/** @file The file contains the GCD related services in the EFI Boot Services Table. The GCD services are used to manage the memory and I/O regions that are accessible to the CPU that is executing the DXE core. Copyright (c) 2006 - 2008, Intel Corporation All rights reserved. This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include #define MINIMUM_INITIAL_MEMORY_SIZE 0x10000 #define MEMORY_ATTRIBUTE_MASK (EFI_RESOURCE_ATTRIBUTE_PRESENT | \ EFI_RESOURCE_ATTRIBUTE_INITIALIZED | \ EFI_RESOURCE_ATTRIBUTE_TESTED | \ EFI_RESOURCE_ATTRIBUTE_READ_PROTECTED | \ EFI_RESOURCE_ATTRIBUTE_WRITE_PROTECTED | \ EFI_RESOURCE_ATTRIBUTE_EXECUTION_PROTECTED | \ EFI_RESOURCE_ATTRIBUTE_16_BIT_IO | \ EFI_RESOURCE_ATTRIBUTE_32_BIT_IO | \ EFI_RESOURCE_ATTRIBUTE_64_BIT_IO ) #define TESTED_MEMORY_ATTRIBUTES (EFI_RESOURCE_ATTRIBUTE_PRESENT | \ EFI_RESOURCE_ATTRIBUTE_INITIALIZED | \ EFI_RESOURCE_ATTRIBUTE_TESTED ) #define INITIALIZED_MEMORY_ATTRIBUTES (EFI_RESOURCE_ATTRIBUTE_PRESENT | \ EFI_RESOURCE_ATTRIBUTE_INITIALIZED ) #define PRESENT_MEMORY_ATTRIBUTES (EFI_RESOURCE_ATTRIBUTE_PRESENT) #define INVALID_CPU_ARCH_ATTRIBUTES 0xffffffff // // Module Variables // EFI_LOCK mGcdMemorySpaceLock = EFI_INITIALIZE_LOCK_VARIABLE (TPL_NOTIFY); EFI_LOCK mGcdIoSpaceLock = EFI_INITIALIZE_LOCK_VARIABLE (TPL_NOTIFY); LIST_ENTRY mGcdMemorySpaceMap = INITIALIZE_LIST_HEAD_VARIABLE (mGcdMemorySpaceMap); LIST_ENTRY mGcdIoSpaceMap = INITIALIZE_LIST_HEAD_VARIABLE (mGcdIoSpaceMap); EFI_GCD_MAP_ENTRY mGcdMemorySpaceMapEntryTemplate = { EFI_GCD_MAP_SIGNATURE, { NULL, NULL }, 0, 0, 0, 0, EfiGcdMemoryTypeNonExistent, (EFI_GCD_IO_TYPE) 0, NULL, NULL }; EFI_GCD_MAP_ENTRY mGcdIoSpaceMapEntryTemplate = { EFI_GCD_MAP_SIGNATURE, { NULL, NULL }, 0, 0, 0, 0, (EFI_GCD_MEMORY_TYPE) 0, EfiGcdIoTypeNonExistent, NULL, NULL }; GCD_ATTRIBUTE_CONVERSION_ENTRY mAttributeConversionTable[] = { { EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE, EFI_MEMORY_UC, TRUE }, { EFI_RESOURCE_ATTRIBUTE_UNCACHED_EXPORTED, EFI_MEMORY_UCE, TRUE }, { EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE, EFI_MEMORY_WC, TRUE }, { EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE, EFI_MEMORY_WT, TRUE }, { EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE, EFI_MEMORY_WB, TRUE }, { EFI_RESOURCE_ATTRIBUTE_READ_PROTECTED, EFI_MEMORY_RP, TRUE }, { EFI_RESOURCE_ATTRIBUTE_WRITE_PROTECTED, EFI_MEMORY_WP, TRUE }, { EFI_RESOURCE_ATTRIBUTE_EXECUTION_PROTECTED, EFI_MEMORY_XP, TRUE }, { EFI_RESOURCE_ATTRIBUTE_PRESENT, EFI_MEMORY_PRESENT, FALSE }, { EFI_RESOURCE_ATTRIBUTE_INITIALIZED, EFI_MEMORY_INITIALIZED, FALSE }, { EFI_RESOURCE_ATTRIBUTE_TESTED, EFI_MEMORY_TESTED, FALSE }, { 0, 0, FALSE } }; /** Acquire memory lock on mGcdMemorySpaceLock. **/ VOID CoreAcquireGcdMemoryLock ( VOID ) { CoreAcquireLock (&mGcdMemorySpaceLock); } /** Release memory lock on mGcdMemorySpaceLock. **/ VOID CoreReleaseGcdMemoryLock ( VOID ) { CoreReleaseLock (&mGcdMemorySpaceLock); } /** Acquire memory lock on mGcdIoSpaceLock. **/ STATIC VOID CoreAcquireGcdIoLock ( VOID ) { CoreAcquireLock (&mGcdIoSpaceLock); } /** Release memory lock on mGcdIoSpaceLock. **/ STATIC VOID CoreReleaseGcdIoLock ( VOID ) { CoreReleaseLock (&mGcdIoSpaceLock); } // // GCD Initialization Worker Functions // /** Aligns a value to the specified boundary. @param Value 64 bit value to align @param Alignment Log base 2 of the boundary to align Value to @param RoundUp TRUE if Value is to be rounded up to the nearest aligned boundary. FALSE is Value is to be rounded down to the nearest aligned boundary. @return A 64 bit value is the aligned to the value nearest Value with an alignment by Alignment. **/ STATIC UINT64 AlignValue ( IN UINT64 Value, IN UINTN Alignment, IN BOOLEAN RoundUp ) { UINT64 AlignmentMask; AlignmentMask = LShiftU64 (1, Alignment) - 1; if (RoundUp) { Value += AlignmentMask; } return Value & (~AlignmentMask); } /** Aligns address to the page boundary. @param Value 64 bit address to align @return A 64 bit value is the aligned to the value nearest Value with an alignment by Alignment. **/ STATIC UINT64 PageAlignAddress ( IN UINT64 Value ) { return AlignValue (Value, EFI_PAGE_SHIFT, TRUE); } /** Aligns length to the page boundary. @param Value 64 bit length to align @return A 64 bit value is the aligned to the value nearest Value with an alignment by Alignment. **/ STATIC UINT64 PageAlignLength ( IN UINT64 Value ) { return AlignValue (Value, EFI_PAGE_SHIFT, FALSE); } // // GCD Memory Space Worker Functions // /** Allocate pool for two entries. @param TopEntry An entry of GCD map @param BottomEntry An entry of GCD map @retval EFI_OUT_OF_RESOURCES No enough buffer to be allocated. @retval EFI_SUCCESS Both entries successfully allocated. **/ STATIC EFI_STATUS CoreAllocateGcdMapEntry ( IN OUT EFI_GCD_MAP_ENTRY **TopEntry, IN OUT EFI_GCD_MAP_ENTRY **BottomEntry ) { *TopEntry = CoreAllocateZeroBootServicesPool (sizeof (EFI_GCD_MAP_ENTRY)); if (*TopEntry == NULL) { return EFI_OUT_OF_RESOURCES; } *BottomEntry = CoreAllocateZeroBootServicesPool (sizeof (EFI_GCD_MAP_ENTRY)); if (*BottomEntry == NULL) { CoreFreePool (*TopEntry); return EFI_OUT_OF_RESOURCES; } return EFI_SUCCESS; } /** Internal function. Inserts a new descriptor into a sorted list @param Link The linked list to insert the range BaseAddress and Length into @param Entry A pointer to the entry that is inserted @param BaseAddress The base address of the new range @param Length The length of the new range in bytes @param TopEntry Top pad entry to insert if needed. @param BottomEntry Bottom pad entry to insert if needed. @retval EFI_SUCCESS The new range was inserted into the linked list **/ STATIC EFI_STATUS CoreInsertGcdMapEntry ( IN LIST_ENTRY *Link, IN EFI_GCD_MAP_ENTRY *Entry, IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN EFI_GCD_MAP_ENTRY *TopEntry, IN EFI_GCD_MAP_ENTRY *BottomEntry ) { ASSERT (Length != 0); ASSERT (TopEntry->Signature == 0); ASSERT (BottomEntry->Signature == 0); if (BaseAddress > Entry->BaseAddress) { CopyMem (BottomEntry, Entry, sizeof (EFI_GCD_MAP_ENTRY)); Entry->BaseAddress = BaseAddress; BottomEntry->EndAddress = BaseAddress - 1; InsertTailList (Link, &BottomEntry->Link); } if ((BaseAddress + Length - 1) < Entry->EndAddress) { CopyMem (TopEntry, Entry, sizeof (EFI_GCD_MAP_ENTRY)); TopEntry->BaseAddress = BaseAddress + Length; Entry->EndAddress = BaseAddress + Length - 1; InsertHeadList (Link, &TopEntry->Link); } return EFI_SUCCESS; } /** Merge