/** @file
SMM Memory page management functions.
Copyright (c) 2009 - 2018, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "PiSmmCore.h"
#include
#define TRUNCATE_TO_PAGES(a) ((a) >> EFI_PAGE_SHIFT)
LIST_ENTRY mSmmMemoryMap = INITIALIZE_LIST_HEAD_VARIABLE (mSmmMemoryMap);
//
// For GetMemoryMap()
//
#define MEMORY_MAP_SIGNATURE SIGNATURE_32('m','m','a','p')
typedef struct {
UINTN Signature;
LIST_ENTRY Link;
BOOLEAN FromStack;
EFI_MEMORY_TYPE Type;
UINT64 Start;
UINT64 End;
} MEMORY_MAP;
LIST_ENTRY gMemoryMap = INITIALIZE_LIST_HEAD_VARIABLE (gMemoryMap);
#define MAX_MAP_DEPTH 6
///
/// mMapDepth - depth of new descriptor stack
///
UINTN mMapDepth = 0;
///
/// mMapStack - space to use as temp storage to build new map descriptors
///
MEMORY_MAP mMapStack[MAX_MAP_DEPTH];
UINTN mFreeMapStack = 0;
///
/// This list maintain the free memory map list
///
LIST_ENTRY mFreeMemoryMapEntryList = INITIALIZE_LIST_HEAD_VARIABLE (mFreeMemoryMapEntryList);
/**
Allocates pages from the memory map.
@param[in] Type The type of allocation to perform.
@param[in] MemoryType The type of memory to turn the allocated pages
into.
@param[in] NumberOfPages The number of pages to allocate.
@param[out] Memory A pointer to receive the base allocated memory
address.
@param[in] AddRegion If this memory is new added region.
@param[in] NeedGuard Flag to indicate Guard page is needed
or not
@retval EFI_INVALID_PARAMETER Parameters violate checking rules defined in spec.
@retval EFI_NOT_FOUND Could not allocate pages match the requirement.
@retval EFI_OUT_OF_RESOURCES No enough pages to allocate.
@retval EFI_SUCCESS Pages successfully allocated.
**/
EFI_STATUS
SmmInternalAllocatePagesEx (
IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN NumberOfPages,
OUT EFI_PHYSICAL_ADDRESS *Memory,
IN BOOLEAN AddRegion,
IN BOOLEAN NeedGuard
);
/**
Internal function. Deque a descriptor entry from the mFreeMemoryMapEntryList.
If the list is emtry, then allocate a new page to refuel the list.
Please Note this algorithm to allocate the memory map descriptor has a property
that the memory allocated for memory entries always grows, and will never really be freed.
@return The Memory map descriptor dequeued from the mFreeMemoryMapEntryList
**/
MEMORY_MAP *
AllocateMemoryMapEntry (
VOID
)
{
EFI_PHYSICAL_ADDRESS Mem;
EFI_STATUS Status;
MEMORY_MAP* FreeDescriptorEntries;
MEMORY_MAP* Entry;
UINTN Index;
//DEBUG((DEBUG_INFO, "AllocateMemoryMapEntry\n"));
if (IsListEmpty (&mFreeMemoryMapEntryList)) {
//DEBUG((DEBUG_INFO, "mFreeMemoryMapEntryList is empty\n"));
//
// The list is empty, to allocate one page to refuel the list
//
Status = SmmInternalAllocatePagesEx (
AllocateAnyPages,
EfiRuntimeServicesData,
EFI_SIZE_TO_PAGES (RUNTIME_PAGE_ALLOCATION_GRANULARITY),
&Mem,
TRUE,
FALSE
);
ASSERT_EFI_ERROR (Status);
if(!EFI_ERROR (Status)) {
FreeDescriptorEntries = (MEMORY_MAP *)(UINTN)Mem;
//DEBUG((DEBUG_INFO, "New FreeDescriptorEntries - 0x%x\n", FreeDescriptorEntries));
//
// Enqueue the free memory map entries into the list
//
for (Index = 0; Index< RUNTIME_PAGE_ALLOCATION_GRANULARITY / sizeof(MEMORY_MAP); Index++) {
FreeDescriptorEntries[Index].Signature = MEMORY_MAP_SIGNATURE;
InsertTailList (&mFreeMemoryMapEntryList, &FreeDescriptorEntries[Index].Link);
}
} else {
return NULL;
}
}
//
// dequeue the first descriptor from the list
//
Entry = CR (mFreeMemoryMapEntryList.ForwardLink, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
RemoveEntryList (&Entry->Link);
return Entry;
}
/**
Internal function. Moves any memory descriptors that are on the
temporary descriptor stack to heap.
