/** @file OVMF ACPI QEMU support Copyright (c) 2008 - 2014, Intel Corporation. All rights reserved.<BR> Copyright (C) 2012-2014, Red Hat, Inc. This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "AcpiPlatform.h" #include "QemuLoader.h" #include <Library/BaseMemoryLib.h> #include <Library/MemoryAllocationLib.h> #include <Library/QemuFwCfgLib.h> #include <Library/DxeServicesTableLib.h> #include <Library/PcdLib.h> #include <Library/OrderedCollectionLib.h> #include <IndustryStandard/Acpi.h> BOOLEAN QemuDetected ( VOID ) { if (!QemuFwCfgIsAvailable ()) { return FALSE; } return TRUE; } STATIC UINTN CountBits16 ( UINT16 Mask ) { // // For all N >= 1, N bits are enough to represent the number of bits set // among N bits. It's true for N == 1. When adding a new bit (N := N+1), // the maximum number of possibly set bits increases by one, while the // representable maximum doubles. // Mask = ((Mask & 0xAAAA) >> 1) + (Mask & 0x5555); Mask = ((Mask & 0xCCCC) >> 2) + (Mask & 0x3333); Mask = ((Mask & 0xF0F0) >> 4) + (Mask & 0x0F0F); Mask = ((Mask & 0xFF00) >> 8) + (Mask & 0x00FF); return Mask; } STATIC EFI_STATUS EFIAPI QemuInstallAcpiMadtTable ( IN EFI_ACPI_TABLE_PROTOCOL *AcpiProtocol, IN VOID *AcpiTableBuffer, IN UINTN AcpiTableBufferSize, OUT UINTN *TableKey ) { UINTN CpuCount; UINTN PciLinkIsoCount; UINTN NewBufferSize; EFI_ACPI_1_0_MULTIPLE_APIC_DESCRIPTION_TABLE_HEADER *Madt; EFI_ACPI_1_0_PROCESSOR_LOCAL_APIC_STRUCTURE *LocalApic; EFI_ACPI_1_0_IO_APIC_STRUCTURE *IoApic; EFI_ACPI_1_0_INTERRUPT_SOURCE_OVERRIDE_STRUCTURE *Iso; EFI_ACPI_1_0_LOCAL_APIC_NMI_STRUCTURE *LocalApicNmi; VOID *Ptr; UINTN Loop; EFI_STATUS Status; ASSERT (AcpiTableBufferSize >= sizeof (EFI_ACPI_DESCRIPTION_HEADER)); QemuFwCfgSelectItem (QemuFwCfgItemSmpCpuCount); CpuCount = QemuFwCfgRead16 (); ASSERT (CpuCount >= 1); // // Set Level-tiggered, Active High for these identity mapped IRQs. The bitset // corresponds to the union of all possible interrupt assignments for the LNKA, // LNKB, LNKC, LNKD PCI interrupt lines. See the DSDT. // PciLinkIsoCount = CountBits16 (PcdGet16 (Pcd8259LegacyModeEdgeLevel)); NewBufferSize = 1 * sizeof (*Madt) + CpuCount * sizeof (*LocalApic) + 1 * sizeof (*IoApic) + (1 + PciLinkIsoCount) * sizeof (*Iso) + 1 * sizeof (*LocalApicNmi); Madt = AllocatePool (NewBufferSize); if (Madt == NULL) { return EFI_OUT_OF_RESOURCES; } CopyMem (&(Madt->Header), AcpiTableBuffer, sizeof (EFI_ACPI_DESCRIPTION_HEADER)); Madt->Header.Length = (UINT32) NewBufferSize; Madt->LocalApicAddress = PcdGet32 (PcdCpuLocalApicBaseAddress); Madt->Flags = EFI_ACPI_1_0_PCAT_COMPAT; Ptr = Madt + 1; LocalApic = Ptr; for (Loop = 0; Loop < CpuCount; ++Loop) { LocalApic->Type = EFI_ACPI_1_0_PROCESSOR_LOCAL_APIC; LocalApic->Length = sizeof (*LocalApic); LocalApic->AcpiProcessorId = (UINT8) Loop; LocalApic->ApicId = (UINT8) Loop; LocalApic->Flags = 1; // enabled ++LocalApic; } Ptr = LocalApic; IoApic = Ptr; IoApic->Type = EFI_ACPI_1_0_IO_APIC; IoApic->Length = sizeof (*IoApic); IoApic->IoApicId = (UINT8) CpuCount; IoApic->Reserved = EFI_ACPI_RESERVED_BYTE; IoApic->IoApicAddress = 0xFEC00000; IoApic->SystemVectorBase = 0x00000000; Ptr = IoApic + 1; // // IRQ0 (8254 Timer) => IRQ2 (PIC) Interrupt Source Override Structure // Iso = Ptr; Iso->Type = EFI_ACPI_1_0_INTERRUPT_SOURCE_OVERRIDE; Iso->Length = sizeof (*Iso); Iso->Bus = 0x00; // ISA Iso->Source = 0x00; // IRQ0 Iso->GlobalSystemInterruptVector = 0x00000002; Iso->Flags = 0x0000; // Conforms to specs of the bus ++Iso; // // Set Level-tiggered, Active High for all possible PCI link targets. // for (Loop = 0; Loop < 16; ++Loop) { if ((PcdGet16 (Pcd8259LegacyModeEdgeLevel) & (1 << Loop)) == 0) { continue; } Iso->Type = EFI_ACPI_1_0_INTERRUPT_SOURCE_OVERRIDE; Iso->Length = sizeof (*Iso); Iso->Bus = 0x00; // ISA Iso->Source = (UINT8) Loop; Iso->GlobalSystemInterruptVector = (UINT32) Loop; Iso->Flags = 0x000D; // Level-tiggered, Active High ++Iso; } ASSERT ( (UINTN) (Iso - (EFI_ACPI_1_0_INTERRUPT_SOURCE_OVERRIDE_STRUCTURE *)Ptr) == 1 + PciLinkIsoCount ); Ptr = Iso; LocalApicNmi = Ptr; LocalApicNmi->Type = EFI_ACPI_1_0_LOCAL_APIC_NMI; LocalApicNmi->Length = sizeof (*LocalApicNmi); LocalApicNmi->AcpiProcessorId = 0xFF; // applies to all processors // // polarity and trigger mode of the APIC I/O input signals conform to the // specifications of the bus // LocalApicNmi->Flags = 0x0000; // // Local APIC interrupt input LINTn to which NMI is connected. // LocalApicNmi->LocalApicInti = 0x01; Ptr = LocalApicNmi + 1; ASSERT ((UINTN) ((UINT8 *)Ptr - (UINT8 *)Madt) == NewBufferSize); Status = InstallAcpiTable (AcpiProtocol, Madt, NewBufferSize, TableKey); FreePool (Madt); return Status; } #pragma pack(1) typedef struct { UINT64 Base; UINT64 End; UINT64 Length; } PCI_WINDOW; typedef struct { PCI_WINDOW PciWindow32; PCI_WINDOW PciWindow64; } FIRMWARE_DATA; typedef struct { UINT8 BytePrefix; UINT8 ByteValue; } AML_BYTE; typedef struct { UINT8 NameOp; UINT8 RootChar; UINT8 NameChar[4]; UINT8 PackageOp; UINT8 PkgLength; UINT8 NumElements; AML_BYTE Pm1aCntSlpTyp; AML_BYTE Pm1bCntSlpTyp; AML_BYTE Reserved[2]; } SYSTEM_STATE_PACKAGE; #pragma pack() STATIC EFI_STATUS EFIAPI PopulateFwData( OUT FIRMWARE_DATA *FwData ) { EFI_STATUS Status; UINTN NumDesc; EFI_GCD_MEMORY_SPACE_DESCRIPTOR *AllDesc; Status = gDS->GetMemorySpaceMap (&NumDesc, &AllDesc); if (Status == EFI_SUCCESS) { UINT64 NonMmio32MaxExclTop; UINT64 Mmio32MinBase; UINT64 Mmio32MaxExclTop; UINTN CurDesc; Status = EFI_UNSUPPORTED; NonMmio32MaxExclTop = 0; Mmio32MinBase = BASE_4GB; Mmio32MaxExclTop = 0; for (CurDesc = 0; CurDesc < NumDesc; ++CurDesc) { CONST EFI_GCD_MEMORY_SPACE_DESCRIPTOR *Desc; UINT64 ExclTop; Desc = &AllDesc[CurDesc]; ExclTop = Desc->BaseAddress + Desc->Length; if (ExclTop <= (UINT64) PcdGet32 (PcdOvmfFdBaseAddress)) { switch (Desc->GcdMemoryType) { case EfiGcdMemoryTypeNonExistent: break; case EfiGcdMemoryTypeReserved: case EfiGcdMemoryTypeSystemMemory: if (NonMmio32MaxExclTop < ExclTop) { NonMmio32MaxExclTop = ExclTop; } break; case EfiGcdMemoryTypeMemoryMappedIo: if (Mmio32MinBase > Desc->BaseAddress) { Mmio32MinBase = Desc->BaseAddress; } if (Mmio32MaxExclTop < ExclTop) { Mmio32MaxExclTop = ExclTop; } break; default: ASSERT(0); } } } if (Mmio32MinBase < NonMmio32MaxExclTop) { Mmio32MinBase = NonMmio32MaxExclTop; } if (Mmio32MinBase < Mmio32MaxExclTop) { FwData->PciWindow32.Base = Mmio32MinBase; FwData->PciWindow32.End = Mmio32MaxExclTop - 1; FwData->PciWindow32.Length = Mmio32MaxExclTop - Mmio32MinBase; FwData->PciWindow64.Base = 0; FwData->PciWindow64.End = 0; FwData->PciWindow64.Length = 0; Status = EFI_SUCCESS; } FreePool (AllDesc); } DEBUG (( DEBUG_INFO, "ACPI PciWindow32: Base=0x%08lx End=0x%08lx Length=0x%08lx\n", FwData->PciWindow32.Base, FwData->PciWindow32.End, FwData->PciWindow32.Length )); DEBUG (( DEBUG_INFO, "ACPI PciWindow64: Base=0x%08lx End=0x%08lx Length=0x%08lx\n", FwData->PciWindow64.Base, FwData->PciWindow64.End, FwData->PciWindow64.Length )); return Status; } STATIC VOID EFIAPI GetSuspendStates ( UINTN *SuspendToRamSize, SYSTEM_STATE_PACKAGE *SuspendToRam, UINTN *SuspendToDiskSize, SYSTEM_STATE_PACKAGE *SuspendToDisk ) { STATIC CONST SYSTEM_STATE_PACKAGE Template = { 0x08, // NameOp '\\', // RootChar { '_', 'S', 'x', '_' }, // NameChar[4] 0x12, // PackageOp 0x0A, // PkgLength 0x04, // NumElements { 0x0A, 0x00 }, // Pm1aCntSlpTyp { 0x0A, 0x00 }, // Pm1bCntSlpTyp -- we don't support it { // Reserved[2] { 0x0A, 0x00 }, { 0x0A, 0x00 } } }; RETURN_STATUS Status; FIRMWARE_CONFIG_ITEM FwCfgItem; UINTN