the Gcd region specified by Link and its adjacent entry @param Link Specify the entry to be merged (with its adjacent entry). @param Forward Direction (forward or backward). @param Map Boundary. @retval EFI_SUCCESS Successfully returned. @retval EFI_UNSUPPORTED These adjacent regions could not merge. **/ STATIC EFI_STATUS CoreMergeGcdMapEntry ( IN LIST_ENTRY *Link, IN BOOLEAN Forward, IN LIST_ENTRY *Map ) { LIST_ENTRY *AdjacentLink; EFI_GCD_MAP_ENTRY *Entry; EFI_GCD_MAP_ENTRY *AdjacentEntry; // // Get adjacent entry // if (Forward) { AdjacentLink = Link->ForwardLink; } else { AdjacentLink = Link->BackLink; } // // If AdjacentLink is the head of the list, then no merge can be performed // if (AdjacentLink == Map) { return EFI_SUCCESS; } Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE); AdjacentEntry = CR (AdjacentLink, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE); if (Entry->Capabilities != AdjacentEntry->Capabilities) { return EFI_UNSUPPORTED; } if (Entry->Attributes != AdjacentEntry->Attributes) { return EFI_UNSUPPORTED; } if (Entry->GcdMemoryType != AdjacentEntry->GcdMemoryType) { return EFI_UNSUPPORTED; } if (Entry->GcdIoType != AdjacentEntry->GcdIoType) { return EFI_UNSUPPORTED; } if (Entry->ImageHandle != AdjacentEntry->ImageHandle) { return EFI_UNSUPPORTED; } if (Entry->DeviceHandle != AdjacentEntry->DeviceHandle) { return EFI_UNSUPPORTED; } if (Forward) { Entry->EndAddress = AdjacentEntry->EndAddress; } else { Entry->BaseAddress = AdjacentEntry->BaseAddress; } RemoveEntryList (AdjacentLink); CoreFreePool (AdjacentEntry); return EFI_SUCCESS; } /** Merge adjacent entries on total chain. @param TopEntry Top entry of GCD map. @param BottomEntry Bottom entry of GCD map. @param StartLink Start link of the list for this loop. @param EndLink End link of the list for this loop. @param Map Boundary. @retval EFI_SUCCESS GCD map successfully cleaned up. **/ STATIC EFI_STATUS CoreCleanupGcdMapEntry ( IN EFI_GCD_MAP_ENTRY *TopEntry, IN EFI_GCD_MAP_ENTRY *BottomEntry, IN LIST_ENTRY *StartLink, IN LIST_ENTRY *EndLink, IN LIST_ENTRY *Map ) { LIST_ENTRY *Link; if (TopEntry->Signature == 0) { CoreFreePool (TopEntry); } if (BottomEntry->Signature == 0) { CoreFreePool (BottomEntry); } Link = StartLink; while (Link != EndLink->ForwardLink) { CoreMergeGcdMapEntry (Link, FALSE, Map); Link = Link->ForwardLink; } CoreMergeGcdMapEntry (EndLink, TRUE, Map); return EFI_SUCCESS; } /** Search a segment of memory space in GCD map. The result is a range of GCD entry list. @param BaseAddress The start address of the segment. @param Length The length of the segment. @param StartLink The first GCD entry involves this segment of memory space. @param EndLink The first GCD entry involves this segment of memory space. @param Map Points to the start entry to search. @retval EFI_SUCCESS Successfully found the entry. @retval EFI_NOT_FOUND Not found. **/ STATIC EFI_STATUS CoreSearchGcdMapEntry ( IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, OUT LIST_ENTRY **StartLink, OUT LIST_ENTRY **EndLink, IN LIST_ENTRY *Map ) { LIST_ENTRY *Link; EFI_GCD_MAP_ENTRY *Entry; ASSERT (Length != 0); *StartLink = NULL; *EndLink = NULL; Link = Map->ForwardLink; while (Link != Map) { Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE); if (BaseAddress >= Entry->BaseAddress && BaseAddress <= Entry->EndAddress) { *StartLink = Link; } if (*StartLink != NULL) { if ((BaseAddress + Length - 1) >= Entry->BaseAddress && (BaseAddress + Length - 1) <= Entry->EndAddress ) { *EndLink = Link; return EFI_SUCCESS; } } Link = Link->ForwardLink; } return EFI_NOT_FOUND; } /** Count the amount of GCD map entries. @param Map Points to the start entry to do the count loop. @return The count. **/ STATIC UINTN CoreCountGcdMapEntry ( IN LIST_ENTRY *Map ) { UINTN Count; LIST_ENTRY *Link; Count = 0; Link = Map->ForwardLink; while (Link != Map) { Count++; Link = Link->ForwardLink; } return Count; } /** Return the memory attribute specified by Attributes @param Attributes A num with some attribute bits on. @return The enum value of memory attribute. **/ STATIC UINT64 ConverToCpuArchAttributes ( UINT64 Attributes ) { if ( (Attributes & EFI_MEMORY_UC) == EFI_MEMORY_UC) { return EFI_MEMORY_UC; } if ( (Attributes & EFI_MEMORY_WC ) == EFI_MEMORY_WC) { return EFI_MEMORY_WC; } if ( (Attributes & EFI_MEMORY_WT ) == EFI_MEMORY_WT) { return EFI_MEMORY_WT; } if ( (Attributes & EFI_MEMORY_WB) == EFI_MEMORY_WB) { return EFI_MEMORY_WB; } if ( (Attributes & EFI_MEMORY_WP) == EFI_MEMORY_WP) { return EFI_MEMORY_WP; } return INVALID_CPU_ARCH_ATTRIBUTES; } /** Do operation on a segment of memory space specified (add, free, remove, change attribute ...). @param Operation The type of the operation @param GcdMemoryType Additional information for the operation @param GcdIoType Additional information for the operation @param BaseAddress Start address of the segment @param Length length of the segment @param Capabilities The alterable attributes of a newly added entry @param Attributes The attributes needs to be set @retval EFI_INVALID_PARAMETER Length is 0 or address (length) not aligned when setting attribute. @retval EFI_SUCCESS Action successfully done. @retval EFI_UNSUPPORTED Could not find the proper descriptor on this segment or set an upsupported attribute. @retval EFI_ACCESS_DENIED Operate on an space non-exist or is used for an image. @retval EFI_NOT_FOUND Free a non-using space or remove a non-exist space, and so on. @retval EFI_OUT_OF_RESOURCES No buffer could be allocated. **/ STATIC EFI_STATUS CoreConvertSpace ( IN UINTN Operation, IN EFI_GCD_MEMORY_TYPE GcdMemoryType, IN EFI_GCD_IO_TYPE GcdIoType, IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 Capabilities, IN UINT64 Attributes ) { EFI_STATUS Status; LIST_ENTRY *Map; LIST_ENTRY *Link; EFI_GCD_MAP_ENTRY *Entry; EFI_GCD_MAP_ENTRY *TopEntry; EFI_GCD_MAP_ENTRY *BottomEntry; LIST_ENTRY *StartLink; LIST_ENTRY *EndLink; EFI_CPU_ARCH_PROTOCOL *CpuArch; UINT64 CpuArchAttributes; if (Length == 0) { return EFI_INVALID_PARAMETER; } Map = NULL; if ((Operation & GCD_MEMORY_SPACE_OPERATION) != 0) { CoreAcquireGcdMemoryLock (); Map = &mGcdMemorySpaceMap; } if ((Operation & GCD_IO_SPACE_OPERATION) != 0) { CoreAcquireGcdIoLock (); Map = &mGcdIoSpaceMap; } // // Search for the list of descriptors that cover the range BaseAddress to BaseAddress+Length // Status = CoreSearchGcdMapEntry (BaseAddress, Length, &StartLink, &EndLink, Map); if (EFI_ERROR (Status)) { Status = EFI_UNSUPPORTED; goto Done; } // // Verify that the list of descriptors are unallocated non-existent memory. // Link = StartLink; while (Link != EndLink->ForwardLink) { Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE); switch (Operation) { // // Add operations // case GCD_ADD_MEMORY_OPERATION: if (Entry->GcdMemoryType != EfiGcdMemoryTypeNonExistent || Entry->ImageHandle != NULL ) { Status = EFI_ACCESS_DENIED; goto Done; } break; case GCD_ADD_IO_OPERATION: if (Entry->GcdIoType != EfiGcdIoTypeNonExistent || Entry->ImageHandle != NULL ) { Status = EFI_ACCESS_DENIED; goto Done; } break; // // Free operations // case GCD_FREE_MEMORY_OPERATION: case GCD_FREE_IO_OPERATION: if (Entry->ImageHandle == NULL) { Status = EFI_NOT_FOUND; goto Done; } break; // // Remove operations // case GCD_REMOVE_MEMORY_OPERATION: if (Entry->GcdMemoryType == EfiGcdMemoryTypeNonExistent) { Status = EFI_NOT_FOUND; goto Done; } if (Entry->ImageHandle != NULL) { Status = EFI_ACCESS_DENIED; goto Done; } break; case GCD_REMOVE_IO_OPERATION: if (Entry->GcdIoType == EfiGcdIoTypeNonExistent) { Status = EFI_NOT_FOUND; goto Done; } if (Entry->ImageHandle != NULL) { Status = EFI_ACCESS_DENIED; goto Done; } break; // // Set attribute operations // case GCD_SET_ATTRIBUTES_MEMORY_OPERATION: if ((Attributes & EFI_MEMORY_RUNTIME) != 0) { if ((BaseAddress & EFI_PAGE_MASK) != 0 || (Length & EFI_PAGE_MASK) != 0) { Status = EFI_INVALID_PARAMETER; goto Done; } } if ((Entry->Capabilities & Attributes) != Attributes) { Status = EFI_UNSUPPORTED; goto Done; } break; } Link = Link->ForwardLink; } // // Allocate work space to perform this operation // Status = CoreAllocateGcdMapEntry (&TopEntry, &BottomEntry); if (EFI_ERROR (Status)) { Status = EFI_OUT_OF_RESOURCES; goto Done; } // // // if (Operation == GCD_SET_ATTRIBUTES_MEMORY_OPERATION) { // // Call CPU Arch Protocol to attempt to set attributes on the range // CpuArchAttributes = ConverToCpuArchAttributes (Attributes); if ( CpuArchAttributes != INVALID_CPU_ARCH_ATTRIBUTES ) { Status = CoreLocateProtocol (&gEfiCpuArchProtocolGuid, NULL, (VOID **)&CpuArch); if (EFI_ERROR (Status)) { Status = EFI_ACCESS_DENIED; goto Done; } Status = CpuArch->SetMemoryAttributes ( CpuArch, BaseAddress, Length, CpuArchAttributes ); if (EFI_ERROR (Status)) { goto Done; } } } // // Convert/Insert the list of descriptors from StartLink to EndLink // Link = StartLink; while (Link != EndLink->ForwardLink) { Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE); CoreInsertGcdMapEntry (Link, Entry, BaseAddress, Length, TopEntry, BottomEntry); switch (Operation) { // // Add operations // case GCD_ADD_MEMORY_OPERATION: Entry->GcdMemoryType = GcdMemoryType; if (GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) { Entry->Capabilities = Capabilities | EFI_MEMORY_RUNTIME | EFI_MEMORY_PORT_IO; } else { Entry->Capabilities = Capabilities | EFI_MEMORY_RUNTIME; } break; case GCD_ADD_IO_OPERATION: Entry->GcdIoType = GcdIoType; break; // // Free operations // case GCD_FREE_MEMORY_OPERATION: case GCD_FREE_IO_OPERATION: Entry->ImageHandle = NULL; Entry->DeviceHandle = NULL; break; // // Remove operations // case GCD_REMOVE_MEMORY_OPERATION: Entry->GcdMemoryType = EfiGcdMemoryTypeNonExistent; Entry->Capabilities = 0; break; case GCD_REMOVE_IO_OPERATION: Entry->GcdIoType = EfiGcdIoTypeNonExistent; break; // // Set attribute operations // case GCD_SET_ATTRIBUTES_MEMORY_OPERATION: Entry->Attributes = Attributes; break; } Link = Link->ForwardLink; } // // Cleanup // Status = CoreCleanupGcdMapEntry (TopEntry, BottomEntry, StartLink, EndLink, Map); Done: if ((Operation & GCD_MEMORY_SPACE_OPERATION) != 0) { CoreReleaseGcdMemoryLock (); } if ((Operation & GCD_IO_SPACE_OPERATION) != 0) { CoreReleaseGcdIoLock (); } return Status; } /** Check whether an entry could be used to allocate space. @param Operation Allocate memory or IO @param Entry The entry to be tested @param GcdMemoryType The desired memory type @param GcdIoType The desired IO type @retval EFI_NOT_FOUND The memory type does not match or there's an image handle on the entry. @retval EFI_UNSUPPORTED The operation unsupported. @retval EFI_SUCCESS It's ok for this entry to be used to allocate space. **/ STATIC EFI_STATUS CoreAllocateSpaceCheckEntry ( IN UINTN Operation, IN EFI_GCD_MAP_ENTRY *Entry, IN EFI_GCD_MEMORY_TYPE GcdMemoryType, IN EFI_GCD_IO_TYPE GcdIoType ) { if (Entry->ImageHandle != NULL) { return EFI_NOT_FOUND; } switch (Operation) { case GCD_ALLOCATE_MEMORY_OPERATION: if (Entry->GcdMemoryType != GcdMemoryType) { return EFI_NOT_FOUND; } break; case GCD_ALLOCATE_IO_OPERATION: if (Entry->GcdIoType != GcdIoType) { return EFI_NOT_FOUND; } break; default: return EFI_UNSUPPORTED; } return EFI_SUCCESS; } /** Allocate space on specified address and length. @param Operation The type of operation (memory or IO) @param GcdAllocateType The type of allocate operation @param GcdMemoryType The desired memory type @param GcdIoType The desired IO type @param Alignment Align with 2^Alignment @param Length Length to allocate @param BaseAddress Base address to allocate @param ImageHandle The image handle consume the allocated space. @param DeviceHandle The device handle consume the allocated space. @retval EFI_INVALID_PARAMETER Invalid parameter. @retval EFI_NOT_FOUND No descriptor for the desired space exists. @retval EFI_SUCCESS Space successfully allocated. **/ STATIC EFI_STATUS CoreAllocateSpace ( IN UINTN Operation, IN EFI_GCD_ALLOCATE_TYPE GcdAllocateType, IN EFI_GCD_MEMORY_TYPE GcdMemoryType, IN EFI_GCD_IO_TYPE GcdIoType, IN UINTN Alignment, IN UINT64 Length, IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress, IN EFI_HANDLE ImageHandle, IN EFI_HANDLE DeviceHandle OPTIONAL ) { EFI_STATUS Status; EFI_PHYSICAL_ADDRESS AlignmentMask; EFI_PHYSICAL_ADDRESS MaxAddress; LIST_ENTRY *Map; LIST_ENTRY *Link; LIST_ENTRY *SubLink; EFI_GCD_MAP_ENTRY *Entry; EFI_GCD_MAP_ENTRY *TopEntry; EFI_GCD_MAP_ENTRY *BottomEntry; LIST_ENTRY *StartLink; LIST_ENTRY *EndLink; BOOLEAN Found; // // Make sure parameters are valid // if (GcdAllocateType < 0 || GcdAllocateType >= EfiGcdMaxAllocateType) { return EFI_INVALID_PARAMETER; } if (GcdMemoryType < 0 || GcdMemoryType >= EfiGcdMemoryTypeMaximum) { return EFI_INVALID_PARAMETER; } if (GcdIoType < 0 || GcdIoType >= EfiGcdIoTypeMaximum) { return EFI_INVALID_PARAMETER; } if (BaseAddress == NULL) { return