**/
VOID
CoreFreeMemoryMapStack (
VOID
)
{
MEMORY_MAP *Entry;
//
// If already freeing the map stack, then return
//
if (mFreeMapStack != 0) {
ASSERT (FALSE);
return ;
}
//
// Move the temporary memory descriptor stack into pool
//
mFreeMapStack += 1;
while (mMapDepth != 0) {
//
// Deque an memory map entry from mFreeMemoryMapEntryList
//
Entry = AllocateMemoryMapEntry ();
ASSERT (Entry);
//
// Update to proper entry
//
mMapDepth -= 1;
if (mMapStack[mMapDepth].Link.ForwardLink != NULL) {
CopyMem (Entry , &mMapStack[mMapDepth], sizeof (MEMORY_MAP));
Entry->FromStack = FALSE;
//
// Move this entry to general memory
//
InsertTailList (&mMapStack[mMapDepth].Link, &Entry->Link);
RemoveEntryList (&mMapStack[mMapDepth].Link);
mMapStack[mMapDepth].Link.ForwardLink = NULL;
}
}
mFreeMapStack -= 1;
}
/**
Insert new entry from memory map.
@param[in] Link The old memory map entry to be linked.
@param[in] Start The start address of new memory map entry.
@param[in] End The end address of new memory map entry.
@param[in] Type The type of new memory map entry.
@param[in] Next If new entry is inserted to the next of old entry.
@param[in] AddRegion If this memory is new added region.
**/
VOID
InsertNewEntry (
IN LIST_ENTRY *Link,
IN UINT64 Start,
IN UINT64 End,
IN EFI_MEMORY_TYPE Type,
IN BOOLEAN Next,
IN BOOLEAN AddRegion
)
{
MEMORY_MAP *Entry;
Entry = &mMapStack[mMapDepth];
mMapDepth += 1;
ASSERT (mMapDepth < MAX_MAP_DEPTH);
Entry->FromStack = TRUE;
Entry->Signature = MEMORY_MAP_SIGNATURE;
Entry->Type = Type;
Entry->Start = Start;
Entry->End = End;
if (Next) {
InsertHeadList (Link, &Entry->Link);
} else {
InsertTailList (Link, &Entry->Link);
}
}
/**
Remove old entry from memory map.
@param[in] Entry Memory map entry to be removed.
**/
VOID
RemoveOldEntry (
IN MEMORY_MAP *Entry
)
{
RemoveEntryList (&Entry->Link);
Entry->Link.ForwardLink = NULL;
if (!Entry->FromStack) {
InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link);
}
}
/**
Update SMM memory map entry.
@param[in] Type The type of allocation to perform.
@param[in] Memory The base of memory address.
@param[in] NumberOfPages The number of pages to allocate.
@param[in] AddRegion If this memory is new added region.
