/** @file
* File managing the MMU for ARMv8 architecture
*
* Copyright (c) 2011-2020, ARM Limited. All rights reserved.
* Copyright (c) 2016, Linaro Limited. All rights reserved.
* Copyright (c) 2017, Intel Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
STATIC
VOID (
EFIAPI *mReplaceLiveEntryFunc
)(
IN UINT64 *Entry,
IN UINT64 Value,
IN UINT64 RegionStart,
IN BOOLEAN DisableMmu
) = ArmReplaceLiveTranslationEntry;
STATIC
UINT64
ArmMemoryAttributeToPageAttribute (
IN ARM_MEMORY_REGION_ATTRIBUTES Attributes
)
{
UINT64 Permissions;
switch (Attributes) {
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK_RO:
Permissions = TT_AP_NO_RO;
break;
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK_XP:
case ARM_MEMORY_REGION_ATTRIBUTE_DEVICE:
if (ArmReadCurrentEL () == AARCH64_EL2) {
Permissions = TT_XN_MASK;
} else {
Permissions = TT_UXN_MASK | TT_PXN_MASK;
}
break;
default:
Permissions = 0;
break;
}
switch (Attributes) {
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK_NONSHAREABLE:
return TT_ATTR_INDX_MEMORY_WRITE_BACK;
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK:
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK_RO:
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK_XP:
return TT_ATTR_INDX_MEMORY_WRITE_BACK | TT_SH_INNER_SHAREABLE | Permissions;
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH:
return TT_ATTR_INDX_MEMORY_WRITE_THROUGH | TT_SH_INNER_SHAREABLE;
// Uncached and device mappings are treated as outer shareable by default,
case ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED:
return TT_ATTR_INDX_MEMORY_NON_CACHEABLE;
default:
ASSERT (0);
case ARM_MEMORY_REGION_ATTRIBUTE_DEVICE:
return TT_ATTR_INDX_DEVICE_MEMORY | Permissions;
}
}
#define MIN_T0SZ 16
#define BITS_PER_LEVEL 9
#define MAX_VA_BITS 48
STATIC
UINTN
GetRootTableEntryCount (
IN UINTN T0SZ
)
{
return TT_ENTRY_COUNT >> (T0SZ - MIN_T0SZ) % BITS_PER_LEVEL;
}
STATIC
UINTN
GetRootTableLevel (
IN UINTN T0SZ
)
{
return (T0SZ - MIN_T0SZ) / BITS_PER_LEVEL;
}
STATIC
VOID
ReplaceTableEntry (
IN UINT64 *Entry,
IN UINT64 Value,
IN UINT64 RegionStart,
IN UINT64 BlockMask,
IN BOOLEAN IsLiveBlockMapping
)
{
BOOLEAN DisableMmu;
//
// Replacing a live block entry with a table entry (or vice versa) requires a
// break-before-make sequence as per the architecture. This means the mapping
// must be made invalid and cleaned from the TLBs first, and this is a bit of
// a hassle if the mapping in question covers the code that is actually doing
// the mapping and the unmapping, and so we only bother with this if actually
// necessary.
//
if (!IsLiveBlockMapping || !ArmMmuEnabled ()) {
// If the mapping is not a live block mapping, or the MMU is not on yet, we
// can simply overwrite the entry.
*Entry = Value;
ArmUpdateTranslationTableEntry (Entry, (VOID *)(UINTN)RegionStart);
} else {
// If the mapping in question does not cover the code that updates the
// entry in memory, or the entry that we are intending to update, we can
// use an ordinary break before make. Otherwise, we will need to
// temporarily disable the MMU.