EFI_INVALID_PARAMETER; } if (ImageHandle == NULL) { return EFI_INVALID_PARAMETER; } if (Alignment >= 64) { return EFI_NOT_FOUND; } if (Length == 0) { return EFI_INVALID_PARAMETER; } Map = NULL; if ((Operation & GCD_MEMORY_SPACE_OPERATION) != 0) { CoreAcquireGcdMemoryLock (); Map = &mGcdMemorySpaceMap; } if ((Operation & GCD_IO_SPACE_OPERATION) != 0) { CoreAcquireGcdIoLock (); Map = &mGcdIoSpaceMap; } Found = FALSE; StartLink = NULL; EndLink = NULL; // // Compute alignment bit mask // AlignmentMask = LShiftU64 (1, Alignment) - 1; if (GcdAllocateType == EfiGcdAllocateAddress) { // // Verify that the BaseAddress passed in is aligned correctly // if ((*BaseAddress & AlignmentMask) != 0) { Status = EFI_NOT_FOUND; goto Done; } // // Search for the list of descriptors that cover the range BaseAddress to BaseAddress+Length // Status = CoreSearchGcdMapEntry (*BaseAddress, Length, &StartLink, &EndLink, Map); if (EFI_ERROR (Status)) { Status = EFI_NOT_FOUND; goto Done; } // // Verify that the list of descriptors are unallocated memory matching GcdMemoryType. // Link = StartLink; while (Link != EndLink->ForwardLink) { Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE); Link = Link->ForwardLink; Status = CoreAllocateSpaceCheckEntry (Operation, Entry, GcdMemoryType, GcdIoType); if (EFI_ERROR (Status)) { goto Done; } } Found = TRUE; } else { Entry = CR (Map->BackLink, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE); // // Compute the maximum address to use in the search algorithm // if (GcdAllocateType == EfiGcdAllocateMaxAddressSearchBottomUp || GcdAllocateType == EfiGcdAllocateMaxAddressSearchTopDown ) { MaxAddress = *BaseAddress; } else { MaxAddress = Entry->EndAddress; } // // Verify that the list of descriptors are unallocated memory matching GcdMemoryType. // if (GcdAllocateType == EfiGcdAllocateMaxAddressSearchTopDown || GcdAllocateType == EfiGcdAllocateAnySearchTopDown ) { Link = Map->BackLink; } else { Link = Map->ForwardLink; } while (Link != Map) { Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE); if (GcdAllocateType == EfiGcdAllocateMaxAddressSearchTopDown || GcdAllocateType == EfiGcdAllocateAnySearchTopDown ) { Link = Link->BackLink; } else { Link = Link->ForwardLink; } Status = CoreAllocateSpaceCheckEntry (Operation, Entry, GcdMemoryType, GcdIoType); if (EFI_ERROR (Status)) { continue; } if (GcdAllocateType == EfiGcdAllocateMaxAddressSearchTopDown || GcdAllocateType == EfiGcdAllocateAnySearchTopDown ) { if ((Entry->BaseAddress + Length) > MaxAddress) { continue; } if (Length > (Entry->EndAddress + 1)) { Status = EFI_NOT_FOUND; goto Done; } if (Entry->EndAddress > MaxAddress) { *BaseAddress = MaxAddress; } else { *BaseAddress = Entry->EndAddress; } *BaseAddress = (*BaseAddress + 1 - Length) & (~AlignmentMask); } else { *BaseAddress = (Entry->BaseAddress + AlignmentMask) & (~AlignmentMask); if ((*BaseAddress + Length - 1) > MaxAddress) { Status = EFI_NOT_FOUND; goto Done; } } // // Search for the list of descriptors that cover the range BaseAddress to BaseAddress+Length // Status = CoreSearchGcdMapEntry (*BaseAddress, Length, &StartLink, &EndLink, Map); if (EFI_ERROR (Status)) { Status = EFI_NOT_FOUND; goto Done; } Link = StartLink; // // Verify that the list of descriptors are unallocated memory matching GcdMemoryType. // Found = TRUE; SubLink = StartLink; while (SubLink != EndLink->ForwardLink) { Entry = CR (SubLink, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE); Status = CoreAllocateSpaceCheckEntry (Operation, Entry, GcdMemoryType, GcdIoType); if (EFI_ERROR (Status)) { Link = SubLink; Found = FALSE; break; } SubLink = SubLink->ForwardLink; } if (Found) { break; } } } if (!Found) { Status = EFI_NOT_FOUND; goto Done; } // // Allocate work space to perform this operation // Status = CoreAllocateGcdMapEntry (&TopEntry, &BottomEntry); if (EFI_ERROR (Status)) { Status = EFI_OUT_OF_RESOURCES; goto Done; } // // Convert/Insert the list of descriptors from StartLink to EndLink // Link = StartLink; while (Link != EndLink->ForwardLink) { Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE); CoreInsertGcdMapEntry (Link, Entry, *BaseAddress, Length, TopEntry, BottomEntry); Entry->ImageHandle = ImageHandle; Entry->DeviceHandle = DeviceHandle; Link = Link->ForwardLink; } // // Cleanup // Status = CoreCleanupGcdMapEntry (TopEntry, BottomEntry, StartLink, EndLink, Map); Done: if ((Operation & GCD_MEMORY_SPACE_OPERATION) != 0) { CoreReleaseGcdMemoryLock (); } if ((Operation & GCD_IO_SPACE_OPERATION) !=0) { CoreReleaseGcdIoLock (); } return Status; } /** Add a segment of memory to GCD map. @param GcdMemoryType Memory type of the segment. @param BaseAddress Base address of the segment. @param Length Length of the segment. @param Capabilities alterable attributes of the segment. @retval EFI_INVALID_PARAMETER Invalid parameters. @retval EFI_SUCCESS Successfully add a segment of memory space. **/ STATIC EFI_STATUS CoreInternalAddMemorySpace ( IN EFI_GCD_MEMORY_TYPE GcdMemoryType, IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 Capabilities ) { // // Make sure parameters are valid // if (GcdMemoryType <= EfiGcdMemoryTypeNonExistent || GcdMemoryType >= EfiGcdMemoryTypeMaximum) { return EFI_INVALID_PARAMETER; } return CoreConvertSpace (GCD_ADD_MEMORY_OPERATION, GcdMemoryType, (EFI_GCD_IO_TYPE) 0, BaseAddress, Length, Capabilities, 0); } // // GCD Core Services // /** Allocates nonexistent memory, reserved memory, system memory, or memorymapped I/O resources from the global coherency domain of the processor. @param GcdAllocateType The type of allocate operation @param GcdMemoryType The desired memory type @param Alignment Align with 2^Alignment @param Length Length to allocate @param BaseAddress Base address to allocate @param ImageHandle The image handle consume the allocated space. @param DeviceHandle The device handle consume the allocated space. @retval EFI_INVALID_PARAMETER Invalid parameter. @retval EFI_NOT_FOUND No descriptor contains the desired space. @retval EFI_SUCCESS Memory space successfully allocated. **/ EFI_STATUS CoreAllocateMemorySpace ( IN EFI_GCD_ALLOCATE_TYPE GcdAllocateType, IN EFI_GCD_MEMORY_TYPE GcdMemoryType, IN UINTN Alignment, IN UINT64 Length, IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress, IN EFI_HANDLE ImageHandle, IN EFI_HANDLE DeviceHandle OPTIONAL ) { return CoreAllocateSpace ( GCD_ALLOCATE_MEMORY_OPERATION, GcdAllocateType, GcdMemoryType, (EFI_GCD_IO_TYPE) 