Transfers control to the function specified by EntryPoint using the new stack specified by NewStack and passing in the parameters specified by Context1 and Context2. Context1 and Context2 are optional and may be NULL. The function EntryPoint must never return. Marker will be ignored on IA-32, x64, and EBC. IPF CPUs expect one additional parameter of type VOID * that specifies the new backing store pointer. If EntryPoint is NULL, then ASSERT(). If NewStack is NULL, then ASSERT(). @param EntryPoint A pointer to function to call with the new stack. @param Context1 A pointer to the context to pass into the EntryPoint function. @param Context2 A pointer to the context to pass into the EntryPoint function. @param NewStack A pointer to the new stack to use for the EntryPoint function. @param Marker VA_LIST marker for the variable argument list. **/ VOID EFIAPI InternalSwitchStack ( IN SWITCH_STACK_ENTRY_POINT EntryPoint, IN VOID *Context1, OPTIONAL IN VOID *Context2, OPTIONAL IN VOID *NewStack, IN VA_LIST Marker ); /** Worker function that locates the Node in the List. By searching the List, finds the location of the Node in List. At the same time, verifies the validity of this list. If List is NULL, then ASSERT(). If List->ForwardLink is NULL, then ASSERT(). If List->backLink is NULL, then ASSERT(). If Node is NULL, then ASSERT(); If PcdMaximumLinkedListLength is not zero, and prior to insertion the number of nodes in ListHead, including the ListHead node, is greater than or equal to PcdMaximumLinkedListLength, then ASSERT(). @param List A pointer to a node in a linked list. @param Node A pointer to one nod. @retval TRUE Node is in List. @retval FALSE Node isn't in List, or List is invalid. **/ BOOLEAN EFIAPI IsNodeInList ( IN CONST LIST_ENTRY *List, IN CONST LIST_ENTRY *Node ); /** Worker function that returns a bit field from Operand. Returns the bitfield specified by the StartBit and the EndBit from Operand. @param Operand Operand on which to perform the bitfield operation. @param StartBit The ordinal of the least significant bit in the bit field. @param EndBit The ordinal of the most significant bit in the bit field. @return The bit field read. **/ UINTN EFIAPI BitFieldReadUint ( IN UINTN Operand, IN UINTN StartBit, IN UINTN EndBit ); /** Worker function that reads a bit field from Operand, performs a bitwise OR, and returns the result. Performs a bitwise OR between the bit field specified by StartBit and EndBit in Operand and the value specified by AndData. All other bits in Operand are preserved. The new value is returned. @param Operand Operand on which to perform the bitfield operation. @param StartBit The ordinal of the least significant bit in the bit field. @param EndBit The ordinal of the most significant bit in the bit field. @param OrData The value to OR with the read value from the value @return The new value. **/ UINTN EFIAPI BitFieldOrUint ( IN UINTN Operand, IN UINTN StartBit, IN UINTN EndBit, IN UINTN OrData ); /** Worker function that reads a bit field from Operand, performs a bitwise AND, and returns the result. Performs a bitwise AND between the bit field specified by StartBit and EndBit in Operand and the value specified by AndData. All other bits in Operand are preserved. The new value is returned. @param Operand Operand on which to perform the bitfield operation. @param StartBit The ordinal of the least significant bit in the bit field. @param EndBit The ordinal of the most significant bit in the bit field. @param AndData The value to And with the read value from the value @return The new value. **/ UINTN EFIAPI BitFieldAndUint ( IN UINTN Operand, IN UINTN StartBit, IN UINTN EndBit, IN UINTN AndData ); /** Worker function that checks ASSERT condition for JumpBuffer Checks ASSERT condition for JumpBuffer. If JumpBuffer is NULL, then ASSERT(). For IPF CPUs, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT(). @param JumpBuffer A pointer to CPU context buffer. **/ VOID EFIAPI InternalAssertJumpBuffer ( IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer ); /** Restores the CPU context that was saved with SetJump(). Restores the CPU context from the buffer specified by JumpBuffer. This function never