DisableMmu = FALSE;
if ((((RegionStart ^ (UINTN)mReplaceLiveEntryFunc) & ~BlockMask) == 0) ||
(((RegionStart ^ (UINTN)Entry) & ~BlockMask) == 0))
{
DisableMmu = TRUE;
DEBUG ((DEBUG_WARN, "%a: splitting block entry with MMU disabled\n", __func__));
}
mReplaceLiveEntryFunc (Entry, Value, RegionStart, DisableMmu);
}
}
STATIC
VOID
FreePageTablesRecursive (
IN UINT64 *TranslationTable,
IN UINTN Level
)
{
UINTN Index;
ASSERT (Level <= 3);
if (Level < 3) {
for (Index = 0; Index < TT_ENTRY_COUNT; Index++) {
if ((TranslationTable[Index] & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY) {
FreePageTablesRecursive (
(VOID *)(UINTN)(TranslationTable[Index] &
TT_ADDRESS_MASK_BLOCK_ENTRY),
Level + 1
);
}
}
}
FreePages (TranslationTable, 1);
}
STATIC
BOOLEAN
IsBlockEntry (
IN UINT64 Entry,
IN UINTN Level
)
{
if (Level == 3) {
return (Entry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY_LEVEL3;
}
return (Entry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY;
}
STATIC
BOOLEAN
IsTableEntry (
IN UINT64 Entry,
IN UINTN Level
)
{
if (Level == 3) {
//
// TT_TYPE_TABLE_ENTRY aliases TT_TYPE_BLOCK_ENTRY_LEVEL3
// so we need to take the level into account as well.
//
return FALSE;
}
return (Entry & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY;
}
STATIC
EFI_STATUS
UpdateRegionMappingRecursive (
IN UINT64 RegionStart,
IN UINT64 RegionEnd,
IN UINT64 AttributeSetMask,
IN UINT64 AttributeClearMask,
IN UINT64 *PageTable,
IN UINTN Level,
IN BOOLEAN TableIsLive
)
{
UINTN BlockShift;
UINT64 BlockMask;
UINT64 BlockEnd;
UINT64 *Entry;
UINT64 EntryValue;
VOID *TranslationTable;
EFI_STATUS Status;
BOOLEAN NextTableIsLive;
ASSERT (((RegionStart | RegionEnd) & EFI_PAGE_MASK) == 0);
BlockShift = (Level + 1) * BITS_PER_LEVEL + MIN_T0SZ;
BlockMask = MAX_UINT64 >> BlockShift;
DEBUG ((
DEBUG_VERBOSE,
"%a(%d): %llx - %llx set %lx clr %lx\n",
__func__,
Level,
RegionStart,
RegionEnd,
AttributeSetMask,
AttributeClearMask
));
for ( ; RegionStart < RegionEnd; RegionStart = BlockEnd) {
BlockEnd = MIN (RegionEnd, (RegionStart | BlockMask) + 1);
Entry = &PageTable[(RegionStart >> (64 - BlockShift)) & (TT_ENTRY_COUNT - 1)];
//
// If RegionStart or BlockEnd is not aligned to the block size at this
// level, we will have to create a table mapping in order to map less
// than a block, and recurse to create the block or page entries at
// the next level. No block mappings are allowed at all at level 0,
// so in that case, we have to recurse unconditionally.
//
// One special case to take into account is any region that covers the page
// table itself: if we'd cover such a region with block mappings, we are
// more likely to end up in the situation later where we need to disable
// the MMU in order to update page table entries safely, so prefer page
// mappings in that particular case.
//
if ((Level == 0) || (((RegionStart | BlockEnd) & BlockMask) != 0) ||
((Level < 3) && (((UINT64)PageTable & ~BlockMask) == RegionStart)) ||
IsTableEntry (*Entry, Level))
{
ASSERT (Level < 3);
if (!IsTableEntry (*Entry, Level)) {
//
// If the region we are trying to map is already covered by a block
// entry with the right attributes, don't bother splitting it up.
//
if (IsBlockEntry (*Entry, Level) &&
((*Entry & TT_ATTRIBUTES_MASK & ~AttributeClearMask) == AttributeSetMask))
{
continue;
}
//
// No table entry exists yet, so we need to allocate a page table
// for the next level.
//
TranslationTable = AllocatePages (1);
if (TranslationTable == NULL) {
return EFI_OUT_OF_RESOURCES;
}
if (!ArmMmuEnabled ()) {
//
// Make sure we are not inadvertently hitting in the caches
// when populating the page tables.