**/
VOID
ConvertSmmMemoryMapEntry (
IN EFI_MEMORY_TYPE Type,
IN EFI_PHYSICAL_ADDRESS Memory,
IN UINTN NumberOfPages,
IN BOOLEAN AddRegion
)
{
LIST_ENTRY *Link;
MEMORY_MAP *Entry;
MEMORY_MAP *NextEntry;
LIST_ENTRY *NextLink;
MEMORY_MAP *PreviousEntry;
LIST_ENTRY *PreviousLink;
EFI_PHYSICAL_ADDRESS Start;
EFI_PHYSICAL_ADDRESS End;
Start = Memory;
End = Memory + EFI_PAGES_TO_SIZE(NumberOfPages) - 1;
//
// Exclude memory region
//
Link = gMemoryMap.ForwardLink;
while (Link != &gMemoryMap) {
Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
Link = Link->ForwardLink;
//
// ---------------------------------------------------
// | +----------+ +------+ +------+ +------+ |
// ---|gMemoryMep|---|Entry1|---|Entry2|---|Entry3|---
// +----------+ ^ +------+ +------+ +------+
// |
// +------+
// |EntryX|
// +------+
//
if (Entry->Start > End) {
if ((Entry->Start == End + 1) && (Entry->Type == Type)) {
Entry->Start = Start;
return ;
}
InsertNewEntry (
&Entry->Link,
Start,
End,
Type,
FALSE,
AddRegion
);
return ;
}
if ((Entry->Start <= Start) && (Entry->End >= End)) {
if (Entry->Type != Type) {
if (Entry->Start < Start) {
//
// ---------------------------------------------------
// | +----------+ +------+ +------+ +------+ |
// ---|gMemoryMep|---|Entry1|---|EntryX|---|Entry3|---
// +----------+ +------+ ^ +------+ +------+
// |
// +------+
// |EntryA|
// +------+
//
InsertNewEntry (
&Entry->Link,
Entry->Start,
Start - 1,
Entry->Type,
FALSE,
AddRegion
);
}
if (Entry->End > End) {
//
// ---------------------------------------------------
// | +----------+ +------+ +------+ +------+ |
// ---|gMemoryMep|---|Entry1|---|EntryX|---|Entry3|---
// +----------+ +------+ +------+ ^ +------+
// |
// +------+
// |EntryZ|
// +------+
//
InsertNewEntry (
&Entry->Link,
End + 1,
Entry->End,
Entry->Type,
TRUE,
AddRegion
);
}
//
// Update this node
//
Entry->Start = Start;
Entry->End = End;
Entry->Type = Type;
//
// Check adjacent
//
NextLink = Entry->Link.ForwardLink;
if (NextLink != &gMemoryMap) {
NextEntry = CR (NextLink, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
//
// ---------------------------------------------------
// | +----------+ +------+ +-----------------+ |
// ---|gMemoryMep|---|Entry1|---|EntryX Entry3|---
// +----------+ +------+ +-----------------+
//
if ((Entry->Type == NextEntry->Type) && (Entry->End + 1 == NextEntry->Start)) {
Entry->End = NextEntry->End;
RemoveOldEntry (NextEntry);
}
}
PreviousLink = Entry->Link.BackLink;
if (PreviousLink != &gMemoryMap) {
PreviousEntry = CR (PreviousLink, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
//
// ---------------------------------------------------
// | +----------+ +-----------------+ +------+ |
// ---|gMemoryMep|---|Entry1 EntryX|---|Entry3|---
// +----------+ +-----------------+ +------+
//
if ((PreviousEntry->Type == Entry->Type) && (PreviousEntry->End + 1 == Entry->Start)) {
PreviousEntry->End = Entry->End;
RemoveOldEntry (Entry);
}
}
}
return ;
}
}
//
// ---------------------------------------------------
// | +----------+ +------+ +------+ +------+ |
// ---|gMemoryMep|---|Entry1|---|Entry2|---|Entry3|---
// +----------+ +------+ +------+ +------+ ^
// |
// +------+
// |EntryX|
// +------+
//
Link = gMemoryMap.BackLink;
if (Link != &gMemoryMap) {
Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
if ((Entry->End + 1 == Start) && (Entry->Type == Type)) {
Entry->End = End;
return ;
}
}
InsertNewEntry (
&gMemoryMap,
Start,
End,
Type,
FALSE,
AddRegion
);
return ;
}
/**
Return the count of Smm memory map entry.
@return The count of Smm memory map entry.
