/** @file PKCS#7 SignedData Verification Wrapper Implementation over OpenSSL. Caution: This module requires additional review when modified. This library will have external input - signature (e.g. UEFI Authenticated Variable). It may by input in SMM mode. This external input must be validated carefully to avoid security issue like buffer overflow, integer overflow. WrapPkcs7Data(), Pkcs7GetSigners(), Pkcs7Verify() will get UEFI Authenticated Variable and will do basic check for data structure. Copyright (c) 2009 - 2019, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "InternalCryptLib.h" #include #include #include #include GLOBAL_REMOVE_IF_UNREFERENCED const UINT8 mOidValue[9] = { 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x07, 0x02 }; /** Check input P7Data is a wrapped ContentInfo structure or not. If not construct a new structure to wrap P7Data. Caution: This function may receive untrusted input. UEFI Authenticated Variable is external input, so this function will do basic check for PKCS#7 data structure. @param[in] P7Data Pointer to the PKCS#7 message to verify. @param[in] P7Length Length of the PKCS#7 message in bytes. @param[out] WrapFlag If TRUE P7Data is a ContentInfo structure, otherwise return FALSE. @param[out] WrapData If return status of this function is TRUE: 1) when WrapFlag is TRUE, pointer to P7Data. 2) when WrapFlag is FALSE, pointer to a new ContentInfo structure. It's caller's responsibility to free this buffer. @param[out] WrapDataSize Length of ContentInfo structure in bytes. @retval TRUE The operation is finished successfully. @retval FALSE The operation is failed due to lack of resources. **/ BOOLEAN WrapPkcs7Data ( IN CONST UINT8 *P7Data, IN UINTN P7Length, OUT BOOLEAN *WrapFlag, OUT UINT8 **WrapData, OUT UINTN *WrapDataSize ) { BOOLEAN Wrapped; UINT8 *SignedData; // // Check whether input P7Data is a wrapped ContentInfo structure or not. // Wrapped = FALSE; if ((P7Data[4] == 0x06) && (P7Data[5] == 0x09)) { if (CompareMem (P7Data + 6, mOidValue, sizeof (mOidValue)) == 0) { if ((P7Data[15] == 0xA0) && (P7Data[16] == 0x82)) { Wrapped = TRUE; } } } if (Wrapped) { *WrapData = (UINT8 *)P7Data; *WrapDataSize = P7Length; } else { // // Wrap PKCS#7 signeddata to a ContentInfo structure - add a header in 19 bytes. // *WrapDataSize = P7Length + 19; *WrapData = malloc (*WrapDataSize); if (*WrapData == NULL) { *WrapFlag = Wrapped; return FALSE; } SignedData = *WrapData; // // Part1: 0x30, 0x82. // SignedData[0] = 0x30; SignedData[1] = 0x82; // // Part2: Length1 = P7Length + 19 - 4, in big endian. // SignedData[2] = (UINT8)(((UINT16)(*WrapDataSize - 4)) >> 8); SignedData[3] = (UINT8)(((UINT16)(*WrapDataSize - 4)) & 0xff); // // Part3: 0x06, 0x09. // SignedData[4] = 0x06; SignedData[5] = 0x09; // // Part4: OID value -- 0x2A 0x86 0x48 0x86 0xF7 0x0D 0x01 0x07 0x02. // CopyMem (SignedData + 6, mOidValue, sizeof (mOidValue)); // // Part5: 0xA0, 0x82. // SignedData[15] = 0xA0; SignedData[16] = 0x82; // // Part6: Length2 = P7Length, in big endian. // SignedData[17] = (UINT8)(((UINT16)P7Length) >> 8); SignedData[18] = (UINT8)(((UINT16)P7Length) & 0xff); // // Part7: P7Data. // CopyMem (SignedData + 