//
InvalidateDataCacheRange (TranslationTable, EFI_PAGE_SIZE);
}
ZeroMem (TranslationTable, EFI_PAGE_SIZE);
if (IsBlockEntry (*Entry, Level)) {
//
// We are splitting an existing block entry, so we have to populate
// the new table with the attributes of the block entry it replaces.
//
Status = UpdateRegionMappingRecursive (
RegionStart & ~BlockMask,
(RegionStart | BlockMask) + 1,
*Entry & TT_ATTRIBUTES_MASK,
0,
TranslationTable,
Level + 1,
FALSE
);
if (EFI_ERROR (Status)) {
//
// The range we passed to UpdateRegionMappingRecursive () is block
// aligned, so it is guaranteed that no further pages were allocated
// by it, and so we only have to free the page we allocated here.
//
FreePages (TranslationTable, 1);
return Status;
}
}
NextTableIsLive = FALSE;
} else {
TranslationTable = (VOID *)(UINTN)(*Entry & TT_ADDRESS_MASK_BLOCK_ENTRY);
NextTableIsLive = TableIsLive;
}
//
// Recurse to the next level
//
Status = UpdateRegionMappingRecursive (
RegionStart,
BlockEnd,
AttributeSetMask,
AttributeClearMask,
TranslationTable,
Level + 1,
NextTableIsLive
);
if (EFI_ERROR (Status)) {
if (!IsTableEntry (*Entry, Level)) {
//
// We are creating a new table entry, so on failure, we can free all
// allocations we made recursively, given that the whole subhierarchy
// has not been wired into the live page tables yet. (This is not
// possible for existing table entries, since we cannot revert the
// modifications we made to the subhierarchy it represents.)
//
FreePageTablesRecursive (TranslationTable, Level + 1);
}
return Status;
}
if (!IsTableEntry (*Entry, Level)) {
EntryValue = (UINTN)TranslationTable | TT_TYPE_TABLE_ENTRY;
ReplaceTableEntry (
Entry,
EntryValue,
RegionStart,
BlockMask,
TableIsLive && IsBlockEntry (*Entry, Level)
);
}
} else {
EntryValue = (*Entry & AttributeClearMask) | AttributeSetMask;
EntryValue |= RegionStart;
EntryValue |= (Level == 3) ? TT_TYPE_BLOCK_ENTRY_LEVEL3
: TT_TYPE_BLOCK_ENTRY;
ReplaceTableEntry (Entry, EntryValue, RegionStart, BlockMask, FALSE);
}
}
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
UpdateRegionMapping (
IN UINT64 RegionStart,
IN UINT64 RegionLength,
IN UINT64 AttributeSetMask,
IN UINT64 AttributeClearMask,
IN UINT64 *RootTable,
IN BOOLEAN TableIsLive
)
{
UINTN T0SZ;
if (((RegionStart | RegionLength) & EFI_PAGE_MASK) != 0) {
return EFI_INVALID_PARAMETER;
}
T0SZ = ArmGetTCR () & TCR_T0SZ_MASK;
return UpdateRegionMappingRecursive (
RegionStart,
RegionStart + RegionLength,
AttributeSetMask,
AttributeClearMask,
RootTable,
GetRootTableLevel (T0SZ),
TableIsLive
);
}
STATIC
EFI_STATUS
FillTranslationTable (
IN UINT64 *RootTable,
IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryRegion
)
{
return UpdateRegionMapping (
MemoryRegion->VirtualBase,
MemoryRegion->Length,
ArmMemoryAttributeToPageAttribute (MemoryRegion->Attributes) | TT_AF,
0,
RootTable,
FALSE
);
}
STATIC
UINT64
GcdAttributeToPageAttribute (
IN UINT64 GcdAttributes
)
{
UINT64 PageAttributes;
switch (GcdAttributes & EFI_MEMORY_CACHETYPE_MASK) {
case EFI_MEMORY_UC:
PageAttributes = TT_ATTR_INDX_DEVICE_MEMORY;
break;
case EFI_MEMORY_WC:
