/** @file Common header file for MP Initialize Library. Copyright (c) 2016 - 2023, Intel Corporation. All rights reserved.
Copyright (c) 2020, AMD Inc. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #ifndef _MP_LIB_H_ #define _MP_LIB_H_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "MpHandOff.h" #define WAKEUP_AP_SIGNAL SIGNATURE_32 ('S', 'T', 'A', 'P') // // To trigger the start-up signal, BSP writes the specified // StartupSignalValue to the StartupSignalAddress of each processor. // This address is monitored by the APs, and as soon as they receive // the value that matches the MP_HAND_OFF_SIGNAL, they will wake up // and switch the context from PEI to DXE phase. // #define MP_HAND_OFF_SIGNAL SIGNATURE_32 ('M', 'P', 'H', 'O') #define CPU_INIT_MP_LIB_HOB_GUID \ { \ 0x58eb6a19, 0x3699, 0x4c68, { 0xa8, 0x36, 0xda, 0xcd, 0x8e, 0xdc, 0xad, 0x4a } \ } // // The MP data for switch BSP // #define CPU_SWITCH_STATE_IDLE 0 #define CPU_SWITCH_STATE_STORED 1 #define CPU_SWITCH_STATE_LOADED 2 // // Default maximum number of entries to store the microcode patches information // #define DEFAULT_MAX_MICROCODE_PATCH_NUM 8 // // Data structure for microcode patch information // typedef struct { UINTN Address; UINTN Size; } MICROCODE_PATCH_INFO; // // CPU volatile registers around INIT-SIPI-SIPI // typedef struct { UINTN Cr0; UINTN Cr3; UINTN Cr4; UINTN Dr0; UINTN Dr1; UINTN Dr2; UINTN Dr3; UINTN Dr6; UINTN Dr7; IA32_DESCRIPTOR Gdtr; IA32_DESCRIPTOR Idtr; UINT16 Tr; } CPU_VOLATILE_REGISTERS; // // CPU exchange information for switch BSP // typedef struct { UINT8 State; // offset 0 UINTN StackPointer; // offset 4 / 8 CPU_VOLATILE_REGISTERS VolatileRegisters; // offset 8 / 16 } CPU_EXCHANGE_ROLE_INFO; // // AP loop state when APs are in idle state // It's value is the same with PcdCpuApLoopMode // typedef enum { ApInHltLoop = 1, ApInMwaitLoop = 2, ApInRunLoop = 3 } AP_LOOP_MODE; // // AP initialization state during APs wakeup // typedef enum { ApInitConfig = 1, ApInitReconfig = 2, ApInitDone = 3 } AP_INIT_STATE; // // AP state // // The state transitions for an AP when it process a procedure are: // Idle ----> Ready ----> Busy ----> Idle // [BSP] [AP] [AP] // typedef enum { CpuStateIdle, CpuStateReady, CpuStateBusy, CpuStateFinished, CpuStateDisabled } CPU_STATE; // // AP related data // typedef struct { SPIN_LOCK ApLock; volatile UINT32 *StartupApSignal; volatile UINTN ApFunction; volatile UINTN ApFunctionArgument; BOOLEAN CpuHealthy; volatile CPU_STATE State; CPU_VOLATILE_REGISTERS VolatileRegisters; BOOLEAN Waiting; BOOLEAN *Finished; UINT64 ExpectedTime; UINT64 CurrentTime; UINT64 TotalTime; EFI_EVENT WaitEvent; UINT32 ProcessorSignature; UINT8 PlatformId; UINT64 MicrocodeEntryAddr; UINT32 MicrocodeRevision; SEV_ES_SAVE_AREA *SevEsSaveArea; } CPU_AP_DATA; // // Basic CPU information saved in Guided HOB. // Because the contents will be shard between PEI and DXE, // we need to make sure the each fields offset same in different // architecture. // #pragma pack (1) typedef struct { UINT32 InitialApicId; UINT32 ApicId; UINT32 Health; UINT64 ApTopOfStack; } CPU_INFO_IN_HOB; #pragma pack () // // AP reset code information including code address and size, // this structure will be shared be C code and assembly code. // It is natural aligned by design. // typedef struct { UINT8 *RendezvousFunnelAddress; UINTN ModeEntryOffset; UINTN RendezvousFunnelSize; UINT8 *RelocateApLoopFuncAddressGeneric; UINTN RelocateApLoopFuncSizeGeneric; UINT8 *RelocateApLoopFuncAddressAmdSev; UINTN RelocateApLoopFuncSizeAmdSev; UINTN