FwCfgSize; UINT8 SystemStates[6]; // // configure defaults // *SuspendToRamSize = sizeof Template; CopyMem (SuspendToRam, &Template, sizeof Template); SuspendToRam->NameChar[2] = '3'; // S3 SuspendToRam->Pm1aCntSlpTyp.ByteValue = 1; // PIIX4: STR *SuspendToDiskSize = sizeof Template; CopyMem (SuspendToDisk, &Template, sizeof Template); SuspendToDisk->NameChar[2] = '4'; // S4 SuspendToDisk->Pm1aCntSlpTyp.ByteValue = 2; // PIIX4: POSCL // // check for overrides // Status = QemuFwCfgFindFile ("etc/system-states", &FwCfgItem, &FwCfgSize); if (Status != RETURN_SUCCESS || FwCfgSize != sizeof SystemStates) { DEBUG ((DEBUG_INFO, "ACPI using S3/S4 defaults\n")); return; } QemuFwCfgSelectItem (FwCfgItem); QemuFwCfgReadBytes (sizeof SystemStates, SystemStates); // // Each byte corresponds to a system state. In each byte, the MSB tells us // whether the given state is enabled. If so, the three LSBs specify the // value to be written to the PM control register's SUS_TYP bits. // if (SystemStates[3] & BIT7) { SuspendToRam->Pm1aCntSlpTyp.ByteValue = SystemStates[3] & (BIT2 | BIT1 | BIT0); DEBUG ((DEBUG_INFO, "ACPI S3 value: %d\n", SuspendToRam->Pm1aCntSlpTyp.ByteValue)); } else { *SuspendToRamSize = 0; DEBUG ((DEBUG_INFO, "ACPI S3 disabled\n")); } if (SystemStates[4] & BIT7) { SuspendToDisk->Pm1aCntSlpTyp.ByteValue = SystemStates[4] & (BIT2 | BIT1 | BIT0); DEBUG ((DEBUG_INFO, "ACPI S4 value: %d\n", SuspendToDisk->Pm1aCntSlpTyp.ByteValue)); } else { *SuspendToDiskSize = 0; DEBUG ((DEBUG_INFO, "ACPI S4 disabled\n")); } } STATIC EFI_STATUS EFIAPI QemuInstallAcpiSsdtTable ( IN EFI_ACPI_TABLE_PROTOCOL *AcpiProtocol, IN VOID *AcpiTableBuffer, IN UINTN AcpiTableBufferSize, OUT UINTN *TableKey ) { EFI_STATUS Status; FIRMWARE_DATA *FwData; Status = EFI_OUT_OF_RESOURCES; FwData = AllocateReservedPool (sizeof (*FwData)); if (FwData != NULL) { UINTN SuspendToRamSize; SYSTEM_STATE_PACKAGE SuspendToRam; UINTN SuspendToDiskSize; SYSTEM_STATE_PACKAGE SuspendToDisk; UINTN SsdtSize; UINT8 *Ssdt; GetSuspendStates (&SuspendToRamSize, &SuspendToRam, &SuspendToDiskSize, &SuspendToDisk); SsdtSize = AcpiTableBufferSize + 17 + SuspendToRamSize + SuspendToDiskSize; Ssdt = AllocatePool (SsdtSize); if (Ssdt != NULL) { Status = PopulateFwData (FwData); if (Status == EFI_SUCCESS) { UINT8 *SsdtPtr; SsdtPtr = Ssdt; CopyMem (SsdtPtr, AcpiTableBuffer, AcpiTableBufferSize); SsdtPtr += AcpiTableBufferSize; // // build "OperationRegion(FWDT, SystemMemory, 0x12345678, 0x87654321)" // *(SsdtPtr++) = 0x5B; // ExtOpPrefix *(SsdtPtr++) = 0x80; // OpRegionOp *(SsdtPtr++) = 'F'; *(SsdtPtr++) = 'W'; *(SsdtPtr++) = 'D'; *(SsdtPtr++) = 'T'; *(SsdtPtr++) = 0x00; // SystemMemory *(SsdtPtr++) = 0x0C; // DWordPrefix // // no virtual addressing yet, take the four least significant bytes // CopyMem(SsdtPtr, &FwData, 4); SsdtPtr += 4; *(SsdtPtr++) = 0x0C; // DWordPrefix *(UINT32*) SsdtPtr = sizeof (*FwData); SsdtPtr += 4; // // add suspend system states // CopyMem (SsdtPtr, &SuspendToRam, SuspendToRamSize); SsdtPtr += SuspendToRamSize; CopyMem (SsdtPtr, &SuspendToDisk, SuspendToDiskSize); SsdtPtr += SuspendToDiskSize; ASSERT((UINTN) (SsdtPtr - Ssdt) == SsdtSize); ((EFI_ACPI_DESCRIPTION_HEADER *) Ssdt)->Length = (UINT32) SsdtSize; Status = InstallAcpiTable (AcpiProtocol, Ssdt, SsdtSize, TableKey); } FreePool(Ssdt); } if (Status != EFI_SUCCESS) { FreePool(FwData); } } return Status; } EFI_STATUS EFIAPI QemuInstallAcpiTable ( IN EFI_ACPI_TABLE_PROTOCOL *AcpiProtocol, IN VOID *AcpiTableBuffer, IN UINTN AcpiTableBufferSize, OUT UINTN *TableKey ) { EFI_ACPI_DESCRIPTION_HEADER *Hdr; EFI_ACPI_TABLE_INSTALL_ACPI_TABLE TableInstallFunction; Hdr = (EFI_ACPI_DESCRIPTION_HEADER*) AcpiTableBuffer; switch (Hdr->Signature) { case EFI_ACPI_1_0_APIC_SIGNATURE: TableInstallFunction = QemuInstallAcpiMadtTable; break; case EFI_ACPI_1_0_SECONDARY_SYSTEM_DESCRIPTION_TABLE_SIGNATURE: TableInstallFunction = QemuInstallAcpiSsdtTable; break; default: TableInstallFunction = InstallAcpiTable; } return TableInstallFunction ( AcpiProtocol, AcpiTableBuffer, AcpiTableBufferSize, TableKey ); } // // The user structure for the ordered collection that will track the fw_cfg // blobs under processing. // typedef struct { UINT8 File[QEMU_LOADER_FNAME_SIZE]; // NUL-terminated name of the fw_cfg // blob. This is the ordering / search // key. UINTN Size; // The number of bytes in this blob. UINT8 *Base; // Pointer to the blob data. BOOLEAN HostsOnlyTableData; // TRUE iff the blob has been found to // only contain data that is directly // part of ACPI tables. } BLOB; /** Compare a standalone key against a user structure containing an embedded key. @param[in] StandaloneKey Pointer to the bare key. @param[in] UserStruct Pointer to the user structure with the embedded key. @retval <0 If StandaloneKey compares less than UserStruct's key. @retval 0 If StandaloneKey compares equal to UserStruct's key. @retval >0 If StandaloneKey compares greater than UserStruct's key. **/ STATIC INTN EFIAPI BlobKeyCompare ( IN CONST VOID *StandaloneKey, IN CONST VOID *UserStruct ) { CONST BLOB *Blob; Blob = UserStruct; return AsciiStrCmp (StandaloneKey, (CONST CHAR8 *)Blob->File); } /** Comparator function for two user structures. @param[in] UserStruct1 Pointer to the first user structure. @param[in] UserStruct2 Pointer to the second user structure. @retval <0 If UserStruct1 compares less than UserStruct2. @retval 0 If UserStruct1 compares equal to UserStruct2. @retval >0 If UserStruct1 compares greater than UserStruct2. **/ STATIC INTN EFIAPI BlobCompare ( IN CONST VOID *UserStruct1, IN CONST VOID *UserStruct2 ) { CONST BLOB *Blob1; Blob1 = UserStruct1; return BlobKeyCompare (Blob1->File, UserStruct2); } /** Process a QEMU_LOADER_ALLOCATE command. @param[in] Allocate The QEMU_LOADER_ALLOCATE command to process. @param[in,out] Tracker The ORDERED_COLLECTION tracking the BLOB user structures created thus far. @retval EFI_SUCCESS An area of whole AcpiNVS pages has been allocated for the blob contents, and the contents have been saved. A BLOB object (user structure) has been allocated from pool memory, referencing the blob contents. The BLOB user structure has been linked into Tracker. @retval EFI_PROTOCOL_ERROR Malformed fw_cfg file name has been found in Allocate, or the Allocate command references a file that is already known by Tracker. @retval EFI_UNSUPPORTED Unsupported alignment request has been found in Allocate. @retval EFI_OUT_OF_RESOURCES Pool allocation failed. @return Error codes from QemuFwCfgFindFile() and gBS->AllocatePages(). **/ STATIC EFI_STATUS EFIAPI ProcessCmdAllocate ( IN CONST QEMU_LOADER_ALLOCATE *Allocate, IN OUT ORDERED_COLLECTION *Tracker ) { FIRMWARE_CONFIG_ITEM FwCfgItem; UINTN FwCfgSize; EFI_STATUS Status; UINTN NumPages; EFI_PHYSICAL_ADDRESS Address; BLOB *Blob; if (Allocate->File[QEMU_LOADER_FNAME_SIZE - 1] != '\0') { DEBUG ((EFI_D_ERROR, "%a: malformed file name\n", __FUNCTION__)); return EFI_PROTOCOL_ERROR; } if (Allocate->Alignment > EFI_PAGE_SIZE) { DEBUG ((EFI_D_ERROR, "%a: unsupported alignment 0x%x\n", __FUNCTION__, Allocate->Alignment)); return EFI_UNSUPPORTED; } Status = QemuFwCfgFindFile ((CHAR8 *)Allocate->File, &FwCfgItem, &FwCfgSize); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "%a: QemuFwCfgFindFile(\"%a\"): %r\n", __FUNCTION__, Allocate->File, Status)); return Status; } NumPages = EFI_SIZE_TO_PAGES (FwCfgSize); Address = 0xFFFFFFFF; Status = gBS->AllocatePages (AllocateMaxAddress, EfiACPIMemoryNVS, NumPages, &Address); if (EFI_ERROR (Status)) { return Status; } Blob = AllocatePool (sizeof *Blob); if (Blob == NULL) { Status = EFI_OUT_OF_RESOURCES; goto FreePages; } CopyMem (Blob->File, Allocate->File, QEMU_LOADER_FNAME_SIZE); Blob->Size = FwCfgSize; Blob->Base = (VOID *)(UINTN)Address; Blob->HostsOnlyTableData = TRUE; Status = OrderedCollectionInsert (Tracker, NULL, Blob); if (Status == RETURN_ALREADY_STARTED) { DEBUG ((EFI_D_ERROR, "%a: duplicated file \"%a\"\n", __FUNCTION__, Allocate->File)); Status = EFI_PROTOCOL_ERROR; } if (EFI_ERROR (Status)) { goto FreeBlob; } QemuFwCfgSelectItem (FwCfgItem); QemuFwCfgReadBytes (FwCfgSize, Blob->Base); ZeroMem (Blob->Base + Blob->Size, EFI_PAGES_TO_SIZE (NumPages) - Blob->Size); DEBUG ((EFI_D_VERBOSE, "%a: File=\"%a\" Alignment=0x%x Zone=%d Size=0x%Lx " "Address=0x%Lx\n", __FUNCTION__, Allocate->File, Allocate->Alignment, Allocate->Zone, (UINT64)Blob->Size, (UINT64)(UINTN)Blob->Base)); return EFI_SUCCESS; FreeBlob: FreePool (Blob); FreePages: gBS->FreePages (Address, NumPages); return Status; } /** Process a QEMU_LOADER_ADD_POINTER command. @param[in] AddPointer The QEMU_LOADER_ADD_POINTER command to process. @param[in] Tracker The ORDERED_COLLECTION tracking the BLOB user structures created thus far. @retval EFI_PROTOCOL_ERROR Malformed fw_cfg file name(s) have been found in AddPointer, or the AddPointer command references a file unknown to Tracker, or the pointer to relocate has invalid location, size, or value, or the relocated pointer value is not representable in the given pointer size. @retval EFI_SUCCESS The pointer field inside the pointer blob has been relocated. **/ STATIC EFI_STATUS EFIAPI ProcessCmdAddPointer ( IN CONST QEMU_LOADER_ADD_POINTER *AddPointer, IN CONST ORDERED_COLLECTION *Tracker ) { ORDERED_COLLECTION_ENTRY *TrackerEntry, *TrackerEntry2; BLOB *Blob, *Blob2; UINT8 *PointerField; UINT64 PointerValue; if (AddPointer->PointerFile[QEMU_LOADER_FNAME_SIZE - 1] != '\0' || AddPointer->PointeeFile[QEMU_LOADER_FNAME_SIZE - 1] != '\0') { DEBUG ((EFI_D_ERROR, "%a: malformed file name\n", __FUNCTION__)); return EFI_PROTOCOL_ERROR; } TrackerEntry = OrderedCollectionFind (Tracker, AddPointer->PointerFile); TrackerEntry2 = OrderedCollectionFind (Tracker, AddPointer->PointeeFile); if (TrackerEntry == NULL || TrackerEntry2 == NULL) { DEBUG ((EFI_D_ERROR, "%a: invalid blob reference(s) \"%a\" / \"%a\"\n", __FUNCTION__, AddPointer->PointerFile, AddPointer->PointeeFile)); return EFI_PROTOCOL_ERROR; } Blob = OrderedCollectionUserStruct (TrackerEntry); Blob2 = OrderedCollectionUserStruct (TrackerEntry2); if ((AddPointer->PointerSize != 1 && AddPointer->PointerSize != 2 && AddPointer->PointerSize != 4 && AddPointer->PointerSize != 8) || Blob->Size < AddPointer->PointerSize || Blob->Size - AddPointer->PointerSize < AddPointer->PointerOffset) { DEBUG ((EFI_D_ERROR, "%a: invalid pointer location or size in \"%a\"\n", __FUNCTION__, AddPointer->PointerFile)); return EFI_PROTOCOL_ERROR; } PointerField = Blob->Base + AddPointer->PointerOffset; PointerValue = 0; CopyMem (&PointerValue, PointerField, AddPointer->PointerSize); if (PointerValue >= Blob2->Size) { DEBUG ((EFI_D_ERROR, "%a: invalid pointer value in \"%a\"\n", __FUNCTION__, AddPointer->PointerFile)); return EFI_PROTOCOL_ERROR; } // // The memory allocation system ensures that the address of the byte past the // last byte of any allocated object is expressible (no wraparound). // ASSERT ((UINTN)Blob2->Base <= MAX_ADDRESS - Blob2->Size); PointerValue += (UINT64)(UINTN)Blob2->Base; if (RShiftU64 ( RShiftU64 (PointerValue, AddPointer->PointerSize * 8 - 1), 1) != 0) { DEBUG ((EFI_D_ERROR, "%a: relocated pointer value unrepresentable in " "\"%a\"\n", __FUNCTION__, AddPointer->PointerFile)); return EFI_PROTOCOL_ERROR; } CopyMem (PointerField, &PointerValue, AddPointer->PointerSize); DEBUG ((EFI_D_VERBOSE, "%a: PointerFile=\"%a\" PointeeFile=\"%a\" " "PointerOffset=0x%x PointerSize=%d\n", __FUNCTION__, AddPointer->PointerFile, AddPointer->PointeeFile, AddPointer->PointerOffset, AddPointer->PointerSize)); return EFI_SUCCESS; } /** Process a QEMU_LOADER_ADD_CHECKSUM command. @param[in] AddChecksum The QEMU_LOADER_ADD_CHECKSUM command to process. @param[in] Tracker The ORDERED_COLLECTION tracking the BLOB user structures created thus far. @retval EFI_PROTOCOL_ERROR Malformed fw_cfg file name has been found in AddChecksum, or the AddChecksum command references a file unknown to Tracker, or the range to checksum is invalid. @retval EFI_SUCCESS The requested range has been checksummed. **/ STATIC EFI_STATUS EFIAPI ProcessCmdAddChecksum ( IN CONST QEMU_LOADER_ADD_CHECKSUM *AddChecksum, IN CONST ORDERED_COLLECTION *Tracker ) { ORDERED_COLLECTION_ENTRY *TrackerEntry; BLOB *Blob; if (AddChecksum->File[QEMU_LOADER_FNAME_SIZE - 1] != '\0') { DEBUG ((EFI_D_ERROR, "%a: malformed file name\n", __FUNCTION__)); return EFI_PROTOCOL_ERROR; } TrackerEntry = OrderedCollectionFind (Tracker, AddChecksum->File); if (TrackerEntry == NULL) { DEBUG ((EFI_D_ERROR, "%a: invalid blob reference \"%a\"\n", __FUNCTION__, AddChecksum->File)); return EFI_PROTOCOL_ERROR; } Blob = OrderedCollectionUserStruct (TrackerEntry); if (Blob->Size <= AddChecksum->ResultOffset || Blob->Size < AddChecksum->Length || Blob->Size - AddChecksum->Length < AddChecksum->Start) { DEBUG ((EFI_D_ERROR, "%a: invalid checksum range in \"%a\"\n", __FUNCTION__, AddChecksum->File)); return EFI_PROTOCOL_ERROR; } Blob->Base[AddChecksum->ResultOffset] = CalculateCheckSum8 ( Blob->Base + AddChecksum->Start, AddChecksum->Length ); DEBUG ((EFI_D_VERBOSE, "%a: File=\"%a\" ResultOffset=0x%x Start=0x%x " "Length=0x%x\n", __FUNCTION__, AddChecksum->File, AddChecksum->ResultOffset, AddChecksum->Start, AddChecksum->Length)); return EFI_SUCCESS; } // // We'll be saving the keys of installed tables so that we can roll them back // in case of failure. 128 tables should be enough for anyone (TM). // #define INSTALLED_TABLES_MAX 128 /** Process a QEMU_LOADER_ADD_POINTER command in order to see if its target byte array is an ACPI table, and if so, install it. This function assumes that the entire QEMU linker/loader command file has been processed successfuly in a prior first pass. @param[in] AddPointer The QEMU_LOADER_ADD_POINTER command to process. @param[in] Tracker The ORDERED_COLLECTION tracking the BLOB user structures. @param[in] AcpiProtocol The ACPI table protocol used to install tables. @param[in,out] InstalledKey On input, an array of INSTALLED_TABLES_MAX UINTN elements, allocated by the caller. On output, the function will have stored (appended) the AcpiProtocol-internal key of the ACPI table that the function has installed, if the AddPointer command identified an ACPI table that is different from RSDT and XSDT. @param[in,out] NumInstalled On input, the number of entries already used in InstalledKey; it must be in [0, INSTALLED_TABLES_MAX] inclusive. On output, the parameter is incremented if the AddPointer command identified an ACPI table that is different from RSDT and XSDT. @retval EFI_INVALID_PARAMETER NumInstalled was outside the allowed range on input. @retval EFI_OUT_OF_RESOURCES The AddPointer command identified an ACPI table different from RSDT and XSDT, but there was no more room in InstalledKey. @retval EFI_SUCCESS AddPointer has been processed. Either an ACPI table different from RSDT and XSDT has been installed (reflected by InstalledKey and NumInstalled), or RSDT or XSDT has been identified but not installed, or the fw_cfg blob pointed-into by AddPointer has been marked as hosting something else than