returns to the caller. Instead is resumes execution based on the state of JumpBuffer. @param JumpBuffer A pointer to CPU context buffer. @param Value The value to return when the SetJump() context is restored. **/ VOID EFIAPI InternalLongJump ( IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer, IN UINTN Value ); /** Check if a Unicode character is a decimal character. This internal function checks if a Unicode character is a decimal character. The valid decimal character is from L'0' to L'9'. @param Char The character to check against. @retval TRUE If the Char is a decmial character. @retval FALSE If the Char is not a decmial character. **/ BOOLEAN EFIAPI InternalIsDecimalDigitCharacter ( IN CHAR16 Char ); /** Convert a Unicode character to upper case only if it maps to a valid small-case ASCII character. This internal function only deal with Unicode character which maps to a valid small-case ASCII character, i.e. L'a' to L'z'. For other Unicode character, the input character is returned directly. @param Char The character to convert. @retval LowerCharacter If the Char is with range L'a' to L'z'. @retval Unchanged Otherwise. **/ CHAR16 EFIAPI InternalCharToUpper ( IN CHAR16 Char ); /** Convert a Unicode character to numerical value. This internal function only deal with Unicode character which maps to a valid hexadecimal ASII character, i.e. L'0' to L'9', L'a' to L'f' or L'A' to L'F'. For other Unicode character, the value returned does not make sense. @param Char The character to convert. @return The numerical value converted. **/ UINTN EFIAPI InternalHexCharToUintn ( IN CHAR16 Char ); /** Check if a Unicode character is a hexadecimal character. This internal function checks if a Unicode character is a decimal character. The valid hexadecimal character is L'0' to L'9', L'a' to L'f', or L'A' to L'F'. @param Char The character to check against. @retval TRUE If the Char is a hexadecmial character. @retval FALSE If the Char is not a hexadecmial character. **/ BOOLEAN EFIAPI InternalIsHexaDecimalDigitCharacter ( IN CHAR16 Char ); /** Check if a ASCII character is a decimal character. This internal function checks if a Unicode character is a decimal character. The valid decimal character is from '0' to '9'. @param Char The character to check against. @retval TRUE If the Char is a decmial character. @retval FALSE If the Char is not a decmial character. **/ BOOLEAN EFIAPI InternalAsciiIsDecimalDigitCharacter ( IN CHAR8 Char ); /** Converts a lowercase Ascii character to upper one. If Chr is lowercase Ascii character, then converts it to upper one. If Value >= 0xA0, then ASSERT(). If (Value & 0x0F) >= 0x0A, then ASSERT(). @param Chr one Ascii character @return The uppercase value of Ascii character **/ CHAR8 EFIAPI InternalBaseLibAsciiToUpper ( IN CHAR8 Chr ); /** Check if a ASCII character is a hexadecimal character. This internal function checks if a ASCII character is a decimal character. The valid hexadecimal character is L'0' to L'9', L'a' to L'f', or L'A' to L'F'. @param Char The character to check against. @retval TRUE If the Char is a hexadecmial character. @retval FALSE If the Char is not a hexadecmial character. **/ BOOLEAN EFIAPI InternalAsciiIsHexaDecimalDigitCharacter ( IN CHAR8 Char ); /** Convert a ASCII character to numerical value. This internal function only deal with Unicode character which maps to a valid hexadecimal ASII character, i.e. '0' to '9', 'a' to 'f' or 'A' to 'F'. For other ASCII character, the value returned does not make sense. @param Char The character to convert. @return The numerical value converted. **/ UINTN EFIAPI InternalAsciiHexCharToUintn ( IN CHAR8 Char ); // // Ia32 and x64 specific functions // #if defined (MDE_CPU_IA32) || defined (MDE_CPU_X64) /** Reads the current Global Descriptor Table Register(GDTR) descriptor. Reads and returns the current GDTR descriptor and returns it in Gdtr. This function is only available on IA-32 and x64. @param Gdtr The pointer to a GDTR descriptor. **/ VOID EFIAPI InternalX86ReadGdtr ( OUT IA32_DESCRIPTOR *Gdtr ); /** Writes the current Global Descriptor Table Register (GDTR) descriptor. Writes and the current GDTR descriptor specified by Gdtr. This