**/
UINTN
GetSmmMemoryMapEntryCount (
VOID
)
{
LIST_ENTRY *Link;
UINTN Count;
Count = 0;
Link = gMemoryMap.ForwardLink;
while (Link != &gMemoryMap) {
Link = Link->ForwardLink;
Count++;
}
return Count;
}
/**
Internal Function. Allocate n pages from given free page node.
@param Pages The free page node.
@param NumberOfPages Number of pages to be allocated.
@param MaxAddress Request to allocate memory below this address.
@return Memory address of allocated pages.
**/
UINTN
InternalAllocPagesOnOneNode (
IN OUT FREE_PAGE_LIST *Pages,
IN UINTN NumberOfPages,
IN UINTN MaxAddress
)
{
UINTN Top;
UINTN Bottom;
FREE_PAGE_LIST *Node;
Top = TRUNCATE_TO_PAGES (MaxAddress + 1 - (UINTN)Pages);
if (Top > Pages->NumberOfPages) {
Top = Pages->NumberOfPages;
}
Bottom = Top - NumberOfPages;
if (Top < Pages->NumberOfPages) {
Node = (FREE_PAGE_LIST*)((UINTN)Pages + EFI_PAGES_TO_SIZE (Top));
Node->NumberOfPages = Pages->NumberOfPages - Top;
InsertHeadList (&Pages->Link, &Node->Link);
}
if (Bottom > 0) {
Pages->NumberOfPages = Bottom;
} else {
RemoveEntryList (&Pages->Link);
}
return (UINTN)Pages + EFI_PAGES_TO_SIZE (Bottom);
}
/**
Internal Function. Allocate n pages from free page list below MaxAddress.
@param FreePageList The free page node.
@param NumberOfPages Number of pages to be allocated.
@param MaxAddress Request to allocate memory below this address.
@return Memory address of allocated pages.
**/
UINTN
InternalAllocMaxAddress (
IN OUT LIST_ENTRY *FreePageList,
IN UINTN NumberOfPages,
IN UINTN MaxAddress
)
{
LIST_ENTRY *Node;
FREE_PAGE_LIST *Pages;
for (Node = FreePageList->BackLink; Node != FreePageList; Node = Node->BackLink) {
Pages = BASE_CR (Node, FREE_PAGE_LIST, Link);
if (Pages->NumberOfPages >= NumberOfPages &&
(UINTN)Pages + EFI_PAGES_TO_SIZE (NumberOfPages) - 1 <= MaxAddress) {
return InternalAllocPagesOnOneNode (Pages, NumberOfPages, MaxAddress);
}
}
return (UINTN)(-1);
}
/**
Internal Function. Allocate n pages from free page list at given address.
@param FreePageList The free page node.
@param NumberOfPages Number of pages to be allocated.
@param MaxAddress Request to allocate memory below this address.
@return Memory address of allocated pages.
**/
UINTN
InternalAllocAddress (
IN OUT LIST_ENTRY *FreePageList,
IN UINTN NumberOfPages,
IN UINTN Address
)
{
UINTN EndAddress;
LIST_ENTRY *Node;
FREE_PAGE_LIST *Pages;
if ((Address & EFI_PAGE_MASK) != 0) {
return ~Address;
}
EndAddress = Address + EFI_PAGES_TO_SIZE (NumberOfPages);
for (Node = FreePageList->BackLink; Node!= FreePageList; Node = Node->BackLink) {
Pages = BASE_CR (Node, FREE_PAGE_LIST, Link);
if ((UINTN)Pages <= Address) {
if ((UINTN)Pages + EFI_PAGES_TO_SIZE (Pages->NumberOfPages) < EndAddress) {
break;
}
return InternalAllocPagesOnOneNode (Pages, NumberOfPages, EndAddress);
}
}
return ~Address;
}
/**
Allocates pages from the memory map.
@param[in] Type The type of allocation to perform.
@param[in] MemoryType The type of memory to turn the allocated pages
into.
@param[in] NumberOfPages The number of pages to allocate.
@param[out] Memory A pointer to receive the base allocated memory
address.
@param[in] AddRegion If this memory is new added region.