19, P7Data, P7Length); } *WrapFlag = Wrapped; return TRUE; } /** Pop single certificate from STACK_OF(X509). If X509Stack, Cert, or CertSize is NULL, then return FALSE. @param[in] X509Stack Pointer to a X509 stack object. @param[out] Cert Pointer to a X509 certificate. @param[out] CertSize Length of output X509 certificate in bytes. @retval TRUE The X509 stack pop succeeded. @retval FALSE The pop operation failed. **/ STATIC BOOLEAN X509PopCertificate ( IN VOID *X509Stack, OUT UINT8 **Cert, OUT UINTN *CertSize ) { BIO *CertBio; X509 *X509Cert; STACK_OF (X509) *CertStack; BOOLEAN Status; INT32 Result; BUF_MEM *Ptr; INT32 Length; VOID *Buffer; Status = FALSE; if ((X509Stack == NULL) || (Cert == NULL) || (CertSize == NULL)) { return Status; } CertStack = (STACK_OF (X509) *) X509Stack; X509Cert = sk_X509_pop (CertStack); if (X509Cert == NULL) { return Status; } Buffer = NULL; CertBio = BIO_new (BIO_s_mem ()); if (CertBio == NULL) { return Status; } Result = i2d_X509_bio (CertBio, X509Cert); if (Result == 0) { goto _Exit; } BIO_get_mem_ptr (CertBio, &Ptr); Length = (INT32)(Ptr->length); if (Length <= 0) { goto _Exit; } Buffer = malloc (Length); if (Buffer == NULL) { goto _Exit; } Result = BIO_read (CertBio, Buffer, Length); if (Result != Length) { goto _Exit; } *Cert = Buffer; *CertSize = Length; Status = TRUE; _Exit: BIO_free (CertBio); if (!Status && (Buffer != NULL)) { free (Buffer); } return Status; } /** Get the signer's certificates from PKCS#7 signed data as described in "PKCS #7: Cryptographic Message Syntax Standard". The input signed data could be wrapped in a ContentInfo structure. If P7Data, CertStack, StackLength, TrustedCert or CertLength is NULL, then return FALSE. If P7Length overflow, then return FALSE. Caution: This function may receive untrusted input. UEFI Authenticated Variable is external input, so this function will do basic check for PKCS#7 data structure. @param[in] P7Data Pointer to the PKCS#7 message to verify. @param[in] P7Length Length of the PKCS#7 message in bytes. @param[out] CertStack Pointer to Signer's certificates retrieved from P7Data. It's caller's responsibility to free the buffer with Pkcs7FreeSigners(). This data structure is EFI_CERT_STACK type. @param[out] StackLength Length of signer's certificates in bytes. @param[out] TrustedCert Pointer to a trusted certificate from Signer's certificates. It's caller's responsibility to free the buffer with Pkcs7FreeSigners(). @param[out] CertLength Length of the trusted certificate in bytes. @retval TRUE The operation is finished successfully. @retval FALSE Error occurs during the operation. **/ BOOLEAN EFIAPI Pkcs7GetSigners ( IN CONST UINT8 *P7Data, IN UINTN P7Length, OUT UINT8 **CertStack, OUT UINTN *StackLength, OUT UINT8 **TrustedCert, OUT UINTN *CertLength ) { PKCS7 *Pkcs7; BOOLEAN Status; UINT8 *SignedData; CONST UINT8 *Temp; UINTN SignedDataSize; BOOLEAN Wrapped; STACK_OF (X509) *Stack; UINT8 Index; UINT8 *CertBuf; UINT8 *OldBuf; UINTN BufferSize; UINTN OldSize; UINT8 *SingleCert; UINTN SingleCertSize; if ((P7Data == NULL) || (CertStack == NULL) || (StackLength == NULL) || (TrustedCert == NULL) || (CertLength == NULL) || (P7Length > INT_MAX)) { return FALSE; } Status = WrapPkcs7Data (P7Data, P7Length, &Wrapped, &SignedData, &SignedDataSize); if (!Status) { return Status; } Status = FALSE; Pkcs7 = NULL; Stack = NULL; CertBuf = NULL; OldBuf = NULL; SingleCert = NULL; // // Retrieve PKCS#7 Data (DER encoding) // if (SignedDataSize > INT_MAX) { goto _Exit; } Temp = SignedData; Pkcs7 = d2i_PKCS7 (NULL, (const unsigned char **)&Temp, (int)SignedDataSize); if (Pkcs7 == NULL) { goto _Exit; } // // Check if it's PKCS#7 Signed Data (for Authenticode Scenario) // if (!PKCS7_type_is_signed (Pkcs7)) { goto _Exit; } Stack = PKCS7_get0_signers (Pkcs7, NULL, PKCS7_BINARY); if (Stack == NULL) { goto _Exit; } // // Convert CertStack to buffer in following format: // UINT8 CertNumber; // UINT32 Cert1Length; // UINT8 Cert1[]; // UINT32 Cert2Length; // UINT8 Cert2[]; // ... // UINT32 CertnLength; // UINT8 Certn[]; // BufferSize = sizeof (UINT8); OldSize = BufferSize; for (Index = 0; ; Index++) { Status = X509PopCertificate (Stack, &SingleCert, &SingleCertSize); if (!Status) { break; } OldSize = BufferSize; OldBuf = CertBuf; BufferSize = OldSize + SingleCertSize + sizeof (UINT32); CertBuf = malloc (BufferSize); if (CertBuf == NULL) { goto _Exit; } if (OldBuf != NULL) { CopyMem (CertBuf, OldBuf, OldSize); free (OldBuf); OldBuf = NULL; } WriteUnaligned32 ((UINT32 *)(CertBuf + OldSize), (UINT32)SingleCertSize); CopyMem (CertBuf + OldSize + sizeof (UINT32), SingleCert, SingleCertSize); free (SingleCert); SingleCert = NULL; } if (CertBuf != NULL) { // // Update CertNumber. // CertBuf[0] = Index; *CertLength = BufferSize - OldSize - sizeof (UINT32); *TrustedCert = malloc (*CertLength); if (*TrustedCert == NULL) { goto _Exit; } CopyMem (*TrustedCert, CertBuf + OldSize + sizeof (UINT32), *CertLength); *CertStack = CertBuf; *StackLength = BufferSize; Status = TRUE; } _Exit: // // Release Resources // if (!Wrapped) { free (SignedData); } if (Pkcs7 != NULL) { PKCS7_free (Pkcs7); } if (Stack != NULL) { sk_X509_pop_free (Stack, X509_free); } if (SingleCert != NULL) { free (SingleCert); } if (!Status && (CertBuf != NULL)) { free (CertBuf); *CertStack = NULL; } if (OldBuf != NULL) { free (OldBuf); } return Status; } /** Wrap function to use free() to free allocated memory for certificates. @param[in] Certs Pointer to the certificates to be freed. **/ VOID EFIAPI Pkcs7FreeSigners ( IN UINT8 *Certs ) { if (Certs == NULL) { return; } free (Certs); } /** Retrieves all embedded certificates from PKCS#7 signed data as described in "PKCS #7: Cryptographic Message Syntax Standard", and outputs two certificate lists chained and unchained to the signer's certificates. The input signed data could be wrapped in a ContentInfo structure. @param[in] P7Data Pointer to the PKCS#7 message. @param[in] P7Length Length of the PKCS#7 message in bytes. @param[out] SignerChainCerts Pointer to the certificates list chained to signer's certificate. It's caller's responsibility to free the buffer with Pkcs7FreeSigners(). This data structure is EFI_CERT_STACK type. @param[out] ChainLength Length of the chained certificates list buffer in bytes. @param[out] UnchainCerts Pointer to the unchained certificates