0, Alignment, Length, BaseAddress, ImageHandle, DeviceHandle ); } /** Adds reserved memory, system memory, or memory-mapped I/O resources to the global coherency domain of the processor. @param GcdMemoryType Memory type of the memory space. @param BaseAddress Base address of the memory space. @param Length Length of the memory space. @param Capabilities alterable attributes of the memory space. @retval EFI_SUCCESS Merged this memory space into GCD map. **/ EFI_STATUS CoreAddMemorySpace ( IN EFI_GCD_MEMORY_TYPE GcdMemoryType, IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 Capabilities ) { EFI_STATUS Status; EFI_PHYSICAL_ADDRESS PageBaseAddress; UINT64 PageLength; Status = CoreInternalAddMemorySpace (GcdMemoryType, BaseAddress, Length, Capabilities); if (!EFI_ERROR (Status) && GcdMemoryType == EfiGcdMemoryTypeSystemMemory) { PageBaseAddress = PageAlignLength (BaseAddress); PageLength = PageAlignLength (BaseAddress + Length - PageBaseAddress); Status = CoreAllocateMemorySpace ( EfiGcdAllocateAddress, GcdMemoryType, EFI_PAGE_SHIFT, PageLength, &PageBaseAddress, gDxeCoreImageHandle, NULL ); if (!EFI_ERROR (Status)) { CoreAddMemoryDescriptor ( EfiConventionalMemory, PageBaseAddress, RShiftU64 (PageLength, EFI_PAGE_SHIFT), Capabilities ); } else { for (; PageLength != 0; PageLength -= EFI_PAGE_SIZE, PageBaseAddress += EFI_PAGE_SIZE) { Status = CoreAllocateMemorySpace ( EfiGcdAllocateAddress, GcdMemoryType, EFI_PAGE_SHIFT, EFI_PAGE_SIZE, &PageBaseAddress, gDxeCoreImageHandle, NULL ); if (!EFI_ERROR (Status)) { CoreAddMemoryDescriptor ( EfiConventionalMemory, PageBaseAddress, 1, Capabilities ); } } } } return Status; } /** Frees nonexistent memory, reserved memory, system memory, or memory-mapped I/O resources from the global coherency domain of the processor. @param BaseAddress Base address of the memory space. @param Length Length of the memory space. @retval EFI_SUCCESS Space successfully freed. **/ EFI_STATUS CoreFreeMemorySpace ( IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length ) { return CoreConvertSpace (GCD_FREE_MEMORY_OPERATION, (EFI_GCD_MEMORY_TYPE) 0, (EFI_GCD_IO_TYPE) 0, BaseAddress, Length, 0, 0); } /** Removes reserved memory, system memory, or memory-mapped I/O resources from the global coherency domain of the processor. @param BaseAddress Base address of the memory space. @param Length Length of the memory space. @retval EFI_SUCCESS Successfully remove a segment of memory space. **/ EFI_STATUS CoreRemoveMemorySpace ( IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length ) { return CoreConvertSpace (GCD_REMOVE_MEMORY_OPERATION, (EFI_GCD_MEMORY_TYPE) 0, (EFI_GCD_IO_TYPE) 0, BaseAddress, Length, 0, 0); } /** Build a memory descriptor according to an entry. @param Descriptor The descriptor to be built @param Entry According to this entry **/ STATIC VOID BuildMemoryDescriptor ( IN OUT EFI_GCD_MEMORY_SPACE_DESCRIPTOR *Descriptor, IN EFI_GCD_MAP_ENTRY *Entry ) { Descriptor->BaseAddress = Entry->BaseAddress; Descriptor->Length = Entry->EndAddress - Entry->BaseAddress + 1; Descriptor->Capabilities = Entry->Capabilities; Descriptor->Attributes = Entry->Attributes; Descriptor->GcdMemoryType = Entry->GcdMemoryType; Descriptor->ImageHandle = Entry->ImageHandle; Descriptor->DeviceHandle = Entry->DeviceHandle; } /** Retrieves the descriptor for a memory region containing a specified address. @param BaseAddress Specified start address @param Descriptor Specified length @retval EFI_INVALID_PARAMETER Invalid parameter @retval EFI_SUCCESS Successfully get memory space descriptor. **/ EFI_STATUS CoreGetMemorySpaceDescriptor ( IN EFI_PHYSICAL_ADDRESS BaseAddress, OUT EFI_GCD_MEMORY_SPACE_DESCRIPTOR *Descriptor ) { EFI_STATUS Status; LIST_ENTRY *StartLink; LIST_ENTRY *EndLink; EFI_GCD_MAP_ENTRY *Entry; // // Make sure parameters are valid // if (Descriptor == NULL) { return EFI_INVALID_PARAMETER; } CoreAcquireGcdMemoryLock (); // // Search for the list of descriptors that contain BaseAddress // Status = CoreSearchGcdMapEntry (BaseAddress, 1, &StartLink, &EndLink, &mGcdMemorySpaceMap); if (EFI_ERROR (Status)) { Status = EFI_NOT_FOUND; } else { // // Copy the contents of the found descriptor into Descriptor // Entry = CR (StartLink, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE); BuildMemoryDescriptor (Descriptor, Entry); } CoreReleaseGcdMemoryLock (); return Status; } /** Modifies the attributes for a memory region in the global coherency domain of the processor. @param BaseAddress Specified start address @param Length Specified length @param Attributes Specified attributes @retval EFI_SUCCESS Successfully set attribute of a segment of memory space. **/ EFI_STATUS CoreSetMemorySpaceAttributes ( IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 Attributes ) { return CoreConvertSpace (GCD_SET_ATTRIBUTES_MEMORY_OPERATION, (EFI_GCD_MEMORY_TYPE) 0, (EFI_GCD_IO_TYPE) 0, BaseAddress, Length, 0, Attributes); } /** Returns a map of the memory resources in the global coherency domain of the processor. @param NumberOfDescriptors Number of descriptors. @param MemorySpaceMap Descriptor array @retval EFI_INVALID_PARAMETER Invalid parameter @retval EFI_OUT_OF_RESOURCES No enough buffer to allocate @retval EFI_SUCCESS Successfully get memory space map. **/ EFI_STATUS CoreGetMemorySpaceMap ( OUT UINTN *NumberOfDescriptors, OUT EFI_GCD_MEMORY_SPACE_DESCRIPTOR **MemorySpaceMap ) { EFI_STATUS Status; LIST_ENTRY *Link; EFI_GCD_MAP_ENTRY *Entry; EFI_GCD_MEMORY_SPACE_DESCRIPTOR *Descriptor; // // Make sure parameters are valid // if (NumberOfDescriptors == NULL) { return EFI_INVALID_PARAMETER; } if (MemorySpaceMap == NULL) { return EFI_INVALID_PARAMETER; } CoreAcquireGcdMemoryLock (); // // Count the number of descriptors // *NumberOfDescriptors = CoreCountGcdMapEntry (&mGcdMemorySpaceMap); // // Allocate the MemorySpaceMap // *MemorySpaceMap = CoreAllocateBootServicesPool (*NumberOfDescriptors * sizeof (EFI_GCD_MEMORY_SPACE_DESCRIPTOR)); if (*MemorySpaceMap == NULL) { Status = EFI_OUT_OF_RESOURCES; goto Done; } // // Fill in the MemorySpaceMap // Descriptor = *MemorySpaceMap; Link = mGcdMemorySpaceMap.ForwardLink; while (Link != &mGcdMemorySpaceMap) { Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE); BuildMemoryDescriptor (Descriptor, Entry); Descriptor++; Link = Link->ForwardLink; } Status = EFI_SUCCESS; Done: CoreReleaseGcdMemoryLock (); return Status; } /** Adds reserved I/O or I/O resources to