/** @file A simple "fuzzer" application for OrderedCollectionLib, reading commands from the standard input, and writing results to the standard output. Make sure you configure your platform so that the console stderr device is visible to the user (or else run the program from wherever stderr is visible per default, eg. serial line). Copyright (C) 2014, Red Hat, Inc. Copyright (c) 2010 - 2011, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license. THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include // assert() #include // errno #include // INT_MIN #include // fgets() #include // EXIT_FAILURE #include // strerror() #include // getopt() #include // // We allow the user to select between stdin+stdout and regular input+output // files via command line options. We don't rely on shell redirection for two // reasons: // // - The "old shell" doesn't support input redirection (0 If StandaloneKey compares greater than UserStruct's key. **/ static INTN EFIAPI KeyCompare ( IN CONST VOID *StandaloneKey, IN CONST VOID *UserStruct ) { const USER_KEY *CmpKey; const USER_STRUCT *CmpStruct; CmpKey = StandaloneKey; CmpStruct = UserStruct; return CmpKey->Value < CmpStruct->Key.Value ? -1 : CmpKey->Value > CmpStruct->Key.Value ? 1 : 0; } /** Comparator function type for two user structures. @param[in] UserStruct1 Pointer to the first user structure. @param[in] UserStruct2 Pointer to the second user structure. @retval <0 If UserStruct1 compares less than UserStruct2. @retval 0 If UserStruct1 compares equal to UserStruct2. @retval >0 If UserStruct1 compares greater than UserStruct2. **/ static INTN EFIAPI UserStructCompare ( IN CONST VOID *UserStruct1, IN CONST VOID *UserStruct2 ) { const USER_STRUCT *CmpStruct1; CmpStruct1 = UserStruct1; return KeyCompare (&CmpStruct1->Key, UserStruct2); } /** Empty the collection by iterating forward through its entries. This function demonstrates that iterators different from the one being removed remain valid. @param[in,out] Collection The collection to empty. **/ static void CmdForwardEmpty ( IN OUT ORDERED_COLLECTION *Collection ) { ORDERED_COLLECTION_ENTRY *Entry; Entry = OrderedCollectionMin (Collection); while (Entry != NULL) { ORDERED_COLLECTION_ENTRY *Next; void *Ptr; USER_STRUCT *UserStruct; Next = OrderedCollectionNext (Entry); OrderedCollectionDelete (Collection, Entry, &Ptr); UserStruct = Ptr; fprintf (Output, "%s: %d: removed\n", __FUNCTION__, UserStruct->Key.Value); free (UserStruct); Entry = Next; } } /** Empty the collection by iterating backward through its entries. This function demonstrates that iterators different from the one being removed remain valid. @param[in,out] Collection The collection to empty. **/ static void CmdBackwardEmpty ( IN OUT ORDERED_COLLECTION *Collection ) { ORDERED_COLLECTION_ENTRY *Entry; Entry = OrderedCollectionMax (Collection); while (Entry != NULL) { ORDERED_COLLECTION_ENTRY *Prev; void *Ptr; USER_STRUCT *UserStruct; Prev = OrderedCollectionPrev (Entry); OrderedCollectionDelete (Collection, Entry, &Ptr); UserStruct = Ptr; fprintf (Output, "%s: %d: removed\n", __FUNCTION__, UserStruct->Key.Value); free (UserStruct); Entry = Prev; } } /** List the user structures linked into the collection, in increasing order. @param[in] Collection The collection to list. **/ static void CmdForwardList ( IN ORDERED_COLLECTION *Collection ) { ORDERED_COLLECTION_ENTRY *Entry; for (Entry = OrderedCollectionMin (Collection); Entry != NULL; Entry = OrderedCollectionNext (Entry)) { USER_STRUCT *UserStruct; UserStruct = OrderedCollectionUserStruct (Entry); fprintf (Output, "%s: %d\n", __FUNCTION__, UserStruct->Key.Value); } } /** List the user structures linked into the collection, in decreasing order. @param[in] Collection The collection to list. **/ static void CmdBackwardList ( IN ORDERED_COLLECTION *Collection ) { ORDERED_COLLECTION_ENTRY *Entry; for (Entry = OrderedCollectionMax (Collection); Entry != NULL; Entry = OrderedCollectionPrev (Entry)) { USER_STRUCT *UserStruct; UserStruct = OrderedCollectionUserStruct (Entry); fprintf (Output, "%s: %d\n", __FUNCTION__, UserStruct->Key.Value); } } /** Create a new user structure and attempt to insert it into the collection. @param[in] Value The key value of the user structure to create. @param[in,out] Collection The collection to insert the new user structure into. **/ static void CmdInsert ( IN int Value, IN OUT ORDERED_COLLECTION *Collection ) { USER_STRUCT *UserStruct, *UserStruct2; RETURN_STATUS Status; ORDERED_COLLECTION_ENTRY *Entry; UserStruct = calloc (1, sizeof *UserStruct); if (UserStruct == NULL) { fprintf (Output, "%s: %d: calloc(): out of memory\n", __FUNCTION__, Value); return; } UserStruct->Key.Value = Value; Status = OrderedCollectionInsert (Collection, &Entry, UserStruct); switch (Status) { case RETURN_OUT_OF_RESOURCES: fprintf (Output, "%s: %d: OrderedCollectionInsert(): out of memory\n", __FUNCTION__, Value); goto ReleaseUserStruct; case RETURN_ALREADY_STARTED: UserStruct2 = OrderedCollectionUserStruct (Entry); assert (UserStruct != UserStruct2); assert (UserStruct2->Key.Value == Value); fprintf (Output, "%s: %d: already exists\n", __FUNCTION__, UserStruct2->Key.Value); goto ReleaseUserStruct; default: assert (Status == RETURN_SUCCESS); break; } assert (OrderedCollectionUserStruct (Entry) == UserStruct); fprintf (Output, "%s: %d: inserted\n", __FUNCTION__, Value); return; ReleaseUserStruct: free (UserStruct); } /** Look up a user structure by key in the collection and print it. @param[in] Value The key of the user structure to find. @param[in] Collection The collection to search for the user structure with the key. **/ static void CmdFind ( IN int Value, IN ORDERED_COLLECTION *Collection ) { USER_KEY StandaloneKey; ORDERED_COLLECTION_ENTRY *Entry; USER_STRUCT *UserStruct; StandaloneKey.Value = Value; Entry = OrderedCollectionFind (Collection, &StandaloneKey); if (Entry == NULL) { fprintf (Output, "%s: %d: not found\n", __FUNCTION__, Value); return; } UserStruct = OrderedCollectionUserStruct (Entry); assert (UserStruct->Key.Value == StandaloneKey.Value); fprintf (Output, "%s: %d: found\n", __FUNCTION__, UserStruct->Key.Value); } /** Look up a user structure by key in the collection and delete it. @param[in] Value The key of the user structure to find. @param[in] Collection The collection to search for the user structure with the key. **/ static void CmdDelete ( IN int Value, IN ORDERED_COLLECTION *Collection ) { USER_KEY StandaloneKey; ORDERED_COLLECTION_ENTRY *Entry; void *Ptr; USER_STRUCT *UserStruct; StandaloneKey.Value = Value; Entry = OrderedCollectionFind (Collection, &StandaloneKey); if (Entry == NULL) { fprintf (Output, "%s: %d: not found\n", __FUNCTION__, Value); return; } OrderedCollectionDelete (Collection, Entry, &Ptr); UserStruct = Ptr; assert (UserStruct->Key.Value == StandaloneKey.Value); fprintf (Output, "%s: %d: removed\n", __FUNCTION__, UserStruct->Key.Value); free (UserStruct); } typedef struct { const char *Command; void (*Function) (ORDERED_COLLECTION *Collection); const char *Description; } KEYLESS_COMMAND; typedef struct { const char *Command; void (*Function) (int Value, ORDERED_COLLECTION *Collection); const char *Description; } KEYED_COMMAND; static const KEYLESS_COMMAND KeylessCommands[] = { { "forward-empty", CmdForwardEmpty, "empty the collection iterating forward" }, { "fe", CmdForwardEmpty, "shorthand for forward-empty" }, { "backward-empty", CmdBackwardEmpty, "empty the collection iterating backward" }, { "be", CmdBackwardEmpty, "shorthand for backward-empty" }, { "forward-list", CmdForwardList, "list contents, iterating forward" }, { "fl", CmdForwardList, "shorthand for forward-list" }, { "backward-list", CmdBackwardList, "list contents, iterating backward" }, { "bl", CmdBackwardList, "shorthand for backward-list" }, { NULL } }; static const KEYED_COMMAND KeyedCommands[] = { { "insert ", CmdInsert, "insert value into collection" }, { "i ", CmdInsert, "shorthand for insert" }, { "find ", CmdFind, "find value in collection" }, { "f ", CmdFind, "shorthand for find" }, { "delete ", CmdDelete, "delete value from collection" }, { "d ", CmdDelete, "shorthand for delete" }, { NULL } }; /** List the supported commands on stderr. **/ static void ListCommands ( void ) { const KEYLESS_COMMAND *KeylessCmd; const KEYED_COMMAND *KeyedCmd; fprintf (stderr, "Supported commands:\n\n"); for (KeylessCmd = KeylessCommands; KeylessCmd->Command != NULL; ++KeylessCmd) { fprintf (stderr, "%-14s: %s\n", KeylessCmd->Command, KeylessCmd->Description); } for (KeyedCmd = KeyedCommands; KeyedCmd->Command != NULL; ++KeyedCmd) { fprintf (stderr, "%-9s: %s\n", KeyedCmd->Command, KeyedCmd->Description); } } /** Configure stdio FILEs that we'll use for input and output. @param[in] ArgC The number of elements in ArgV, from main(). The environment is required to ensure ArgC >= 1 (ie. that the program name, ArgV[0], is