just direct ACPI table contents. @return Error codes returned by AcpiProtocol->InstallAcpiTable(). **/ STATIC EFI_STATUS EFIAPI Process2ndPassCmdAddPointer ( IN CONST QEMU_LOADER_ADD_POINTER *AddPointer, IN CONST ORDERED_COLLECTION *Tracker, IN EFI_ACPI_TABLE_PROTOCOL *AcpiProtocol, IN OUT UINTN InstalledKey[INSTALLED_TABLES_MAX], IN OUT INT32 *NumInstalled ) { CONST ORDERED_COLLECTION_ENTRY *TrackerEntry; CONST ORDERED_COLLECTION_ENTRY *TrackerEntry2; CONST BLOB *Blob; BLOB *Blob2; CONST UINT8 *PointerField; UINT64 PointerValue; UINTN Blob2Remaining; UINTN TableSize; CONST EFI_ACPI_1_0_FIRMWARE_ACPI_CONTROL_STRUCTURE *Facs; CONST EFI_ACPI_DESCRIPTION_HEADER *Header; EFI_STATUS Status; if (*NumInstalled < 0 || *NumInstalled > INSTALLED_TABLES_MAX) { return EFI_INVALID_PARAMETER; } TrackerEntry = OrderedCollectionFind (Tracker, AddPointer->PointerFile); TrackerEntry2 = OrderedCollectionFind (Tracker, AddPointer->PointeeFile); Blob = OrderedCollectionUserStruct (TrackerEntry); Blob2 = OrderedCollectionUserStruct (TrackerEntry2); PointerField = Blob->Base + AddPointer->PointerOffset; PointerValue = 0; CopyMem (&PointerValue, PointerField, AddPointer->PointerSize); // // We assert that PointerValue falls inside Blob2's contents. This is ensured // by the Blob2->Size check and later checks in ProcessCmdAddPointer(). // Blob2Remaining = (UINTN)Blob2->Base; ASSERT(PointerValue >= Blob2Remaining); Blob2Remaining += Blob2->Size; ASSERT (PointerValue < Blob2Remaining); Blob2Remaining -= (UINTN) PointerValue; DEBUG ((EFI_D_VERBOSE, "%a: checking for ACPI header in \"%a\" at 0x%Lx " "(remaining: 0x%Lx): ", __FUNCTION__, AddPointer->PointeeFile, PointerValue, (UINT64)Blob2Remaining)); TableSize = 0; // // To make our job simple, the FACS has a custom header. Sigh. // if (sizeof *Facs <= Blob2Remaining) { Facs = (EFI_ACPI_1_0_FIRMWARE_ACPI_CONTROL_STRUCTURE *)(UINTN)PointerValue; if (Facs->Length >= sizeof *Facs && Facs->Length <= Blob2Remaining && Facs->Signature == EFI_ACPI_1_0_FIRMWARE_ACPI_CONTROL_STRUCTURE_SIGNATURE) { DEBUG ((EFI_D_VERBOSE, "found \"%-4.4a\" size 0x%x\n", (CONST CHAR8 *)&Facs->Signature, Facs->Length)); TableSize = Facs->Length; } } // // check for the uniform tables // if (TableSize == 0 && sizeof *Header <= Blob2Remaining) { Header = (EFI_ACPI_DESCRIPTION_HEADER *)(UINTN)PointerValue; if (Header->Length >= sizeof *Header && Header->Length <= Blob2Remaining && CalculateSum8 ((CONST UINT8 *)Header, Header->Length) == 0) { // // This looks very much like an ACPI table from QEMU: // - Length field consistent with both ACPI and containing blob size // - checksum is correct // DEBUG ((EFI_D_VERBOSE, "found \"%-4.4a\" size 0x%x\n", (CONST CHAR8 *)&Header->Signature, Header->Length)); TableSize = Header->Length; // // Skip RSDT and XSDT because those are handled by // EFI_ACPI_TABLE_PROTOCOL automatically. if (Header->Signature == EFI_ACPI_1_0_ROOT_SYSTEM_DESCRIPTION_TABLE_SIGNATURE || Header->Signature == EFI_ACPI_2_0_EXTENDED_SYSTEM_DESCRIPTION_TABLE_SIGNATURE) { return EFI_SUCCESS; } } } if (TableSize == 0) { DEBUG ((EFI_D_VERBOSE, "not found; marking fw_cfg blob as opaque\n")); Blob2->HostsOnlyTableData = FALSE; return EFI_SUCCESS; } if (*NumInstalled == INSTALLED_TABLES_MAX) { DEBUG ((EFI_D_ERROR, "%a: can't install more than %d tables\n", __FUNCTION__, INSTALLED_TABLES_MAX)); return EFI_OUT_OF_RESOURCES; } Status = AcpiProtocol->InstallAcpiTable (AcpiProtocol, (VOID *)(UINTN)PointerValue, TableSize, &InstalledKey[*NumInstalled]); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "%a: InstallAcpiTable(): %r\n", __FUNCTION__, Status)); return Status; } ++*NumInstalled; return EFI_SUCCESS; } /** Download, process, and install ACPI table data from the QEMU loader interface. @param[in] AcpiProtocol