@param[in] NeedGuard Flag to indicate Guard page is needed
or not
@retval EFI_INVALID_PARAMETER Parameters violate checking rules defined in spec.
@retval EFI_NOT_FOUND Could not allocate pages match the requirement.
@retval EFI_OUT_OF_RESOURCES No enough pages to allocate.
@retval EFI_SUCCESS Pages successfully allocated.
**/
EFI_STATUS
SmmInternalAllocatePagesEx (
IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN NumberOfPages,
OUT EFI_PHYSICAL_ADDRESS *Memory,
IN BOOLEAN AddRegion,
IN BOOLEAN NeedGuard
)
{
UINTN RequestedAddress;
if (MemoryType != EfiRuntimeServicesCode &&
MemoryType != EfiRuntimeServicesData) {
return EFI_INVALID_PARAMETER;
}
if (NumberOfPages > TRUNCATE_TO_PAGES ((UINTN)-1) + 1) {
return EFI_OUT_OF_RESOURCES;
}
//
// We don't track memory type in SMM
//
RequestedAddress = (UINTN)*Memory;
switch (Type) {
case AllocateAnyPages:
RequestedAddress = (UINTN)(-1);
case AllocateMaxAddress:
if (NeedGuard) {
*Memory = InternalAllocMaxAddressWithGuard (
&mSmmMemoryMap,
NumberOfPages,
RequestedAddress,
MemoryType
);
if (*Memory == (UINTN)-1) {
return EFI_OUT_OF_RESOURCES;
} else {
ASSERT (VerifyMemoryGuard (*Memory, NumberOfPages) == TRUE);
return EFI_SUCCESS;
}
}
*Memory = InternalAllocMaxAddress (
&mSmmMemoryMap,
NumberOfPages,
RequestedAddress
);
if (*Memory == (UINTN)-1) {
return EFI_OUT_OF_RESOURCES;
}
break;
case AllocateAddress:
*Memory = InternalAllocAddress (
&mSmmMemoryMap,
NumberOfPages,
RequestedAddress
);
if (*Memory != RequestedAddress) {
return EFI_NOT_FOUND;
}
break;
default:
return EFI_INVALID_PARAMETER;
}
//
// Update SmmMemoryMap here.
//
ConvertSmmMemoryMapEntry (MemoryType, *Memory, NumberOfPages, AddRegion);
if (!AddRegion) {
CoreFreeMemoryMapStack();
}
return EFI_SUCCESS;
}
/**
Allocates pages from the memory map.
@param[in] Type The type of allocation to perform.
@param[in] MemoryType The type of memory to turn the allocated pages
into.
@param[in] NumberOfPages The number of pages to allocate.
@param[out] Memory A pointer to receive the base allocated memory
address.
@param[in] NeedGuard Flag to indicate Guard page is needed
or not
@retval EFI_INVALID_PARAMETER Parameters violate checking rules defined in spec.
@retval EFI_NOT_FOUND Could not allocate pages match the requirement.
@retval EFI_OUT_OF_RESOURCES No enough pages to allocate.
@retval EFI_SUCCESS Pages successfully allocated.
**/
EFI_STATUS
EFIAPI
SmmInternalAllocatePages (
IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN NumberOfPages,
OUT EFI_PHYSICAL_ADDRESS *Memory,
IN BOOLEAN NeedGuard
)
{
return SmmInternalAllocatePagesEx (Type, MemoryType, NumberOfPages, Memory,
FALSE, NeedGuard);
}
/**
Allocates pages from the memory map.
@param Type The type of allocation to perform.
@param MemoryType The type of memory to turn the allocated pages
into.
@param NumberOfPages The number of pages to allocate.
@param Memory A pointer to receive the base allocated memory
address.
@retval EFI_INVALID_PARAMETER Parameters violate checking rules defined in spec.
@retval EFI_NOT_FOUND Could not allocate pages match the requirement.
@retval EFI_OUT_OF_RESOURCES No enough pages to allocate.
@retval EFI_SUCCESS Pages successfully allocated.