ModeTransitionOffset; UINTN SwitchToRealNoNxOffset; UINTN SwitchToRealPM16ModeOffset; UINTN SwitchToRealPM16ModeSize; } MP_ASSEMBLY_ADDRESS_MAP; typedef struct _CPU_MP_DATA CPU_MP_DATA; #pragma pack(1) // // MP CPU exchange information for AP reset code // This structure is required to be packed because fixed field offsets // into this structure are used in assembly code in this module // typedef struct { UINTN StackStart; UINTN StackSize; UINTN CFunction; IA32_DESCRIPTOR GdtrProfile; IA32_DESCRIPTOR IdtrProfile; UINTN BufferStart; UINTN ModeOffset; UINTN ApIndex; UINTN CodeSegment; UINTN DataSegment; UINTN EnableExecuteDisable; UINTN Cr3; UINTN InitFlag; CPU_INFO_IN_HOB *CpuInfo; UINTN NumApsExecuting; CPU_MP_DATA *CpuMpData; UINTN InitializeFloatingPointUnitsAddress; UINT32 ModeTransitionMemory; UINT16 ModeTransitionSegment; UINT32 ModeHighMemory; UINT16 ModeHighSegment; // // Enable5LevelPaging indicates whether 5-level paging is enabled in long mode. // BOOLEAN Enable5LevelPaging; BOOLEAN SevEsIsEnabled; BOOLEAN SevSnpIsEnabled; UINTN GhcbBase; BOOLEAN ExtTopoAvail; } MP_CPU_EXCHANGE_INFO; #pragma pack() // // CPU MP Data save in memory // struct _CPU_MP_DATA { UINT64 CpuInfoInHob; UINT32 CpuCount; UINT32 BspNumber; // // The above fields data will be passed from PEI to DXE // Please make sure the fields offset same in the different // architecture. // SPIN_LOCK MpLock; UINTN Buffer; UINTN CpuApStackSize; MP_ASSEMBLY_ADDRESS_MAP AddressMap; UINTN WakeupBuffer; UINTN WakeupBufferHigh; UINTN BackupBuffer; UINTN BackupBufferSize; volatile UINT32 FinishedCount; UINT32 RunningCount; BOOLEAN SingleThread; EFI_AP_PROCEDURE Procedure; VOID *ProcArguments; BOOLEAN *Finished; UINT64 ExpectedTime; UINT64 CurrentTime; UINT64 TotalTime; EFI_EVENT WaitEvent; UINTN **FailedCpuList; AP_INIT_STATE InitFlag; BOOLEAN SwitchBspFlag; UINTN NewBspNumber; CPU_EXCHANGE_ROLE_INFO BSPInfo; CPU_EXCHANGE_ROLE_INFO APInfo; MTRR_SETTINGS MtrrTable; UINT8 ApLoopMode; UINT8 ApTargetCState; UINT16 PmCodeSegment; UINT16 Pm16CodeSegment; CPU_AP_DATA *CpuData; volatile MP_CPU_EXCHANGE_INFO *MpCpuExchangeInfo; UINT32 CurrentTimerCount; UINTN DivideValue; UINT8 Vector; BOOLEAN PeriodicMode; BOOLEAN TimerInterruptState; UINT64 MicrocodePatchAddress; UINT64 MicrocodePatchRegionSize; // // Whether need to use Init-Sipi-Sipi to wake up the APs. // Two cases need to set this value to TRUE. One is in HLT // loop mode, the other is resume from S3 which loop mode // will be hardcode change to HLT mode by PiSmmCpuDxeSmm // driver. // BOOLEAN WakeUpByInitSipiSipi; BOOLEAN SevEsIsEnabled; BOOLEAN SevSnpIsEnabled; BOOLEAN UseSevEsAPMethod; UINTN SevEsAPBuffer; UINTN SevEsAPResetStackStart; CPU_MP_DATA *NewCpuMpData; UINT64 GhcbBase; }; // // AP_STACK_DATA is stored at the top of each AP stack. // typedef struct { UINTN Bist; CPU_MP_DATA *MpData; } AP_STACK_DATA; #define AP_SAFE_STACK_SIZE 128 #define AP_RESET_STACK_SIZE AP_SAFE_STACK_SIZE STATIC_ASSERT ((AP_SAFE_STACK_SIZE & (CPU_STACK_ALIGNMENT - 1)) == 0, "AP_SAFE_STACK_SIZE is not aligned with CPU_STACK_ALIGNMENT"); #pragma pack(1) typedef struct { UINT8 InsnBuffer[8]; UINT16 Rip; UINT16 Segment; } SEV_ES_AP_JMP_FAR; #pragma pack() /** Assembly code to move an AP from long mode to real mode. Move an AP from long mode to real mode in preparation to invoking the reset vector. This is used for SEV-ES guests where a hypervisor is not allowed to set the CS and RIP to point to the reset vector. @param[in] BufferStart The reset vector target. @param[in] Code16 16-bit protected mode code segment