The ACPI table protocol used to install tables. @retval EFI_UNSUPPORTED Firmware configuration is unavailable, or QEMU loader command with unsupported parameters has been found. @retval EFI_NOT_FOUND The host doesn't export the required fw_cfg files. @retval EFI_OUT_OF_RESOURCES Memory allocation failed, or more than INSTALLED_TABLES_MAX tables found. @retval EFI_PROTOCOL_ERROR Found invalid fw_cfg contents. @return Status codes returned by AcpiProtocol->InstallAcpiTable(). **/ EFI_STATUS EFIAPI InstallAllQemuLinkedTables ( IN EFI_ACPI_TABLE_PROTOCOL *AcpiProtocol ) { EFI_STATUS Status; FIRMWARE_CONFIG_ITEM FwCfgItem; UINTN FwCfgSize; QEMU_LOADER_ENTRY *LoaderStart; CONST QEMU_LOADER_ENTRY *LoaderEntry, *LoaderEnd; ORDERED_COLLECTION *Tracker; UINTN *InstalledKey; INT32 Installed; ORDERED_COLLECTION_ENTRY *TrackerEntry, *TrackerEntry2; Status = QemuFwCfgFindFile ("etc/table-loader", &FwCfgItem, &FwCfgSize); if (EFI_ERROR (Status)) { return Status; } if (FwCfgSize % sizeof *LoaderEntry != 0) { DEBUG ((EFI_D_ERROR, "%a: \"etc/table-loader\" has invalid size 0x%Lx\n", __FUNCTION__, (UINT64)FwCfgSize)); return EFI_PROTOCOL_ERROR; } LoaderStart = AllocatePool (FwCfgSize); if (LoaderStart == NULL) { return EFI_OUT_OF_RESOURCES; } QemuFwCfgSelectItem (FwCfgItem); QemuFwCfgReadBytes (FwCfgSize, LoaderStart); LoaderEnd = LoaderStart + FwCfgSize / sizeof *LoaderEntry; Tracker = OrderedCollectionInit (BlobCompare, BlobKeyCompare); if (Tracker == NULL) { Status = EFI_OUT_OF_RESOURCES; goto FreeLoader; } // // first pass: process the commands // for (LoaderEntry = LoaderStart; LoaderEntry < LoaderEnd; ++LoaderEntry) { switch (LoaderEntry->Type) { case QemuLoaderCmdAllocate: Status = ProcessCmdAllocate (&LoaderEntry->Command.Allocate, Tracker); break; case QemuLoaderCmdAddPointer: Status = ProcessCmdAddPointer (&LoaderEntry->Command.AddPointer, Tracker); break; case QemuLoaderCmdAddChecksum: Status = ProcessCmdAddChecksum (&LoaderEntry->Command.AddChecksum, Tracker); break; default: DEBUG ((EFI_D_VERBOSE, "%a: unknown loader command: 0x%x\n", __FUNCTION__, LoaderEntry->Type)); break; } if (EFI_ERROR (Status)) { goto FreeTracker; } } InstalledKey = AllocatePool (INSTALLED_TABLES_MAX * sizeof *InstalledKey); if (InstalledKey == NULL) { Status = EFI_OUT_OF_RESOURCES; goto FreeTracker; } // // second pass: identify and install ACPI tables // Installed = 0; for (LoaderEntry = LoaderStart; LoaderEntry < LoaderEnd; ++LoaderEntry) { if (LoaderEntry->Type == QemuLoaderCmdAddPointer) { Status = Process2ndPassCmdAddPointer (&LoaderEntry->Command.AddPointer, Tracker, AcpiProtocol, InstalledKey, &Installed); if (EFI_ERROR (Status)) { break; } } } if (EFI_ERROR (Status)) { // // roll back partial installation // while (Installed > 0) { --Installed; AcpiProtocol->UninstallAcpiTable (AcpiProtocol, InstalledKey[Installed]); } } else { DEBUG ((EFI_D_INFO, "%a: installed %d tables\n", __FUNCTION__, Installed)); } FreePool (InstalledKey); FreeTracker: // // Tear down the tracker infrastructure. Each fw_cfg blob will be left in // place only if we're exiting with success and the blob hosts data that is // not directly part of some ACPI table. // for (TrackerEntry = OrderedCollectionMin (Tracker); TrackerEntry != NULL; TrackerEntry = TrackerEntry2) { VOID *UserStruct; BLOB *Blob; TrackerEntry2 = OrderedCollectionNext (TrackerEntry); OrderedCollectionDelete (Tracker, TrackerEntry, &UserStruct); Blob = UserStruct; if (EFI_ERROR (Status) || Blob->HostsOnlyTableData) { DEBUG ((EFI_D_VERBOSE, "%a: freeing \"%a\"\n", __FUNCTION__, Blob->File)); gBS->FreePages ((UINTN)Blob->Base, EFI_SIZE_TO_PAGES (Blob->Size)); } FreePool (Blob); } OrderedCollectionUninit (Tracker); FreeLoader: FreePool (LoaderStart); return Status; }