PageAttributes = TT_ATTR_INDX_MEMORY_NON_CACHEABLE;
break;
case EFI_MEMORY_WT:
PageAttributes = TT_ATTR_INDX_MEMORY_WRITE_THROUGH | TT_SH_INNER_SHAREABLE;
break;
case EFI_MEMORY_WB:
PageAttributes = TT_ATTR_INDX_MEMORY_WRITE_BACK | TT_SH_INNER_SHAREABLE;
break;
default:
PageAttributes = TT_ATTR_INDX_MASK;
break;
}
if (((GcdAttributes & EFI_MEMORY_XP) != 0) ||
((GcdAttributes & EFI_MEMORY_CACHETYPE_MASK) == EFI_MEMORY_UC))
{
if (ArmReadCurrentEL () == AARCH64_EL2) {
PageAttributes |= TT_XN_MASK;
} else {
PageAttributes |= TT_UXN_MASK | TT_PXN_MASK;
}
}
if ((GcdAttributes & EFI_MEMORY_RO) != 0) {
PageAttributes |= TT_AP_NO_RO;
}
if ((GcdAttributes & EFI_MEMORY_RP) == 0) {
PageAttributes |= TT_AF;
}
return PageAttributes;
}
EFI_STATUS
ArmSetMemoryAttributes (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes
)
{
UINT64 PageAttributes;
UINT64 PageAttributeMask;
PageAttributes = GcdAttributeToPageAttribute (Attributes);
PageAttributeMask = 0;
if ((Attributes & EFI_MEMORY_CACHETYPE_MASK) == 0) {
//
// No memory type was set in Attributes, so we are going to update the
// permissions only.
//
PageAttributes &= TT_AP_MASK | TT_UXN_MASK | TT_PXN_MASK | TT_AF;
PageAttributeMask = ~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_AP_MASK |
TT_PXN_MASK | TT_XN_MASK | TT_AF);
}
return UpdateRegionMapping (
BaseAddress,
Length,
PageAttributes,
PageAttributeMask,
ArmGetTTBR0BaseAddress (),
TRUE
);
}
STATIC
EFI_STATUS
SetMemoryRegionAttribute (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes,
IN UINT64 BlockEntryMask
)
{
return UpdateRegionMapping (
BaseAddress,
Length,
Attributes,
BlockEntryMask,
ArmGetTTBR0BaseAddress (),
TRUE
);
}
EFI_STATUS
ArmSetMemoryRegionNoExec (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
UINT64 Val;
if (ArmReadCurrentEL () == AARCH64_EL1) {
Val = TT_PXN_MASK | TT_UXN_MASK;
} else {
Val = TT_XN_MASK;
}
return SetMemoryRegionAttribute (
BaseAddress,
Length,
Val,
~TT_ADDRESS_MASK_BLOCK_ENTRY
);
}
EFI_STATUS
ArmClearMemoryRegionNoExec (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
UINT64 Mask;
// XN maps to UXN in the EL1&0 translation regime
Mask = ~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_PXN_MASK | TT_XN_MASK);
return SetMemoryRegionAttribute (
BaseAddress,
Length,
0,
Mask
);
}
/**
Convert a region of memory to read-protected, by clearing the access flag.
@param BaseAddress The start of the region.
@param Length The size of the region.
@retval EFI_SUCCESS The attributes were set successfully.
@retval EFI_OUT_OF_RESOURCES The operation failed due to insufficient memory.
**/
EFI_STATUS
ArmSetMemoryRegionNoAccess (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
return SetMemoryRegionAttribute (
BaseAddress,
Length,
0,
~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_AF)
);
}
/**
Convert a region of memory to read-enabled, by setting the access flag.
@param BaseAddress The start of the region.
@param Length The size of the region.
@retval EFI_SUCCESS The attributes were set successfully.
@retval EFI_OUT_OF_RESOURCES The operation failed due to insufficient memory.