**/
EFI_STATUS
EFIAPI
SmmAllocatePages (
IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN NumberOfPages,
OUT EFI_PHYSICAL_ADDRESS *Memory
)
{
EFI_STATUS Status;
BOOLEAN NeedGuard;
NeedGuard = IsPageTypeToGuard (MemoryType, Type);
Status = SmmInternalAllocatePages (Type, MemoryType, NumberOfPages, Memory,
NeedGuard);
if (!EFI_ERROR (Status)) {
SmmCoreUpdateProfile (
(EFI_PHYSICAL_ADDRESS) (UINTN) RETURN_ADDRESS (0),
MemoryProfileActionAllocatePages,
MemoryType,
EFI_PAGES_TO_SIZE (NumberOfPages),
(VOID *) (UINTN) *Memory,
NULL
);
}
return Status;
}
/**
Internal Function. Merge two adjacent nodes.
@param First The first of two nodes to merge.
@return Pointer to node after merge (if success) or pointer to next node (if fail).
**/
FREE_PAGE_LIST *
InternalMergeNodes (
IN FREE_PAGE_LIST *First
)
{
FREE_PAGE_LIST *Next;
Next = BASE_CR (First->Link.ForwardLink, FREE_PAGE_LIST, Link);
ASSERT (
TRUNCATE_TO_PAGES ((UINTN)Next - (UINTN)First) >= First->NumberOfPages);
if (TRUNCATE_TO_PAGES ((UINTN)Next - (UINTN)First) == First->NumberOfPages) {
First->NumberOfPages += Next->NumberOfPages;
RemoveEntryList (&Next->Link);
Next = First;
}
return Next;
}
/**
Frees previous allocated pages.
@param[in] Memory Base address of memory being freed.
@param[in] NumberOfPages The number of pages to free.
@param[in] AddRegion If this memory is new added region.
@retval EFI_NOT_FOUND Could not find the entry that covers the range.
@retval EFI_INVALID_PARAMETER Address not aligned, Address is zero or NumberOfPages is zero.
@return EFI_SUCCESS Pages successfully freed.
**/
EFI_STATUS
SmmInternalFreePagesEx (
IN EFI_PHYSICAL_ADDRESS Memory,
IN UINTN NumberOfPages,
IN BOOLEAN AddRegion
)
{
LIST_ENTRY *Node;
FREE_PAGE_LIST *Pages;
if (((Memory & EFI_PAGE_MASK) != 0) || (Memory == 0) || (NumberOfPages == 0)) {
return EFI_INVALID_PARAMETER;
}
Pages = NULL;
Node = mSmmMemoryMap.ForwardLink;
while (Node != &mSmmMemoryMap) {
Pages = BASE_CR (Node, FREE_PAGE_LIST, Link);
if (Memory < (UINTN)Pages) {
break;
}
Node = Node->ForwardLink;
}
if (Node != &mSmmMemoryMap &&
Memory + EFI_PAGES_TO_SIZE (NumberOfPages) > (UINTN)Pages) {
return EFI_INVALID_PARAMETER;
}
if (Node->BackLink != &mSmmMemoryMap) {
Pages = BASE_CR (Node->BackLink, FREE_PAGE_LIST, Link);
if ((UINTN)Pages + EFI_PAGES_TO_SIZE (Pages->NumberOfPages) > Memory) {
return EFI_INVALID_PARAMETER;
}
}
Pages = (FREE_PAGE_LIST*)(UINTN)Memory;
Pages->NumberOfPages = NumberOfPages;
InsertTailList (Node, &Pages->Link);
if (Pages->Link.BackLink != &mSmmMemoryMap) {
Pages = InternalMergeNodes (
BASE_CR (Pages->Link.BackLink, FREE_PAGE_LIST, Link)
);
}
if (Node != &mSmmMemoryMap) {
InternalMergeNodes (Pages);
}
//
// Update SmmMemoryMap here.
//
ConvertSmmMemoryMapEntry (EfiConventionalMemory, Memory, NumberOfPages, AddRegion);
if (!AddRegion) {
CoreFreeMemoryMapStack();
}
return EFI_SUCCESS;
}
/**
Frees previous allocated pages.