value. @param[in] Code32 32-bit protected mode code segment value. @param[in] StackStart The start of a stack to be used for transitioning from long mode to real mode. **/ typedef VOID (EFIAPI AP_RESET)( IN UINTN BufferStart, IN UINT16 Code16, IN UINT16 Code32, IN UINTN StackStart ); extern EFI_GUID mCpuInitMpLibHobGuid; /** Assembly code to place AP into safe loop mode. Place AP into targeted C-State if MONITOR is supported, otherwise place AP into hlt state. Place AP in protected mode if the current is long mode. Due to AP maybe wakeup by some hardware event. It could avoid accessing page table that may not available during booting to OS. @param[in] MwaitSupport TRUE indicates MONITOR is supported. FALSE indicates MONITOR is not supported. @param[in] ApTargetCState Target C-State value. @param[in] PmCodeSegment Protected mode code segment value. **/ typedef VOID (EFIAPI *ASM_RELOCATE_AP_LOOP_GENERIC)( IN BOOLEAN MwaitSupport, IN UINTN ApTargetCState, IN UINTN TopOfApStack, IN UINTN NumberToFinish, IN UINTN Cr3 ); /** Assembly code to place AP into safe loop mode for Amd processors with Sev enabled. Place AP into targeted C-State if MONITOR is supported, otherwise place AP into hlt state. Place AP in protected mode if the current is long mode. Due to AP maybe wakeup by some hardware event. It could avoid accessing page table that may not available during booting to OS. @param[in] MwaitSupport TRUE indicates MONITOR is supported. FALSE indicates MONITOR is not supported. @param[in] ApTargetCState Target C-State value. @param[in] PmCodeSegment Protected mode code segment value. **/ typedef VOID (EFIAPI *ASM_RELOCATE_AP_LOOP_AMDSEV)( IN BOOLEAN MwaitSupport, IN UINTN ApTargetCState, IN UINTN PmCodeSegment, IN UINTN TopOfApStack, IN UINTN NumberToFinish, IN UINTN Pm16CodeSegment, IN UINTN SevEsAPJumpTable, IN UINTN WakeupBuffer ); /** Assembly code to get starting address and size of the rendezvous entry for APs. Information for fixing a jump instruction in the code is also returned. @param[out] AddressMap Output buffer for address map information. **/ VOID EFIAPI AsmGetAddressMap ( OUT MP_ASSEMBLY_ADDRESS_MAP *AddressMap ); /** This function is called by both the BSP and the AP which is to become the BSP to Exchange execution context including stack between them. After return from this function, the BSP becomes AP and the AP becomes the BSP. @param[in] MyInfo Pointer to buffer holding the exchanging information for the executing processor. @param[in] OthersInfo Pointer to buffer holding the exchanging information for the peer. **/ VOID EFIAPI AsmExchangeRole ( IN CPU_EXCHANGE_ROLE_INFO *MyInfo, IN CPU_EXCHANGE_ROLE_INFO *OthersInfo ); typedef union { VOID *Data; ASM_RELOCATE_AP_LOOP_AMDSEV AmdSevEntry; // 64-bit AMD Sev processors ASM_RELOCATE_AP_LOOP_GENERIC GenericEntry; // Intel processors (32-bit or 64-bit), 32-bit AMD processors, or AMD non-Sev processors } RELOCATE_AP_LOOP_ENTRY; /** Get the pointer to CPU MP Data structure. @return The pointer to CPU MP Data structure. **/ CPU_MP_DATA * GetCpuMpData ( VOID ); /** Save the pointer to CPU MP Data structure. @param[in] CpuMpData The pointer to CPU MP Data structure will be saved. **/ VOID SaveCpuMpData ( IN CPU_MP_DATA *CpuMpData ); /** Get available system memory below 1MB by specified size. @param[in] WakeupBufferSize Wakeup buffer size required @retval other Return wakeup buffer address below 1MB. @retval -1 Cannot find free memory below 1MB. **/ UINTN GetWakeupBuffer ( IN UINTN WakeupBufferSize ); /** Switch Context for each AP. **/ VOID SwitchApContext ( IN MP_HAND_OFF *MpHandOff ); /** Get available EfiBootServicesCode memory below 4GB by specified size. This buffer is required to safely transfer AP from real address mode to protected mode or long mode, due to the fact that the buffer returned by GetWakeupBuffer() may be marked as non-executable. @param[in] BufferSize Wakeup transition buffer size. @retval other Return wakeup transition buffer address below 4GB. @retval 0 Cannot find free memory below 4GB. **/ UINTN AllocateCodeBuffer ( IN UINTN BufferSize ); /** Return the address of the SEV-ES AP jump table. This buffer is required in order for an SEV-ES guest to transition from UEFI into an OS. @return Return SEV-ES AP jump table buffer **/ UINTN GetSevEsAPMemory ( VOID ); /** Create 1:1 mapping page table in reserved memory to map the specified address range. @param[in] LinearAddress The start of the linear address range. @param[in] Length The length of the linear address range. @return The page table to be created. **/ UINTN CreatePageTable ( IN UINTN Address, IN UINTN Length ); /** This function will be called by BSP to wakeup AP. @param[in] CpuMpData Pointer to CPU MP Data @param[in] Broadcast TRUE: Send broadcast IPI to all APs FALSE: Send IPI to AP by ApicId @param[in] ProcessorNumber The handle number of specified processor @param[in] Procedure The function to be invoked by AP @param[in] ProcedureArgument The argument to be passed into AP function @param[in] WakeUpDisabledAps Whether need to wake up disabled APs in broadcast mode. **/ VOID WakeUpAP ( IN CPU_MP_DATA *CpuMpData, IN BOOLEAN Broadcast, IN UINTN ProcessorNumber, IN EFI_AP_PROCEDURE Procedure OPTIONAL, IN VOID *ProcedureArgument OPTIONAL, IN BOOLEAN WakeUpDisabledAps ); /** Initialize global data for MP support. @param[in] CpuMpData The pointer to CPU MP Data structure. **/ VOID InitMpGlobalData ( IN CPU_MP_DATA *CpuMpData ); /** Worker function to execute a caller provided function on all enabled APs. @param[in] Procedure A pointer to the function to be run on enabled APs of the system. @param[in] SingleThread If TRUE, then all the enabled APs execute the function specified by Procedure one by one, in ascending order of processor handle number. If FALSE, then all the enabled APs execute the function specified by Procedure simultaneously. @param[in] ExcludeBsp Whether let BSP also trig this task. @param[in] WaitEvent The event created by the caller with CreateEvent() service. @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for APs to return from Procedure, either for blocking or non-blocking mode. @param[in] ProcedureArgument The parameter passed into Procedure for all APs. @param[out] FailedCpuList If all APs finish successfully, then its content is set to NULL. If not all APs finish before timeout expires, then its content is set to address of the buffer holding handle numbers of the failed APs. @retval EFI_SUCCESS In blocking mode, all APs have finished before the timeout expired. @retval EFI_SUCCESS In non-blocking mode, function has been dispatched to all enabled APs. @retval others Failed to Startup all APs. **/ EFI_STATUS StartupAllCPUsWorker ( IN EFI_AP_PROCEDURE Procedure, IN BOOLEAN SingleThread, IN BOOLEAN ExcludeBsp, IN EFI_EVENT WaitEvent OPTIONAL, IN UINTN TimeoutInMicroseconds, IN VOID *ProcedureArgument OPTIONAL, OUT UINTN **FailedCpuList OPTIONAL ); /** Worker function to let the caller get one enabled AP to execute a caller-provided function. @param[in] Procedure A pointer to the function to be run on enabled APs of the system. @param[in] ProcessorNumber