**/
EFI_STATUS
ArmClearMemoryRegionNoAccess (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
return SetMemoryRegionAttribute (
BaseAddress,
Length,
TT_AF,
~TT_ADDRESS_MASK_BLOCK_ENTRY
);
}
EFI_STATUS
ArmSetMemoryRegionReadOnly (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
return SetMemoryRegionAttribute (
BaseAddress,
Length,
TT_AP_NO_RO,
~TT_ADDRESS_MASK_BLOCK_ENTRY
);
}
EFI_STATUS
ArmClearMemoryRegionReadOnly (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
return SetMemoryRegionAttribute (
BaseAddress,
Length,
TT_AP_NO_RW,
~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_AP_MASK)
);
}
EFI_STATUS
EFIAPI
ArmConfigureMmu (
IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryTable,
OUT VOID **TranslationTableBase OPTIONAL,
OUT UINTN *TranslationTableSize OPTIONAL
)
{
VOID *TranslationTable;
UINTN MaxAddressBits;
UINT64 MaxAddress;
UINTN T0SZ;
UINTN RootTableEntryCount;
UINT64 TCR;
EFI_STATUS Status;
if (MemoryTable == NULL) {
ASSERT (MemoryTable != NULL);
return EFI_INVALID_PARAMETER;
}
//
// Limit the virtual address space to what we can actually use: UEFI
// mandates a 1:1 mapping, so no point in making the virtual address
// space larger than the physical address space. We also have to take
// into account the architectural limitations that result from UEFI's
// use of 4 KB pages.
//
MaxAddressBits = MIN (ArmGetPhysicalAddressBits (), MAX_VA_BITS);
MaxAddress = LShiftU64 (1ULL, MaxAddressBits) - 1;
T0SZ = 64 - MaxAddressBits;
RootTableEntryCount = GetRootTableEntryCount (T0SZ);
//
// Set TCR that allows us to retrieve T0SZ in the subsequent functions
//
// Ideally we will be running at EL2, but should support EL1 as well.
// UEFI should not run at EL3.
if (ArmReadCurrentEL () == AARCH64_EL2) {
// Note: Bits 23 and 31 are reserved(RES1) bits in TCR_EL2
TCR = T0SZ | (1UL << 31) | (1UL << 23) | TCR_TG0_4KB;
// Set the Physical Address Size using MaxAddress
if (MaxAddress < SIZE_4GB) {
TCR |= TCR_PS_4GB;
} else if (MaxAddress < SIZE_64GB) {
TCR |= TCR_PS_64GB;
} else if (MaxAddress < SIZE_1TB) {
TCR |= TCR_PS_1TB;
} else if (MaxAddress < SIZE_4TB) {
TCR |= TCR_PS_4TB;
} else if (MaxAddress < SIZE_16TB) {
TCR |= TCR_PS_16TB;
} else if (MaxAddress < SIZE_256TB) {
TCR |= TCR_PS_256TB;
} else {
DEBUG ((
DEBUG_ERROR,
"ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU configuration.\n",
MaxAddress
));
ASSERT (0); // Bigger than 48-bit memory space are not supported
return EFI_UNSUPPORTED;
}
} else if (ArmReadCurrentEL () == AARCH64_EL1) {
// Due to Cortex-A57 erratum #822227 we must set TG1[1] == 1, regardless of EPD1.
TCR = T0SZ | TCR_TG0_4KB | TCR_TG1_4KB | TCR_EPD1;
// Set the Physical Address Size using MaxAddress
if (MaxAddress < SIZE_4GB) {
TCR |= TCR_IPS_4GB;
} else if (MaxAddress < SIZE_64GB) {
TCR |= TCR_IPS_64GB;
} else if (MaxAddress < SIZE_1TB) {
TCR |= TCR_IPS_1TB;
} else if (MaxAddress < SIZE_4TB) {
TCR |= TCR_IPS_4TB;
} else if (MaxAddress < SIZE_16TB) {
TCR |= TCR_IPS_16TB;
} else if (MaxAddress < SIZE_256TB) {
TCR |= TCR_IPS_256TB;
} else {
DEBUG ((
DEBUG_ERROR,
"ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU configuration.\n",
MaxAddress
));
ASSERT (0); // Bigger than 48-bit memory space are not supported
return EFI_UNSUPPORTED;
}
} else {
ASSERT (0); // UEFI is only expected to run at EL2 and EL1, not EL3.
return EFI_UNSUPPORTED;
}
//
// Translation table walks are always cache coherent on ARMv8-A, so cache
// maintenance on page tables is never needed. Since there is a risk of
// loss of coherency when using mismatched attributes, and given that memory
// is mapped cacheable except for extraordinary cases (such as non-coherent
// DMA), have the page table walker perform cached accesses as well, and
// assert below that matches the attributes we use for CPU accesses to
// the region.