@param[in] Memory Base address of memory being freed.
@param[in] NumberOfPages The number of pages to free.
@param[in] IsGuarded Is the memory to free guarded or not.
@retval EFI_NOT_FOUND Could not find the entry that covers the range.
@retval EFI_INVALID_PARAMETER Address not aligned, Address is zero or NumberOfPages is zero.
@return EFI_SUCCESS Pages successfully freed.
**/
EFI_STATUS
EFIAPI
SmmInternalFreePages (
IN EFI_PHYSICAL_ADDRESS Memory,
IN UINTN NumberOfPages,
IN BOOLEAN IsGuarded
)
{
if (IsGuarded) {
return SmmInternalFreePagesExWithGuard (Memory, NumberOfPages, FALSE);
}
return SmmInternalFreePagesEx (Memory, NumberOfPages, FALSE);
}
/**
Check whether the input range is in memory map.
@param Memory Base address of memory being inputed.
@param NumberOfPages The number of pages.
@retval TRUE In memory map.
@retval FALSE Not in memory map.
**/
BOOLEAN
InMemMap (
IN EFI_PHYSICAL_ADDRESS Memory,
IN UINTN NumberOfPages
)
{
LIST_ENTRY *Link;
MEMORY_MAP *Entry;
EFI_PHYSICAL_ADDRESS Last;
Last = Memory + EFI_PAGES_TO_SIZE (NumberOfPages) - 1;
Link = gMemoryMap.ForwardLink;
while (Link != &gMemoryMap) {
Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
Link = Link->ForwardLink;
if ((Entry->Start <= Memory) && (Entry->End >= Last)) {
return TRUE;
}
}
return FALSE;
}
/**
Frees previous allocated pages.
@param Memory Base address of memory being freed.
@param NumberOfPages The number of pages to free.
@retval EFI_NOT_FOUND Could not find the entry that covers the range.
@retval EFI_INVALID_PARAMETER Address not aligned, Address is zero or NumberOfPages is zero.
@return EFI_SUCCESS Pages successfully freed.
**/
EFI_STATUS
EFIAPI
SmmFreePages (
IN EFI_PHYSICAL_ADDRESS Memory,
IN UINTN NumberOfPages
)
{
EFI_STATUS Status;
BOOLEAN IsGuarded;
if (!InMemMap(Memory, NumberOfPages)) {
return EFI_NOT_FOUND;
}
IsGuarded = IsHeapGuardEnabled () && IsMemoryGuarded (Memory);
Status = SmmInternalFreePages (Memory, NumberOfPages, IsGuarded);
if (!EFI_ERROR (Status)) {
SmmCoreUpdateProfile (
(EFI_PHYSICAL_ADDRESS) (UINTN) RETURN_ADDRESS (0),
MemoryProfileActionFreePages,
EfiMaxMemoryType,
EFI_PAGES_TO_SIZE (NumberOfPages),
(VOID *) (UINTN) Memory,
NULL
);
}
return Status;
}
/**
Add free SMRAM region for use by memory service.
@param MemBase Base address of memory region.
@param MemLength Length of the memory region.
@param Type Memory type.
@param Attributes Memory region state.