available). @param[in] ArgV Command line argument list, from main(). **/ static void SetupInputOutput ( IN int ArgC, IN char **ArgV ) { char *InputName, *OutputName; int Loop; assert (ArgC >= 1); InputName = NULL; OutputName = NULL; Loop = 1; while (Loop) { switch (getopt (ArgC, ArgV, ":i:o:h")) { case 'i': InputName = optarg; break; case 'o': OutputName = optarg; break; case 'h': fprintf (stderr, "%1$s: simple OrderedCollectionLib tester\n" "\n" "Usage: 1. %1$s [-i InputFile] [-o OutputFile]\n" " 2. %1$s -h\n" "\n" "Options:\n" " -i InputFile : read commands from InputFile\n" " (will read from stdin if absent)\n" " -o OutputFile: write command responses to OutputFile\n" " (will write to stdout if absent)\n" " -h : print this help and exit\n" "\n", ArgV[0]); ListCommands (); exit (EXIT_SUCCESS); // // The current "compatibility" getopt() implementation doesn't support optopt, // but it gracefully degrades these branches to the others (one of the optarg // ones or the excess operands one). // #if 0 case ':': fprintf (stderr, "%s: option -%c requires an argument; pass -h for " "help\n", ArgV[0], optopt); exit (EXIT_FAILURE); case '?': fprintf (stderr, "%s: unknown option -%c; pass -h for help\n", ArgV[0], optopt); exit (EXIT_FAILURE); #endif case -1: if (optind != ArgC) { fprintf (stderr, "%s: excess operands on command line; pass -h for " "help\n", ArgV[0]); exit (EXIT_FAILURE); } Loop = 0; break; default: assert (0); } } if (InputName == NULL) { Input = stdin; } else { Input = fopen (InputName, "r"); if (Input == NULL) { fprintf (stderr, "%s: fopen(\"%s\", \"r\"): %s\n", ArgV[0], InputName, strerror (errno)); exit (EXIT_FAILURE); } } if (OutputName == NULL) { Output = stdout; } else { Output = fopen (OutputName, "w"); if (Output == NULL) { fprintf (stderr, "%s: fopen(\"%s\", \"w\"): %s\n", ArgV[0], OutputName, strerror (errno)); exit (EXIT_FAILURE); } } // // When reading commands from the standard input, assume interactive mode, // and list the supported commands. However, delay this until both streams // are set up. // if (InputName == NULL) { ListCommands (); } } int main ( IN int ArgC, IN char **ArgV ) { int RetVal; ORDERED_COLLECTION *Collection; char Line[256]; SetupInputOutput (ArgC, ArgV); Collection = OrderedCollectionInit (UserStructCompare, KeyCompare); if (Collection == NULL) { fprintf (stderr, "%s: OrderedCollectionInit(): out of memory\n", __FUNCTION__); return EXIT_FAILURE; } RetVal = EXIT_SUCCESS; while (fgets (Line, sizeof Line, Input) != NULL) { size_t Length; const KEYLESS_COMMAND *KeylessCmd; const KEYED_COMMAND *KeyedCmd; Length = strlen (Line); assert (Length > 0); if (Line[Length - 1] != '\n') { fprintf (stderr, "%s: overlong line\n", __FUNCTION__); RetVal = EXIT_FAILURE; break; } // // Strip [\r]\n. // Line[Length - 1] = '\0'; if (Length >= 2 && Line[Length - 2] == '\r') { Line[Length - 2] = '\0'; } // // Ignore empty lines and comments. // if (Line[0] == '\0' || Line[0] == '#') { if (Input != stdin) { // // ... but echo them back in non-interactive mode. // fprintf (Output, "%s\n", Line); } continue; } // // Ironically, this is the kind of loop that should be replaced with an // ORDERED_COLLECTION. // for (KeylessCmd = KeylessCommands; KeylessCmd->Command != NULL; ++KeylessCmd) { if (strcmp (KeylessCmd->Command, Line) == 0) { KeylessCmd->Function (Collection); break; } } if (KeylessCmd->Command != NULL) { continue; } for (KeyedCmd = KeyedCommands; KeyedCmd->Command != NULL; ++KeyedCmd) { size_t CmdLength; CmdLength = strlen (KeyedCmd->Command); assert (CmdLength >= 2); if (strncmp (KeyedCmd->Command, Line, CmdLength) == 0) { char *CommandArg, *EndPtr; long Value; CommandArg = Line + CmdLength; errno = 0; Value = strtol (CommandArg, &EndPtr, 10); if (EndPtr == CommandArg || // no conversion performed errno != 0 || // not in long's range, etc *EndPtr != '\0' || // final string not empty Value < INT_MIN || Value > INT_MAX // parsed long not in int range ) { fprintf (stderr, "%s: %.*s: \"%s\": not an int\n", __FUNCTION__, (int)(CmdLength - 1), Line, CommandArg); } else { KeyedCmd->Function (Value, Collection); } break; } } if (KeyedCmd->Command != NULL) { continue; } fprintf (stderr, "%s: \"%s\": unknown command\n", __FUNCTION__, Line); } if (RetVal == EXIT_SUCCESS && ferror (Input)) { fprintf (stderr, "%s: fgets(): %s\n", __FUNCTION__, strerror (errno)); RetVal = EXIT_FAILURE; } CmdForwardEmpty (Collection); OrderedCollectionUninit (Collection); return RetVal; }