The handle number of the AP. @param[in] WaitEvent The event created by the caller with CreateEvent() service. @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for APs to return from Procedure, either for blocking or non-blocking mode. @param[in] ProcedureArgument The parameter passed into Procedure for all APs. @param[out] Finished If AP returns from Procedure before the timeout expires, its content is set to TRUE. Otherwise, the value is set to FALSE. @retval EFI_SUCCESS In blocking mode, specified AP finished before the timeout expires. @retval others Failed to Startup AP. **/ EFI_STATUS StartupThisAPWorker ( IN EFI_AP_PROCEDURE Procedure, IN UINTN ProcessorNumber, IN EFI_EVENT WaitEvent OPTIONAL, IN UINTN TimeoutInMicroseconds, IN VOID *ProcedureArgument OPTIONAL, OUT BOOLEAN *Finished OPTIONAL ); /** Worker function to switch the requested AP to be the BSP from that point onward. @param[in] ProcessorNumber The handle number of AP that is to become the new BSP. @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an enabled AP. Otherwise, it will be disabled. @retval EFI_SUCCESS BSP successfully switched. @retval others Failed to switch BSP. **/ EFI_STATUS SwitchBSPWorker ( IN UINTN ProcessorNumber, IN BOOLEAN EnableOldBSP ); /** Worker function to let the caller enable or disable an AP from this point onward. This service may only be called from the BSP. @param[in] ProcessorNumber The handle number of AP. @param[in] EnableAP Specifies the new state for the processor for enabled, FALSE for disabled. @param[in] HealthFlag If not NULL, a pointer to a value that specifies the new health status of the AP. @retval EFI_SUCCESS The specified AP was enabled or disabled successfully. @retval others Failed to Enable/Disable AP. **/ EFI_STATUS EnableDisableApWorker ( IN UINTN ProcessorNumber, IN BOOLEAN EnableAP, IN UINT32 *HealthFlag OPTIONAL ); /** Get pointer to CPU MP Data structure from GUIDed HOB. @return The pointer to CPU MP Data structure. **/ CPU_MP_DATA * GetCpuMpDataFromGuidedHob ( VOID ); /** Checks status of specified AP. This function checks whether the specified AP has finished the task assigned by StartupThisAP(), and whether timeout expires. @param[in] ProcessorNumber The handle number of processor. @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs(). @retval EFI_TIMEOUT The timeout expires. @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired. **/ EFI_STATUS CheckThisAP ( IN UINTN ProcessorNumber ); /** Checks status of all APs. This function checks whether all APs have finished task assigned by StartupAllAPs(), and whether timeout expires. @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs(). @retval EFI_TIMEOUT The timeout expires. @retval EFI_NOT_READY APs have not finished task and timeout has not expired. **/ EFI_STATUS CheckAllAPs ( VOID ); /** Checks APs status and updates APs status if needed. **/ VOID CheckAndUpdateApsStatus ( VOID ); /** Detect whether specified processor can find matching microcode patch and load it. @param[in] CpuMpData The pointer to CPU MP Data structure. @param[in] ProcessorNumber The handle number of the processor. The range is from 0 to the total number of logical processors minus 1. **/ VOID MicrocodeDetect ( IN CPU_MP_DATA *CpuMpData, IN UINTN ProcessorNumber ); /** Shadow the required microcode patches data into memory. @param[in, out] CpuMpData The pointer to CPU MP Data structure. **/ VOID ShadowMicrocodeUpdatePatch ( IN OUT CPU_MP_DATA *CpuMpData ); /** Get the cached microcode patch base address and size from the