lists. It's caller's responsibility to free the buffer with Pkcs7FreeSigners(). This data structure is EFI_CERT_STACK type. @param[out] UnchainLength Length of the unchained certificates list buffer in bytes. @retval TRUE The operation is finished successfully. @retval FALSE Error occurs during the operation. **/ BOOLEAN EFIAPI Pkcs7GetCertificatesList ( IN CONST UINT8 *P7Data, IN UINTN P7Length, OUT UINT8 **SignerChainCerts, OUT UINTN *ChainLength, OUT UINT8 **UnchainCerts, OUT UINTN *UnchainLength ) { BOOLEAN Status; UINT8 *NewP7Data; UINTN NewP7Length; BOOLEAN Wrapped; UINT8 Index; PKCS7 *Pkcs7; X509_STORE_CTX *CertCtx; STACK_OF (X509) *CtxChain; STACK_OF (X509) *CtxUntrusted; X509 *CtxCert; STACK_OF (X509) *Signers; X509 *Signer; X509 *Cert; X509 *Issuer; X509_NAME *IssuerName; UINT8 *CertBuf; UINT8 *OldBuf; UINTN BufferSize; UINTN OldSize; UINT8 *SingleCert; UINTN CertSize; // // Initializations // Status = FALSE; NewP7Data = NULL; Pkcs7 = NULL; CertCtx = NULL; CtxChain = NULL; CtxCert = NULL; CtxUntrusted = NULL; Cert = NULL; SingleCert = NULL; CertBuf = NULL; OldBuf = NULL; Signers = NULL; // // Parameter Checking // if ((P7Data == NULL) || (SignerChainCerts == NULL) || (ChainLength == NULL) || (UnchainCerts == NULL) || (UnchainLength == NULL) || (P7Length > INT_MAX)) { return Status; } *SignerChainCerts = NULL; *ChainLength = 0; *UnchainCerts = NULL; *UnchainLength = 0; // // Construct a new PKCS#7 data wrapping with ContentInfo structure if needed. // Status = WrapPkcs7Data (P7Data, P7Length, &Wrapped, &NewP7Data, &NewP7Length); if (!Status || (NewP7Length > INT_MAX)) { goto _Error; } // // Decodes PKCS#7 SignedData // Pkcs7 = d2i_PKCS7 (NULL, (const unsigned char **)&NewP7Data, (int)NewP7Length); if ((Pkcs7 == NULL) || (!PKCS7_type_is_signed (Pkcs7))) { goto _Error; } // // Obtains Signer's Certificate from PKCS#7 data // NOTE: Only one signer case will be handled in this function, which means SignerInfos // should include only one signer's certificate. // Signers = PKCS7_get0_signers (Pkcs7, NULL, PKCS7_BINARY); if ((Signers == NULL) || (sk_X509_num (Signers) != 1)) { goto _Error; } Signer = sk_X509_value (Signers, 0); CertCtx = X509_STORE_CTX_new (); if (CertCtx == NULL) { goto _Error; } if (!X509_STORE_CTX_init (CertCtx, NULL, Signer, Pkcs7->d.sign->cert)) { goto _Error; } // // Initialize Chained & Untrusted stack // CtxChain = X509_STORE_CTX_get0_chain (CertCtx); CtxCert = X509_STORE_CTX_get0_cert (CertCtx); if (CtxChain == NULL) { if (((CtxChain = sk_X509_new_null ()) == NULL) || (!sk_X509_push (CtxChain, CtxCert))) { goto _Error; } } CtxUntrusted = X509_STORE_CTX_get0_untrusted (CertCtx); if (CtxUntrusted != NULL) { (VOID)sk_X509_delete_ptr (CtxUntrusted, Signer); } // // Build certificates stack chained from Signer's certificate. // Cert = Signer; for ( ; ;) { // // Self-Issue checking // Issuer = NULL; if (X509_STORE_CTX_get1_issuer (&Issuer, CertCtx, Cert) == 1) { if (X509_cmp (Issuer, Cert) == 0) { break; } } // // Found the issuer of the current certificate // if (CtxUntrusted != NULL) { Issuer = NULL; IssuerName = X509_get_issuer_name (Cert); Issuer = X509_find_by_subject (CtxUntrusted, IssuerName); if (Issuer != NULL) { if (!sk_X509_push (CtxChain, Issuer)) { goto _Error; } (VOID)sk_X509_delete_ptr (CtxUntrusted, Issuer); Cert = Issuer; continue; } } break; } // // Converts Chained and Untrusted Certificate to Certificate Buffer in following format: // UINT8 CertNumber; // UINT32 Cert1Length; // UINT8 Cert1[]; // UINT32 Cert2Length; // UINT8 Cert2[]; // ... // UINT32 CertnLength; // UINT8 Certn[]; // if (CtxChain != NULL) { BufferSize = sizeof (UINT8); CertBuf = NULL; for (Index = 0; ; Index++) { Status = X509PopCertificate (CtxChain, &SingleCert, &CertSize); if (!Status) { break; } OldSize = BufferSize; OldBuf = CertBuf; BufferSize = OldSize + CertSize + sizeof (UINT32); CertBuf = malloc (BufferSize); if (CertBuf == NULL) { Status = FALSE; goto _Error; } if (OldBuf != NULL) { CopyMem (CertBuf, OldBuf, OldSize); free (OldBuf); OldBuf = NULL; } WriteUnaligned32 ((UINT32 *)(CertBuf + OldSize), (UINT32)CertSize); CopyMem (CertBuf + OldSize + sizeof (UINT32), SingleCert, CertSize); free (SingleCert); SingleCert = NULL; } if (CertBuf != NULL) { // // Update CertNumber. // CertBuf[0] = Index; *SignerChainCerts = CertBuf; *ChainLength = BufferSize; } } if (CtxUntrusted != NULL) { BufferSize = sizeof (UINT8); CertBuf = NULL; for (Index = 0; ; Index++) { Status = X509PopCertificate (CtxUntrusted, &SingleCert, &CertSize); if (!Status) { break; } OldSize = BufferSize; OldBuf = CertBuf; BufferSize = OldSize + CertSize + sizeof (UINT32); CertBuf = malloc (BufferSize); if (CertBuf == NULL) { Status = FALSE; goto _Error; } if (OldBuf != NULL) { CopyMem (CertBuf, OldBuf, OldSize); free (OldBuf); OldBuf = NULL; } WriteUnaligned32 ((UINT32 *)(CertBuf + OldSize), (UINT32)CertSize); CopyMem (CertBuf + OldSize + sizeof (UINT32), SingleCert, CertSize); free (SingleCert); SingleCert = NULL; } if (CertBuf != NULL) { // // Update CertNumber. // CertBuf[0] = Index; *UnchainCerts = CertBuf; *UnchainLength = BufferSize; } } Status = TRUE; _Error: // // Release Resources. // if (!Wrapped && (NewP7Data != NULL)) { free (NewP7Data); } if (Pkcs7 != NULL) { PKCS7_free (Pkcs7); } sk_X509_free (Signers); if (CertCtx != NULL) { X509_STORE_CTX_cleanup (CertCtx); X509_STORE_CTX_free (CertCtx); } if (SingleCert != NULL) { free (SingleCert); } if (OldBuf != NULL) { free (OldBuf); } if (!Status && (CertBuf != NULL)) { free (CertBuf); *SignerChainCerts = NULL; *UnchainCerts = NULL; } return Status; } /** Verifies the validity of a PKCS#7 signed data as described in "PKCS #7: Cryptographic Message Syntax Standard". The input signed data could be wrapped in a ContentInfo structure. If P7Data, TrustedCert or InData is NULL, then return FALSE. If P7Length, CertLength or DataLength overflow, then return FALSE. Caution: This function may receive untrusted input. UEFI Authenticated Variable is external input, so this function will do basic check for PKCS#7 data structure. @param[in] P7Data Pointer to the PKCS#7 message to verify. @param[in] P7Length Length of the PKCS#7 message in bytes. @param[in] TrustedCert Pointer to a trusted/root certificate encoded in DER, which is used for certificate chain verification. @param[in] CertLength Length of the trusted