function is only available on IA-32 and x64. @param Gdtr The pointer to a GDTR descriptor. **/ VOID EFIAPI InternalX86WriteGdtr ( IN CONST IA32_DESCRIPTOR *Gdtr ); /** Reads the current Interrupt Descriptor Table Register(GDTR) descriptor. Reads and returns the current IDTR descriptor and returns it in Idtr. This function is only available on IA-32 and x64. @param Idtr The pointer to an IDTR descriptor. **/ VOID EFIAPI InternalX86ReadIdtr ( OUT IA32_DESCRIPTOR *Idtr ); /** Writes the current Interrupt Descriptor Table Register(GDTR) descriptor. Writes the current IDTR descriptor and returns it in Idtr. This function is only available on IA-32 and x64. @param Idtr The pointer to an IDTR descriptor. **/ VOID EFIAPI InternalX86WriteIdtr ( IN CONST IA32_DESCRIPTOR *Idtr ); /** Save the current floating point/SSE/SSE2 context to a buffer. Saves the current floating point/SSE/SSE2 state to the buffer specified by Buffer. Buffer must be aligned on a 16-byte boundary. This function is only available on IA-32 and x64. @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context. **/ VOID EFIAPI InternalX86FxSave ( OUT IA32_FX_BUFFER *Buffer ); /** Restores the current floating point/SSE/SSE2 context from a buffer. Restores the current floating point/SSE/SSE2 state from the buffer specified by Buffer. Buffer must be aligned on a 16-byte boundary. This function is only available on IA-32 and x64. @param Buffer The pointer to a buffer to save the floating point/SSE/SSE2 context. **/ VOID EFIAPI InternalX86FxRestore ( IN CONST IA32_FX_BUFFER *Buffer ); /** Enables the 32-bit paging mode on the CPU. Enables the 32-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables must be properly initialized prior to calling this service. This function assumes the current execution mode is 32-bit protected mode. This function is only available on IA-32. After the 32-bit paging mode is enabled, control is transferred to the function specified by EntryPoint using the new stack specified by NewStack and passing in the parameters specified by Context1 and Context2. Context1 and Context2 are optional and may be NULL. The function EntryPoint must never return. There are a number of constraints that must be followed before calling this function: 1) Interrupts must be disabled. 2) The caller must be in 32-bit protected mode with flat descriptors. This means all descriptors must have a base of 0 and a limit of 4GB. 3) CR0 and CR4 must be compatible with 32-bit protected mode with flat descriptors. 4) CR3 must point to valid page tables that will be used once the transition is complete, and those page tables must guarantee that the pages for this function and the stack are identity mapped. @param EntryPoint A pointer to function to call with the new stack after paging is enabled. @param Context1 A pointer to the context to pass into the EntryPoint function as the first parameter after paging is enabled. @param Context2 A pointer to the context to pass into the EntryPoint function as the second parameter after paging is enabled. @param NewStack A pointer to the new stack to use for the EntryPoint function after paging is enabled. **/ VOID EFIAPI InternalX86EnablePaging32 ( IN SWITCH_STACK_ENTRY_POINT EntryPoint, IN VOID *Context1, OPTIONAL IN VOID *Context2, OPTIONAL IN VOID *NewStack ); /** Disables the 32-bit paging mode on the CPU. Disables the 32-bit paging mode on the CPU and returns to 32-bit protected mode. This function assumes the current execution mode is 32-paged protected mode. This function is only available on IA-32. After the 32-bit paging mode is disabled, control is transferred to the function specified by EntryPoint using the new stack specified by NewStack and passing in the parameters specified by Context1 and Context2. Context1 and Context2 are optional and may be NULL. The function EntryPoint must never return. There are a number of constraints that must be followed before calling this function: 1) Interrupts must be disabled. 