microcode patch information cache HOB. @param[out] Address Base address of the microcode patches data. It will be updated if the microcode patch information cache HOB is found. @param[out] RegionSize Size of the microcode patches data. It will be updated if the microcode patch information cache HOB is found. @retval TRUE The microcode patch information cache HOB is found. @retval FALSE The microcode patch information cache HOB is not found. **/ BOOLEAN GetMicrocodePatchInfoFromHob ( UINT64 *Address, UINT64 *RegionSize ); /** Detect whether Mwait-monitor feature is supported. @retval TRUE Mwait-monitor feature is supported. @retval FALSE Mwait-monitor feature is not supported. **/ BOOLEAN IsMwaitSupport ( VOID ); /** Enable Debug Agent to support source debugging on AP function. **/ VOID EnableDebugAgent ( VOID ); /** Find the current Processor number by APIC ID. @param[in] CpuMpData Pointer to PEI CPU MP Data @param[out] ProcessorNumber Return the pocessor number found @retval EFI_SUCCESS ProcessorNumber is found and returned. @retval EFI_NOT_FOUND ProcessorNumber is not found. **/ EFI_STATUS GetProcessorNumber ( IN CPU_MP_DATA *CpuMpData, OUT UINTN *ProcessorNumber ); /** This funtion will try to invoke platform specific microcode shadow logic to relocate microcode update patches into memory. @param[in, out] CpuMpData The pointer to CPU MP Data structure. @retval EFI_SUCCESS Shadow microcode success. @retval EFI_OUT_OF_RESOURCES No enough resource to complete the operation. @retval EFI_UNSUPPORTED Can't find platform specific microcode shadow PPI/Protocol. **/ EFI_STATUS PlatformShadowMicrocode ( IN OUT CPU_MP_DATA *CpuMpData ); /** Allocate the SEV-ES AP jump table buffer. @param[in, out] CpuMpData The pointer to CPU MP Data structure. **/ VOID AllocateSevEsAPMemory ( IN OUT CPU_MP_DATA *CpuMpData ); /** Program the SEV-ES AP jump table buffer. @param[in] SipiVector The SIPI vector used for the AP Reset **/ VOID SetSevEsJumpTable ( IN UINTN SipiVector ); /** The function puts the AP in halt loop. @param[in] CpuMpData The pointer to CPU MP Data structure. **/ VOID SevEsPlaceApHlt ( CPU_MP_DATA *CpuMpData ); /** Check if the specified confidential computing attribute is active. @retval TRUE The specified Attr is active. @retval FALSE The specified Attr is not active. **/ BOOLEAN EFIAPI ConfidentialComputingGuestHas ( CONFIDENTIAL_COMPUTING_GUEST_ATTR Attr ); /** The function fills the exchange data for the AP. @param[in] ExchangeInfo The pointer to CPU Exchange Data structure **/ VOID FillExchangeInfoDataSevEs ( IN volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo ); /** Issue RMPADJUST to adjust the VMSA attribute of an SEV-SNP page. @param[in] PageAddress @param[in] VmsaPage @return RMPADJUST return value **/ UINT32 SevSnpRmpAdjust ( IN EFI_PHYSICAL_ADDRESS PageAddress, IN BOOLEAN VmsaPage ); /** Create an SEV-SNP AP save area (VMSA) for use in running the vCPU. @param[in] CpuMpData Pointer to CPU MP Data @param[in] CpuData Pointer to CPU AP Data @param[in] ApicId APIC ID of the vCPU **/ VOID SevSnpCreateSaveArea ( IN CPU_MP_DATA *CpuMpData, IN CPU_AP_DATA *CpuData, UINT32 ApicId ); /** Create SEV-SNP APs. @param[in] CpuMpData Pointer to CPU MP Data @param[in] ProcessorNumber The handle number of specified processor (-1 for all APs) **/ VOID SevSnpCreateAP ( IN CPU_MP_DATA *CpuMpData, IN INTN ProcessorNumber ); /** Get pointer to CPU MP Data structure from GUIDed HOB. @param[in] CpuMpData The pointer to CPU MP Data structure. **/ VOID AmdSevUpdateCpuMpData ( IN CPU_MP_DATA *CpuMpData ); #endif