certificate in bytes. @param[in] InData Pointer to the content to be verified. @param[in] DataLength Length of InData in bytes. @retval TRUE The specified PKCS#7 signed data is valid. @retval FALSE Invalid PKCS#7 signed data. **/ BOOLEAN EFIAPI Pkcs7Verify ( IN CONST UINT8 *P7Data, IN UINTN P7Length, IN CONST UINT8 *TrustedCert, IN UINTN CertLength, IN CONST UINT8 *InData, IN UINTN DataLength ) { PKCS7 *Pkcs7; BIO *DataBio; BOOLEAN Status; X509 *Cert; X509_STORE *CertStore; UINT8 *SignedData; CONST UINT8 *Temp; UINTN SignedDataSize; BOOLEAN Wrapped; // // Check input parameters. // if ((P7Data == NULL) || (TrustedCert == NULL) || (InData == NULL) || (P7Length > INT_MAX) || (CertLength > INT_MAX) || (DataLength > INT_MAX)) { return FALSE; } Pkcs7 = NULL; DataBio = NULL; Cert = NULL; CertStore = NULL; // // Register & Initialize necessary digest algorithms for PKCS#7 Handling // if (EVP_add_digest (EVP_md5 ()) == 0) { return FALSE; } if (EVP_add_digest (EVP_sha1 ()) == 0) { return FALSE; } if (EVP_add_digest (EVP_sha256 ()) == 0) { return FALSE; } if (EVP_add_digest (EVP_sha384 ()) == 0) { return FALSE; } if (EVP_add_digest (EVP_sha512 ()) == 0) { return FALSE; } if (EVP_add_digest_alias (SN_sha1WithRSAEncryption, SN_sha1WithRSA) == 0) { return FALSE; } Status = WrapPkcs7Data (P7Data, P7Length, &Wrapped, &SignedData, &SignedDataSize); if (!Status) { return Status; } Status = FALSE; // // Retrieve PKCS#7 Data (DER encoding) // if (SignedDataSize > INT_MAX) { goto _Exit; } Temp = SignedData; Pkcs7 = d2i_PKCS7 (NULL, (const unsigned char **)&Temp, (int)SignedDataSize); if (Pkcs7 == NULL) { goto _Exit; } // // Check if it's PKCS#7 Signed Data (for Authenticode Scenario) // if (!PKCS7_type_is_signed (Pkcs7)) { goto _Exit; } // // Read DER-encoded root certificate and Construct X509 Certificate // Temp = TrustedCert; Cert = d2i_X509 (NULL, &Temp, (long)CertLength); if (Cert == NULL) { goto _Exit; } // // Setup X509 Store for trusted certificate // CertStore = X509_STORE_new (); if (CertStore == NULL) { goto _Exit; } if (!(X509_STORE_add_cert (CertStore, Cert))) { goto _Exit; } // // For generic PKCS#7 handling, InData may be NULL if the content is present // in PKCS#7 structure. So ignore NULL checking here. // DataBio = BIO_new_mem_buf (InData, (int)DataLength); if (DataBio == NULL) { goto _Exit; } // // Allow partial certificate chains, terminated by a non-self-signed but // still trusted intermediate certificate. Also disable time checks. // X509_STORE_set_flags ( CertStore, X509_V_FLAG_PARTIAL_CHAIN | X509_V_FLAG_NO_CHECK_TIME ); // // OpenSSL PKCS7 Verification by default checks for SMIME (email signing) and // doesn't support the extended key usage for Authenticode Code Signing. // Bypass the certificate purpose checking by enabling any purposes setting. // X509_STORE_set_purpose (CertStore, X509_PURPOSE_ANY); // // Verifies the PKCS#7 signedData structure // Status = (BOOLEAN)PKCS7_verify (Pkcs7, NULL, CertStore, DataBio, NULL, PKCS7_BINARY); _Exit: // // Release Resources // BIO_free (DataBio); X509_free (Cert); X509_STORE_free (CertStore); PKCS7_free (Pkcs7); if (!Wrapped) { OPENSSL_free (SignedData); } return Status; }