2) The caller must be in 32-bit paged mode. 3) CR0, CR3, and CR4 must be compatible with 32-bit paged mode. 4) CR3 must point to valid page tables that guarantee that the pages for this function and the stack are identity mapped. @param EntryPoint A pointer to function to call with the new stack after paging is disabled. @param Context1 A pointer to the context to pass into the EntryPoint function as the first parameter after paging is disabled. @param Context2 A pointer to the context to pass into the EntryPoint function as the second parameter after paging is disabled. @param NewStack A pointer to the new stack to use for the EntryPoint function after paging is disabled. **/ VOID EFIAPI InternalX86DisablePaging32 ( IN SWITCH_STACK_ENTRY_POINT EntryPoint, IN VOID *Context1, OPTIONAL IN VOID *Context2, OPTIONAL IN VOID *NewStack ); /** Enables the 64-bit paging mode on the CPU. Enables the 64-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables must be properly initialized prior to calling this service. This function assumes the current execution mode is 32-bit protected mode with flat descriptors. This function is only available on IA-32. After the 64-bit paging mode is enabled, control is transferred to the function specified by EntryPoint using the new stack specified by NewStack and passing in the parameters specified by Context1 and Context2. Context1 and Context2 are optional and may be 0. The function EntryPoint must never return. @param Cs The 16-bit selector to load in the CS before EntryPoint is called. The descriptor in the GDT that this selector references must be setup for long mode. @param EntryPoint The 64-bit virtual address of the function to call with the new stack after paging is enabled. @param Context1 The 64-bit virtual address of the context to pass into the EntryPoint function as the first parameter after paging is enabled. @param Context2 The 64-bit virtual address of the context to pass into the EntryPoint function as the second parameter after paging is enabled. @param NewStack The 64-bit virtual address of the new stack to use for the EntryPoint function after paging is enabled. **/ VOID EFIAPI InternalX86EnablePaging64 ( IN UINT16 Cs, IN UINT64 EntryPoint, IN UINT64 Context1, OPTIONAL IN UINT64 Context2, OPTIONAL IN UINT64 NewStack ); /** Disables the 64-bit paging mode on the CPU. Disables the 64-bit paging mode on the CPU and returns to 32-bit protected mode. This function assumes the current execution mode is 64-paging mode. This function is only available on x64. After the 64-bit paging mode is disabled, control is transferred to the function specified by EntryPoint using the new stack specified by NewStack and passing in the parameters specified by Context1 and Context2. Context1 and Context2 are optional and may be 0. The function EntryPoint must never return. @param Cs The 16-bit selector to load in the CS before EntryPoint is called. The descriptor in the GDT that this selector references must be setup for 32-bit protected mode. @param EntryPoint The 64-bit virtual address of the function to call with the new stack after paging is disabled. @param Context1 The 64-bit virtual address of the context to pass into the EntryPoint function as the first parameter after paging is disabled. @param Context2 The 64-bit virtual address of the context to pass into the EntryPoint function as the second parameter after paging is disabled. @param NewStack The 64-bit virtual address of the new stack to use for the EntryPoint function after paging is disabled. **/ VOID EFIAPI InternalX86DisablePaging64 ( IN UINT16 Cs, IN UINT32 EntryPoint, IN UINT32 Context1, OPTIONAL IN UINT32 Context2, OPTIONAL IN UINT32 NewStack ); /** Generates a 16-bit random number through RDRAND instruction. @param[out] Rand Buffer pointer to store the random result. @retval TRUE RDRAND call was successful. @retval FALSE Failed attempts to call RDRAND. **/ BOOLEAN EFIAPI InternalX86RdRand16 ( OUT UINT16 *Rand ); /** Generates a 32-bit random number through RDRAND instruction. @param[out] Rand Buffer pointer to store the random result. @retval TRUE RDRAND call was successful. @retval FALSE Failed attempts to call RDRAND. **/ BOOLEAN EFIAPI InternalX86RdRand32 ( OUT UINT32 *Rand ); /** Generates a 64-bit random number through RDRAND instruction. @param[out] Rand Buffer pointer to store the random result. @retval TRUE RDRAND call was successful. @retval FALSE Failed attempts to call RDRAND. **/ BOOLEAN EFIAPI InternalX86RdRand64 ( OUT UINT64 *Rand ); #elif defined (MDE_CPU_IPF) // // // IPF specific functions // /** Reads control register DCR. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_DCR. @return The 64-bit control register DCR. **/ UINT64 EFIAPI AsmReadControlRegisterDcr ( VOID ); /** Reads control register ITM. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_ITM. @return The 64-bit control register ITM. **/ UINT64 EFIAPI AsmReadControlRegisterItm ( VOID ); /** Reads control register IVA. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_IVA. @return The 64-bit control register IVA. **/ UINT64 EFIAPI AsmReadControlRegisterIva ( VOID ); /** Reads control register PTA. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_PTA. @return The 64-bit control register PTA. **/ UINT64 EFIAPI AsmReadControlRegisterPta ( VOID ); /** Reads control register IPSR. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_IPSR. @return The 64-bit control register IPSR. **/ UINT64 EFIAPI AsmReadControlRegisterIpsr ( VOID ); /** Reads control register ISR. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_ISR. @return The 64-bit control register ISR. **/ UINT64 EFIAPI AsmReadControlRegisterIsr ( VOID ); /** Reads control register IIP. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_IIP. @return The 64-bit control register IIP. **/ UINT64 EFIAPI AsmReadControlRegisterIip ( VOID ); /** Reads control register IFA. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_IFA. @return The 64-bit control register IFA. **/ UINT64 EFIAPI AsmReadControlRegisterIfa ( VOID ); /** Reads control register ITIR. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_ITIR. @return The 64-bit control register ITIR. **/ UINT64 EFIAPI AsmReadControlRegisterItir ( VOID ); /** Reads control register IIPA. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_IIPA. @return The 64-bit control register IIPA. **/ UINT64 EFIAPI AsmReadControlRegisterIipa ( VOID ); /** Reads control register IFS. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_IFS. @return The 64-bit control register IFS. **/ UINT64 EFIAPI AsmReadControlRegisterIfs ( VOID ); /** Reads control register IIM. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_IIM. @return The 64-bit control register IIM. **/ UINT64 EFIAPI AsmReadControlRegisterIim ( VOID ); /** Reads control register IHA. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_IHA. @return The 64-bit control register IHA. **/ UINT64 EFIAPI AsmReadControlRegisterIha ( VOID ); /** Reads control register LID. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_LID. @return The 64-bit control register LID. **/ UINT64 EFIAPI AsmReadControlRegisterLid ( VOID ); /** Reads control register IVR. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_IVR. @return The 64-bit control register IVR. **/ UINT64 EFIAPI AsmReadControlRegisterIvr ( VOID ); /** Reads control register TPR. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_TPR. @return The 64-bit control register TPR. **/ UINT64 EFIAPI AsmReadControlRegisterTpr ( VOID ); /** Reads control register EOI. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_EOI. @return The 64-bit control register EOI. **/ UINT64 EFIAPI AsmReadControlRegisterEoi ( VOID ); /** Reads control register IRR0. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_IRR0. @return The 64-bit control register IRR0. **/ UINT64 EFIAPI AsmReadControlRegisterIrr0 ( VOID ); /** Reads control register IRR1. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_IRR1. @return The 64-bit control register IRR1. **/ UINT64 EFIAPI AsmReadControlRegisterIrr1 ( VOID ); /** Reads control register IRR2. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_IRR2. @return The 64-bit control register IRR2. **/ UINT64 EFIAPI AsmReadControlRegisterIrr2 ( VOID ); /** Reads control register IRR3. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_IRR3. @return The 64-bit control register IRR3. **/ UINT64 EFIAPI AsmReadControlRegisterIrr3 ( VOID ); /** Reads control register ITV. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_ITV. @return The 64-bit control register ITV. **/ UINT64 EFIAPI AsmReadControlRegisterItv ( VOID ); /** Reads control register PMV. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_PMV. @return The 64-bit control register PMV. **/ UINT64 EFIAPI AsmReadControlRegisterPmv ( VOID ); /** Reads control register CMCV. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_CMCV. @return The 64-bit control register CMCV. **/ UINT64 EFIAPI AsmReadControlRegisterCmcv ( VOID ); /** Reads control register LRR0. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_LRR0. @return The 64-bit control register LRR0. **/ UINT64 EFIAPI AsmReadControlRegisterLrr0 ( VOID ); /** Reads control register LRR1. This is a worker function for AsmReadControlRegister() when its parameter Index is IPF_CONTROL_REGISTER_LRR1. @return The 64-bit control register LRR1. **/ UINT64 EFIAPI AsmReadControlRegisterLrr1 ( VOID ); /** Reads application register K0. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_K0. @return The 64-bit application register K0. **/ UINT64 EFIAPI AsmReadApplicationRegisterK0 ( VOID ); /** Reads application register K1. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_K1. @return The 64-bit application register K1. **/ UINT64 EFIAPI AsmReadApplicationRegisterK1 ( VOID ); /** Reads application register K2. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_K2. @return The 64-bit application register K2. **/ UINT64 EFIAPI AsmReadApplicationRegisterK2 ( VOID ); /** Reads application register K3. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_K3. @return The 64-bit application register K3. **/ UINT64 EFIAPI AsmReadApplicationRegisterK3 ( VOID ); /** Reads application register K4. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_K4. @return The 64-bit application register K4. **/ UINT64 EFIAPI AsmReadApplicationRegisterK4 ( VOID ); /** Reads application register K5. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_K5. @return The 64-bit application register K5. **/ UINT64 EFIAPI AsmReadApplicationRegisterK5 ( VOID ); /** Reads application register K6. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_K6. @return The 64-bit application register K6. **/ UINT64 EFIAPI AsmReadApplicationRegisterK6 ( VOID ); /** Reads application register K7. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_K7. @return The 64-bit application register K7. **/ UINT64 EFIAPI AsmReadApplicationRegisterK7 ( VOID ); /** Reads application register RSC. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_RSC. @return The 64-bit application register RSC. **/ UINT64 EFIAPI AsmReadApplicationRegisterRsc ( VOID ); /** Reads application register BSP. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_BSP. @return The 64-bit application register BSP. **/ UINT64 EFIAPI AsmReadApplicationRegisterBsp ( VOID ); /** Reads application register BSPSTORE. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_BSPSTORE. @return The 64-bit application register BSPSTORE. **/ UINT64 EFIAPI AsmReadApplicationRegisterBspstore ( VOID ); /** Reads application register RNAT. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_RNAT. @return The 64-bit application register RNAT. **/ UINT64 EFIAPI AsmReadApplicationRegisterRnat ( VOID ); /** Reads application register FCR. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_FCR. @return The 64-bit application register FCR. **/ UINT64 EFIAPI AsmReadApplicationRegisterFcr ( VOID ); /** Reads application register EFLAG. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_EFLAG. @return The 64-bit application register EFLAG. **/ UINT64 EFIAPI AsmReadApplicationRegisterEflag ( VOID ); /** Reads application register CSD. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_CSD. @return The 64-bit application register CSD. **/ UINT64 EFIAPI AsmReadApplicationRegisterCsd ( VOID ); /** Reads application register SSD. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_SSD. @return The 64-bit application register SSD. **/ UINT64 EFIAPI AsmReadApplicationRegisterSsd ( VOID ); /** Reads application register CFLG. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_CFLG. @return The 64-bit application register CFLG. **/ UINT64 EFIAPI AsmReadApplicationRegisterCflg ( VOID ); /** Reads application register FSR. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_FSR. @return The 64-bit application register FSR. **/ UINT64 EFIAPI AsmReadApplicationRegisterFsr ( VOID ); /** Reads application register FIR. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_FIR. @return The 64-bit application register FIR. **/ UINT64 EFIAPI AsmReadApplicationRegisterFir ( VOID ); /** Reads application register FDR. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_FDR. @return The 64-bit application register FDR. **/ UINT64 EFIAPI AsmReadApplicationRegisterFdr ( VOID ); /** Reads application register CCV. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_CCV. @return The 64-bit application register CCV. **/ UINT64 EFIAPI AsmReadApplicationRegisterCcv ( VOID ); /** Reads application register UNAT. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_UNAT. @return The 64-bit application register UNAT. **/ UINT64 EFIAPI AsmReadApplicationRegisterUnat ( VOID ); /** Reads application register FPSR. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_FPSR. @return The 64-bit application register FPSR. **/ UINT64 EFIAPI AsmReadApplicationRegisterFpsr ( VOID ); /** Reads application register ITC. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_ITC. @return The 64-bit application register ITC. **/ UINT64 EFIAPI AsmReadApplicationRegisterItc ( VOID ); /** Reads application register PFS. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_PFS. @return The 64-bit application register PFS. **/ UINT64 EFIAPI AsmReadApplicationRegisterPfs ( VOID ); /** Reads application register LC. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_LC. @return The 64-bit application register LC. **/ UINT64 EFIAPI AsmReadApplicationRegisterLc ( VOID ); /** Reads application register EC. This is a worker function for AsmReadApplicationRegister() when its parameter Index is IPF_APPLICATION_REGISTER_EC. @return The 64-bit application register EC. **/ UINT64 EFIAPI AsmReadApplicationRegisterEc ( VOID ); /** Transfers control to a function starting with a new stack. Transfers control to the function specified by EntryPoint using the new stack specified by NewStack and passing in the parameters specified by Context1 and Context2. Context1 and Context2 are optional and may be NULL. The function EntryPoint must never return. If EntryPoint is NULL, then ASSERT(). If NewStack is NULL, then ASSERT(). @param EntryPoint A pointer to function to call with the new stack. @param Context1 A pointer to the context to pass into the EntryPoint function. @param Context2 A pointer to the context to pass into the EntryPoint function. @param NewStack A pointer to the new stack to use for the EntryPoint function. @param NewBsp A pointer to the new memory location for RSE backing store. **/ VOID EFIAPI AsmSwitchStackAndBackingStore ( IN SWITCH_STACK_ENTRY_POINT EntryPoint, IN VOID *Context1, OPTIONAL IN VOID *Context2, OPTIONAL IN VOID *NewStack, IN VOID *NewBsp ); /** Internal worker function to invalidate a range of instruction cache lines in the cache coherency domain of the calling CPU. Internal worker function to invalidate the instruction cache lines specified by Address and Length. If Address is not aligned on a cache line boundary, then entire instruction cache line containing Address is invalidated. If Address + Length is not aligned on a cache line boundary, then the entire instruction cache line containing Address + Length -1 is invalidated. This function may choose to invalidate the entire instruction cache if that is more efficient than invalidating the specified range. If Length is 0, the no instruction cache lines are invalidated. Address is returned. This function is only available on IPF. @param Address The base address of the instruction cache lines to invalidate. If the CPU is in a physical addressing mode, then Address is a physical address. If the CPU is in a virtual addressing mode, then Address is a virtual address. @param Length The number of bytes to invalidate from the instruction cache. @return Address **/ VOID * EFIAPI InternalFlushCacheRange ( IN VOID *Address, IN UINTN Length ); #else #endif #endif