//
TCR |= TCR_SH_INNER_SHAREABLE |
TCR_RGN_OUTER_WRITE_BACK_ALLOC |
TCR_RGN_INNER_WRITE_BACK_ALLOC;
// Set TCR
ArmSetTCR (TCR);
// Allocate pages for translation table
TranslationTable = AllocatePages (1);
if (TranslationTable == NULL) {
return EFI_OUT_OF_RESOURCES;
}
if (TranslationTableBase != NULL) {
*TranslationTableBase = TranslationTable;
}
if (TranslationTableSize != NULL) {
*TranslationTableSize = RootTableEntryCount * sizeof (UINT64);
}
if (!ArmMmuEnabled ()) {
//
// Make sure we are not inadvertently hitting in the caches
// when populating the page tables.
//
InvalidateDataCacheRange (
TranslationTable,
RootTableEntryCount * sizeof (UINT64)
);
}
ZeroMem (TranslationTable, RootTableEntryCount * sizeof (UINT64));
while (MemoryTable->Length != 0) {
Status = FillTranslationTable (TranslationTable, MemoryTable);
if (EFI_ERROR (Status)) {
goto FreeTranslationTable;
}
MemoryTable++;
}
//
// EFI_MEMORY_UC ==> MAIR_ATTR_DEVICE_MEMORY
// EFI_MEMORY_WC ==> MAIR_ATTR_NORMAL_MEMORY_NON_CACHEABLE
// EFI_MEMORY_WT ==> MAIR_ATTR_NORMAL_MEMORY_WRITE_THROUGH
// EFI_MEMORY_WB ==> MAIR_ATTR_NORMAL_MEMORY_WRITE_BACK
//
ArmSetMAIR (
MAIR_ATTR (TT_ATTR_INDX_DEVICE_MEMORY, MAIR_ATTR_DEVICE_MEMORY) |
MAIR_ATTR (TT_ATTR_INDX_MEMORY_NON_CACHEABLE, MAIR_ATTR_NORMAL_MEMORY_NON_CACHEABLE) |
MAIR_ATTR (TT_ATTR_INDX_MEMORY_WRITE_THROUGH, MAIR_ATTR_NORMAL_MEMORY_WRITE_THROUGH) |
MAIR_ATTR (TT_ATTR_INDX_MEMORY_WRITE_BACK, MAIR_ATTR_NORMAL_MEMORY_WRITE_BACK)
);
ArmSetTTBR0 (TranslationTable);
if (!ArmMmuEnabled ()) {
ArmDisableAlignmentCheck ();
ArmEnableStackAlignmentCheck ();
ArmEnableInstructionCache ();
ArmEnableDataCache ();
ArmEnableMmu ();
}
return EFI_SUCCESS;
FreeTranslationTable:
FreePages (TranslationTable, 1);
return Status;
}
RETURN_STATUS
EFIAPI
ArmMmuBaseLibConstructor (
VOID
)
{
extern UINT32 ArmReplaceLiveTranslationEntrySize;
VOID *Hob;
Hob = GetFirstGuidHob (&gArmMmuReplaceLiveTranslationEntryFuncGuid);
if (Hob != NULL) {
mReplaceLiveEntryFunc = *(VOID **)GET_GUID_HOB_DATA (Hob);
} else {
//
// The ArmReplaceLiveTranslationEntry () helper function may be invoked
// with the MMU off so we have to ensure that it gets cleaned to the PoC
//
WriteBackDataCacheRange (
(VOID *)(UINTN)ArmReplaceLiveTranslationEntry,
ArmReplaceLiveTranslationEntrySize
);
}
return RETURN_SUCCESS;
}