**/
VOID
SmmAddMemoryRegion (
IN EFI_PHYSICAL_ADDRESS MemBase,
IN UINT64 MemLength,
IN EFI_MEMORY_TYPE Type,
IN UINT64 Attributes
)
{
UINTN AlignedMemBase;
//
// Add EfiRuntimeServicesData for memory regions that is already allocated, needs testing, or needs ECC initialization
//
if ((Attributes & (EFI_ALLOCATED | EFI_NEEDS_TESTING | EFI_NEEDS_ECC_INITIALIZATION)) != 0) {
Type = EfiRuntimeServicesData;
} else {
Type = EfiConventionalMemory;
}
DEBUG ((DEBUG_INFO, "SmmAddMemoryRegion\n"));
DEBUG ((DEBUG_INFO, " MemBase - 0x%lx\n", MemBase));
DEBUG ((DEBUG_INFO, " MemLength - 0x%lx\n", MemLength));
DEBUG ((DEBUG_INFO, " Type - 0x%x\n", Type));
DEBUG ((DEBUG_INFO, " Attributes - 0x%lx\n", Attributes));
//
// Align range on an EFI_PAGE_SIZE boundary
//
AlignedMemBase = (UINTN)(MemBase + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
MemLength -= AlignedMemBase - MemBase;
if (Type == EfiConventionalMemory) {
SmmInternalFreePagesEx (AlignedMemBase, TRUNCATE_TO_PAGES ((UINTN)MemLength), TRUE);
} else {
ConvertSmmMemoryMapEntry (EfiRuntimeServicesData, AlignedMemBase, TRUNCATE_TO_PAGES ((UINTN)MemLength), TRUE);
}
CoreFreeMemoryMapStack ();
}
/**
This function returns a copy of the current memory map. The map is an array of
memory descriptors, each of which describes a contiguous block of memory.
@param[in, out] MemoryMapSize A pointer to the size, in bytes, of the
MemoryMap buffer. On input, this is the size of
the buffer allocated by the caller. On output,
it is the size of the buffer returned by the
firmware if the buffer was large enough, or the
size of the buffer needed to contain the map if
the buffer was too small.
@param[in, out] MemoryMap A pointer to the buffer in which firmware places
the current memory map.
@param[out] MapKey A pointer to the location in which firmware
returns the key for the current memory map.
@param[out] DescriptorSize A pointer to the location in which firmware
returns the size, in bytes, of an individual
EFI_MEMORY_DESCRIPTOR.
@param[out] DescriptorVersion A pointer to the location in which firmware
returns the version number associated with the
EFI_MEMORY_DESCRIPTOR.
@retval EFI_SUCCESS The memory map was returned in the MemoryMap
buffer.
@retval EFI_BUFFER_TOO_SMALL The MemoryMap buffer was too small. The current
buffer size needed to hold the memory map is
returned in MemoryMapSize.
@retval EFI_INVALID_PARAMETER One of the parameters has an invalid value.
**/
EFI_STATUS
EFIAPI
SmmCoreGetMemoryMap (
IN OUT UINTN *MemoryMapSize,
IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap,
OUT UINTN *MapKey,
OUT UINTN *DescriptorSize,
OUT UINT32 *DescriptorVersion
)
{
UINTN Count;
LIST_ENTRY *Link;
MEMORY_MAP *Entry;
UINTN Size;
UINTN BufferSize;
Size = sizeof (EFI_MEMORY_DESCRIPTOR);
//
// Make sure Size != sizeof(EFI_MEMORY_DESCRIPTOR). This will
// prevent people from having pointer math bugs in their code.
// now you have to use *DescriptorSize to make things work.
//
Size += sizeof(UINT64) - (Size % sizeof (UINT64));
if (DescriptorSize != NULL) {
*DescriptorSize = Size;
}
if (DescriptorVersion != NULL) {
*DescriptorVersion = EFI_MEMORY_DESCRIPTOR_VERSION;
}
Count = GetSmmMemoryMapEntryCount ();
BufferSize = Size * Count;
if (*MemoryMapSize < BufferSize) {
*MemoryMapSize = BufferSize;
return EFI_BUFFER_TOO_SMALL;
}
*MemoryMapSize = BufferSize;
if (MemoryMap == NULL) {
return EFI_INVALID_PARAMETER;
}
ZeroMem (MemoryMap, BufferSize);
Link = gMemoryMap.ForwardLink;
while (Link != &gMemoryMap) {
Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
Link = Link->ForwardLink;
MemoryMap->Type = Entry->Type;
MemoryMap->PhysicalStart = Entry->Start;
MemoryMap->NumberOfPages = RShiftU64 (Entry->End - Entry->Start + 1, EFI_PAGE_SHIFT);
MemoryMap = NEXT_MEMORY_DESCRIPTOR (MemoryMap, Size);
}
return EFI_SUCCESS;
}