the global coherency domain of the processor. @param GcdIoType IO type of the segment. @param BaseAddress Base address of the segment. @param Length Length of the segment. @retval EFI_SUCCESS Merged this segment into GCD map. @retval EFI_INVALID_PARAMETER Parameter not valid **/ EFI_STATUS CoreAddIoSpace ( IN EFI_GCD_IO_TYPE GcdIoType, IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length ) { // // Make sure parameters are valid // if (GcdIoType <= EfiGcdIoTypeNonExistent || GcdIoType >= EfiGcdIoTypeMaximum) { return EFI_INVALID_PARAMETER; } return CoreConvertSpace (GCD_ADD_IO_OPERATION, (EFI_GCD_MEMORY_TYPE) 0, GcdIoType, BaseAddress, Length, 0, 0); } /** Allocates nonexistent I/O, reserved I/O, or I/O resources from the global coherency domain of the processor. @param GcdAllocateType The type of allocate operation @param GcdIoType The desired IO type @param Alignment Align with 2^Alignment @param Length Length to allocate @param BaseAddress Base address to allocate @param ImageHandle The image handle consume the allocated space. @param DeviceHandle The device handle consume the allocated space. @retval EFI_INVALID_PARAMETER Invalid parameter. @retval EFI_NOT_FOUND No descriptor contains the desired space. @retval EFI_SUCCESS IO space successfully allocated. **/ EFI_STATUS CoreAllocateIoSpace ( IN EFI_GCD_ALLOCATE_TYPE GcdAllocateType, IN EFI_GCD_IO_TYPE GcdIoType, IN UINTN Alignment, IN UINT64 Length, IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress, IN EFI_HANDLE ImageHandle, IN EFI_HANDLE DeviceHandle OPTIONAL ) { return CoreAllocateSpace ( GCD_ALLOCATE_IO_OPERATION, GcdAllocateType, (EFI_GCD_MEMORY_TYPE) 0, GcdIoType, Alignment, Length, BaseAddress, ImageHandle, DeviceHandle ); } /** Frees nonexistent I/O, reserved I/O, or I/O resources from the global coherency domain of the processor. @param BaseAddress Base address of the segment. @param Length Length of the segment. @retval EFI_SUCCESS Space successfully freed. **/ EFI_STATUS CoreFreeIoSpace ( IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length ) { return CoreConvertSpace (GCD_FREE_IO_OPERATION, (EFI_GCD_MEMORY_TYPE) 0, (EFI_GCD_IO_TYPE) 0, BaseAddress, Length, 0, 0); } /** Removes reserved I/O or I/O resources from the global coherency domain of the processor. @param BaseAddress Base address of the segment. @param Length Length of the segment. @retval EFI_SUCCESS Successfully removed a segment of IO space. **/ EFI_STATUS CoreRemoveIoSpace ( IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length ) { return CoreConvertSpace (GCD_REMOVE_IO_OPERATION, (EFI_GCD_MEMORY_TYPE) 0, (EFI_GCD_IO_TYPE) 0, BaseAddress, Length, 0, 0); } /** Build a IO descriptor according to an entry. @param Descriptor The descriptor to be built @param Entry According to this entry **/ STATIC VOID BuildIoDescriptor ( IN EFI_GCD_IO_SPACE_DESCRIPTOR *Descriptor, IN EFI_GCD_MAP_ENTRY *Entry ) { Descriptor->BaseAddress = Entry->BaseAddress; Descriptor->Length = Entry->EndAddress - Entry->BaseAddress + 1; Descriptor->GcdIoType = Entry->GcdIoType; Descriptor->ImageHandle = Entry->ImageHandle; Descriptor->DeviceHandle = Entry->DeviceHandle; } /** Retrieves the descriptor for an I/O region containing a specified address. @param BaseAddress Specified start address @param Descriptor Specified length @retval EFI_INVALID_PARAMETER Descriptor is NULL. @retval EFI_SUCCESS Successfully get the IO space descriptor. **/ EFI_STATUS CoreGetIoSpaceDescriptor ( IN EFI_PHYSICAL_ADDRESS BaseAddress, OUT EFI_GCD_IO_SPACE_DESCRIPTOR *Descriptor ) { EFI_STATUS Status; LIST_ENTRY *StartLink; LIST_ENTRY *EndLink; EFI_GCD_MAP_ENTRY *Entry; // // Make sure parameters are valid // if (Descriptor == NULL) { return EFI_INVALID_PARAMETER; } CoreAcquireGcdIoLock (); // // Search for the list of descriptors that contain BaseAddress // Status = CoreSearchGcdMapEntry (BaseAddress, 1, &StartLink, &EndLink, &mGcdIoSpaceMap); if (EFI_ERROR (Status)) { Status = EFI_NOT_FOUND; } else { // // Copy the contents of the found descriptor into Descriptor // Entry = CR (StartLink, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE); BuildIoDescriptor (Descriptor, Entry); } CoreReleaseGcdIoLock (); return Status; } /** Returns a map of the I/O resources in the global coherency domain of the processor. @param NumberOfDescriptors Number of descriptors. @param IoSpaceMap Descriptor array @retval EFI_INVALID_PARAMETER Invalid parameter @retval EFI_OUT_OF_RESOURCES No enough buffer to allocate @retval EFI_SUCCESS Successfully get IO space map. **/ EFI_STATUS CoreGetIoSpaceMap ( OUT UINTN *NumberOfDescriptors, OUT EFI_GCD_IO_SPACE_DESCRIPTOR **IoSpaceMap ) { EFI_STATUS Status; LIST_ENTRY *Link; EFI_GCD_MAP_ENTRY *Entry; EFI_GCD_IO_SPACE_DESCRIPTOR *Descriptor; // // Make sure parameters are valid // if (NumberOfDescriptors == NULL) { return EFI_INVALID_PARAMETER; } if (IoSpaceMap == NULL) { return EFI_INVALID_PARAMETER; } CoreAcquireGcdIoLock (); // // Count the number of descriptors // *NumberOfDescriptors = CoreCountGcdMapEntry (&mGcdIoSpaceMap); // // Allocate the IoSpaceMap // *IoSpaceMap = CoreAllocateBootServicesPool (*NumberOfDescriptors * sizeof (EFI_GCD_IO_SPACE_DESCRIPTOR)); if (*IoSpaceMap == NULL) { Status = EFI_OUT_OF_RESOURCES; goto Done; } // // Fill in the IoSpaceMap // Descriptor = *IoSpaceMap; Link = mGcdIoSpaceMap.ForwardLink; while (Link != &mGcdIoSpaceMap) { Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE); BuildIoDescriptor (Descriptor, Entry); Descriptor++; Link = Link->ForwardLink; } Status = EFI_SUCCESS; Done: CoreReleaseGcdIoLock (); return Status; } /** Converts a Resource Descriptor HOB attributes mask to an EFI Memory Descriptor capabilities mask @param GcdMemoryType Type of resource in the GCD memory map. @param Attributes The attribute mask in the Resource Descriptor HOB. @return The capabilities mask for an EFI Memory Descriptor. **/ STATIC UINT64 CoreConvertResourceDescriptorHobAttributesToCapabilities ( EFI_GCD_MEMORY_TYPE GcdMemoryType, UINT64 Attributes ) { UINT64 Capabilities; GCD_ATTRIBUTE_CONVERSION_ENTRY *Conversion; // // Convert the Resource HOB Attributes to an EFI Memory Capabilities mask // for (Capabilities = 0, Conversion = mAttributeConversionTable; Conversion->Attribute != 0; Conversion++) { if (Conversion->Memory || (GcdMemoryType != EfiGcdMemoryTypeSystemMemory)) { if (Attributes & Conversion->Attribute) { Capabilities |= Conversion->Capability; } } } return Capabilities; } /** External function. Initializes the GCD and memory services based on the memory descriptor HOBs. This function is responsible for priming the GCD map and the memory map, so memory allocations and resource allocations can be made. The first part of this function can not depend on any memory services until at least one memory descriptor is provided to the memory services. Then the memory services can be used to intialize the GCD map. @param HobStart The start address of the HOB. @param MemoryBaseAddress Start address of memory region found to init DXE core. @param MemoryLength Length of memory region found to init DXE core. @retval EFI_SUCCESS Memory services successfully initialized. **/ EFI_STATUS CoreInitializeMemoryServices ( IN VOID **HobStart, OUT EFI_PHYSICAL_ADDRESS *MemoryBaseAddress, OUT UINT64 *MemoryLength ) { EFI_PEI_HOB_POINTERS Hob; EFI_MEMORY_TYPE_INFORMATION *EfiMemoryTypeInformation; UINTN DataSize; BOOLEAN Found; EFI_HOB_HANDOFF_INFO_TABLE *PhitHob; EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob; EFI_HOB_RESOURCE_DESCRIPTOR *PhitResourceHob; EFI_PHYSICAL_ADDRESS BaseAddress; UINT64 Length; UINT64 Attributes; UINT64 Capabilities; EFI_PHYSICAL_ADDRESS MaxMemoryBaseAddress; UINT64 MaxMemoryLength; UINT64 MaxMemoryAttributes; EFI_PHYSICAL_ADDRESS MaxAddress; EFI_PHYSICAL_ADDRESS HighAddress; EFI_HOB_RESOURCE_DESCRIPTOR *MaxResourceHob; EFI_HOB_GUID_TYPE *GuidHob; // // Point at the first HOB. This must be the PHIT HOB. // Hob.Raw = *HobStart; ASSERT (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_HANDOFF); // // Initialize the spin locks and maps in the memory services. // Also fill in the memory services into the EFI Boot Services Table // CoreInitializePool (); // // Initialize Local Variables // PhitResourceHob = NULL; MaxResourceHob = NULL; ResourceHob = NULL; BaseAddress = 0; Length = 0; Attributes = 0; MaxMemoryBaseAddress = 0; MaxMemoryLength = 0; MaxMemoryAttributes = 0; // // Cache the PHIT HOB for later use // PhitHob = Hob.HandoffInformationTable; // // See if a Memory Type Information HOB is available // GuidHob = GetFirstGuidHob (&gEfiMemoryTypeInformationGuid); if (GuidHob != NULL) { EfiMemoryTypeInformation = GET_GUID_HOB_DATA (GuidHob); DataSize = GET_GUID_HOB_DATA_SIZE (GuidHob); if (EfiMemoryTypeInformation != NULL && DataSize > 0 && DataSize <= (EfiMaxMemoryType + 1) * sizeof (EFI_MEMORY_TYPE_INFORMATION)) { CopyMem (&gMemoryTypeInformation, EfiMemoryTypeInformation, DataSize); } } // // Find the Resource Descriptor HOB that contains range FreeMemoryBaseAddress..FreeMemoryLength // Length = 0; Found = FALSE; for (Hob.Raw = *HobStart; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) { if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) { ResourceHob = Hob.ResourceDescriptor; if (ResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY && (ResourceHob->ResourceAttribute & MEMORY_ATTRIBUTE_MASK) == TESTED_MEMORY_ATTRIBUTES ) { if (PhitHob->EfiFreeMemoryBottom >= ResourceHob->PhysicalStart && PhitHob->EfiFreeMemoryTop <= (ResourceHob->PhysicalStart + ResourceHob->ResourceLength) ) { // // Cache the resource descriptor HOB for the memory region described by the PHIT HOB // PhitResourceHob = ResourceHob; Found = TRUE; Attributes = PhitResourceHob->ResourceAttribute; BaseAddress = PageAlignAddress (PhitHob->EfiMemoryTop); Length = PageAlignLength (ResourceHob->PhysicalStart + ResourceHob->ResourceLength - BaseAddress); if (Length < MINIMUM_INITIAL_MEMORY_SIZE) { BaseAddress = PageAlignAddress (PhitHob->EfiFreeMemoryBottom); Length = PageAlignLength (PhitHob->EfiFreeMemoryTop - BaseAddress); if (Length < MINIMUM_INITIAL_MEMORY_SIZE) { BaseAddress = PageAlignAddress (ResourceHob->PhysicalStart); Length = PageAlignLength ((UINT64)((UINTN)*HobStart - BaseAddress)); } } break; } } } } // // Assert if a resource descriptor HOB for the memory region described by the PHIT was not found // ASSERT (Found); // // Search all the resource descriptor HOBs from the highest possible addresses down for a memory // region that is big enough to initialize the DXE core. Always skip the PHIT Resource HOB. // The max address must be within the physically addressible range for the processor. // MaxMemoryLength = 0; MaxAddress = EFI_MAX_ADDRESS; do { HighAddress = 0; Found = FALSE; // // Search for a tested memory region that is below MaxAddress // for (Hob.Raw = *HobStart; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) { // // See if this is a resource descriptor HOB that does not contain the PHIT. // if (Hob.ResourceDescriptor != PhitResourceHob && GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) { ResourceHob = Hob.ResourceDescriptor; // // See if this resource descrior HOB describes tested system memory below MaxAddress // if (ResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY && (ResourceHob->ResourceAttribute & MEMORY_ATTRIBUTE_MASK) == TESTED_MEMORY_ATTRIBUTES && ResourceHob->PhysicalStart + ResourceHob->ResourceLength <= MaxAddress ) { // // See if this is the highest tested system memory region below MaxAddress // if (ResourceHob->PhysicalStart > HighAddress) { MaxResourceHob = ResourceHob; HighAddress = MaxResourceHob->PhysicalStart; Found = TRUE; } } } } if (Found) { // // Compute the size of the tested memory region below MaxAddrees // MaxMemoryBaseAddress = PageAlignAddress (MaxResourceHob->PhysicalStart); MaxMemoryLength = PageAlignLength (MaxResourceHob->PhysicalStart + MaxResourceHob->ResourceLength - MaxMemoryBaseAddress); MaxMemoryAttributes = MaxResourceHob->ResourceAttribute; } MaxAddress = ResourceHob->PhysicalStart; } while (Found && MaxMemoryLength < MINIMUM_INITIAL_MEMORY_SIZE); // // // if ((Length < MINIMUM_INITIAL_MEMORY_SIZE) || (MaxMemoryBaseAddress > BaseAddress && MaxMemoryLength >= MINIMUM_INITIAL_MEMORY_SIZE) ) { BaseAddress = MaxMemoryBaseAddress; Length = MaxMemoryLength; Attributes = MaxMemoryAttributes; } // // If no memory regions are found that are big enough to initialize the DXE core, then ASSERT(). // ASSERT (Length >= MINIMUM_INITIAL_MEMORY_SIZE); // // Convert the Resource HOB Attributes to an EFI Memory Capabilities mask // Capabilities = CoreConvertResourceDescriptorHobAttributesToCapabilities (EfiGcdMemoryTypeSystemMemory, Attributes); // // Declare the very first memory region, so the EFI Memory Services are available. // CoreAddMemoryDescriptor ( EfiConventionalMemory, BaseAddress, RShiftU64 (Length, EFI_PAGE_SHIFT), Capabilities ); *MemoryBaseAddress = BaseAddress; *MemoryLength = Length; return EFI_SUCCESS; } /** External function. Initializes the GCD and memory services based on the memory descriptor HOBs. This function is responsible for priming the GCD map and the memory map, so memory allocations and resource allocations can be made. The first part of this function can not depend on any memory services until at least one memory descriptor is provided to the memory services. Then the memory services can be used to intialize the GCD map. The HobStart will be relocated to a pool buffer. @param HobStart The start address of the HOB @param MemoryBaseAddress Start address of memory region found to init DXE core. @param MemoryLength Length of memory region found to init DXE core. @retval EFI_SUCCESS GCD services successfully initialized. **/ EFI_STATUS CoreInitializeGcdServices ( IN OUT VOID **HobStart, IN EFI_PHYSICAL_ADDRESS MemoryBaseAddress, IN UINT64 MemoryLength ) { EFI_PEI_HOB_POINTERS Hob; VOID *NewHobList; EFI_HOB_HANDOFF_INFO_TABLE *PhitHob; UINT8 SizeOfMemorySpace; UINT8 SizeOfIoSpace; EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob; EFI_PHYSICAL_ADDRESS BaseAddress; UINT64 Length; EFI_STATUS Status; EFI_GCD_MAP_ENTRY *Entry; EFI_GCD_MEMORY_TYPE GcdMemoryType; EFI_GCD_IO_TYPE GcdIoType; EFI_GCD_MEMORY_SPACE_DESCRIPTOR Descriptor; EFI_HOB_MEMORY_ALLOCATION *MemoryHob; EFI_HOB_FIRMWARE_VOLUME *FirmwareVolumeHob; UINTN NumberOfDescriptors; EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap; UINTN Index; UINT64 Capabilities; EFI_HOB_CPU * CpuHob; // // Cache the PHIT HOB for later use // PhitHob = (EFI_HOB_HANDOFF_INFO_TABLE *)(*HobStart); // // Get the number of address lines in the I/O and Memory space for the CPU // CpuHob = GetFirstHob (EFI_HOB_TYPE_CPU); ASSERT (CpuHob != NULL); SizeOfMemorySpace = CpuHob->SizeOfMemorySpace; SizeOfIoSpace = CpuHob->SizeOfIoSpace; // // Initialize the GCD Memory Space Map // Entry = CoreAllocateCopyPool (sizeof (EFI_GCD_MAP_ENTRY), &mGcdMemorySpaceMapEntryTemplate); ASSERT (Entry != NULL); Entry->EndAddress = LShiftU64 (1, SizeOfMemorySpace) - 1; InsertHeadList (&mGcdMemorySpaceMap, &Entry->Link); // // Initialize the GCD I/O Space Map // Entry = CoreAllocateCopyPool (sizeof (EFI_GCD_MAP_ENTRY), &mGcdIoSpaceMapEntryTemplate); ASSERT (Entry != NULL); Entry->EndAddress = LShiftU64 (1, SizeOfIoSpace) - 1; InsertHeadList (&mGcdIoSpaceMap, &Entry->Link); // // Walk the HOB list and add all resource descriptors to the GCD // for (Hob.Raw = *HobStart; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) { GcdMemoryType = EfiGcdMemoryTypeNonExistent; GcdIoType = EfiGcdIoTypeNonExistent; if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) { ResourceHob = Hob.ResourceDescriptor; switch (ResourceHob->ResourceType) { case EFI_RESOURCE_SYSTEM_MEMORY: if ((ResourceHob->ResourceAttribute & MEMORY_ATTRIBUTE_MASK) == TESTED_MEMORY_ATTRIBUTES) { GcdMemoryType = EfiGcdMemoryTypeSystemMemory; } if ((ResourceHob->ResourceAttribute & MEMORY_ATTRIBUTE_MASK) == INITIALIZED_MEMORY_ATTRIBUTES) { GcdMemoryType = EfiGcdMemoryTypeReserved; } if ((ResourceHob->ResourceAttribute & MEMORY_ATTRIBUTE_MASK) == PRESENT_MEMORY_ATTRIBUTES) { GcdMemoryType = EfiGcdMemoryTypeReserved; } break; case EFI_RESOURCE_MEMORY_MAPPED_IO: case EFI_RESOURCE_FIRMWARE_DEVICE: GcdMemoryType = EfiGcdMemoryTypeMemoryMappedIo; break; case EFI_RESOURCE_MEMORY_MAPPED_IO_PORT: case EFI_RESOURCE_MEMORY_RESERVED: GcdMemoryType = EfiGcdMemoryTypeReserved; break; case EFI_RESOURCE_IO: GcdIoType = EfiGcdIoTypeIo; break; case EFI_RESOURCE_IO_RESERVED: GcdIoType = EfiGcdIoTypeReserved; break; } if (GcdMemoryType != EfiGcdMemoryTypeNonExistent) { // // Convert the Resource HOB Attributes to an EFI Memory Capabilities mask // Capabilities = CoreConvertResourceDescriptorHobAttributesToCapabilities ( GcdMemoryType, ResourceHob->ResourceAttribute ); Status = CoreInternalAddMemorySpace ( GcdMemoryType, ResourceHob->PhysicalStart, ResourceHob->ResourceLength, Capabilities ); } if (GcdIoType != EfiGcdIoTypeNonExistent) { Status = CoreAddIoSpace ( GcdIoType, ResourceHob->PhysicalStart, ResourceHob->ResourceLength ); } } } // // Allocate first memory region from the GCD by the DXE core // Status = CoreAllocateMemorySpace ( EfiGcdAllocateAddress, EfiGcdMemoryTypeSystemMemory, 0, MemoryLength, &MemoryBaseAddress, gDxeCoreImageHandle, NULL ); // // Walk the HOB list and allocate all memory space that is consumed by memory allocation HOBs, // and Firmware Volume HOBs. Also update the EFI Memory Map with the memory allocation HOBs. // for (Hob.Raw = *HobStart; !END_OF_HOB_LIST(Hob); Hob.Raw = GET_NEXT_HOB(Hob)) { if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_MEMORY_ALLOCATION) { MemoryHob = Hob.MemoryAllocation; BaseAddress = MemoryHob->AllocDescriptor.MemoryBaseAddress; Status = CoreGetMemorySpaceDescriptor (BaseAddress, &Descriptor); if (!EFI_ERROR (Status)) { Status = CoreAllocateMemorySpace ( EfiGcdAllocateAddress, Descriptor.GcdMemoryType, 0, MemoryHob->AllocDescriptor.MemoryLength, &BaseAddress, gDxeCoreImageHandle, NULL ); if (!EFI_ERROR (Status) && Descriptor.GcdMemoryType == EfiGcdMemoryTypeSystemMemory) { CoreAddMemoryDescriptor ( MemoryHob->AllocDescriptor.MemoryType, MemoryHob->AllocDescriptor.MemoryBaseAddress, RShiftU64 (MemoryHob->AllocDescriptor.MemoryLength, EFI_PAGE_SHIFT), Descriptor.Capabilities & (~EFI_MEMORY_RUNTIME) ); } } } if (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_FV) { FirmwareVolumeHob = Hob.FirmwareVolume; BaseAddress = FirmwareVolumeHob->BaseAddress; Status = CoreAllocateMemorySpace ( EfiGcdAllocateAddress, EfiGcdMemoryTypeMemoryMappedIo, 0, FirmwareVolumeHob->Length, &BaseAddress, gDxeCoreImageHandle, NULL ); } } // // Relocate HOB List to an allocated pool buffer. // NewHobList = CoreAllocateCopyPool ( (UINTN)PhitHob->EfiFreeMemoryBottom - (UINTN)(*HobStart), *HobStart ); ASSERT (NewHobList != NULL); *HobStart = NewHobList; gHobList = NewHobList; // // Add and allocate the remaining unallocated system memory to the memory services. // Status = CoreGetMemorySpaceMap (&NumberOfDescriptors, &MemorySpaceMap); for (Index = 0; Index < NumberOfDescriptors; Index++) { if (MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeSystemMemory) { if (MemorySpaceMap[Index].ImageHandle == NULL) { BaseAddress = PageAlignAddress (MemorySpaceMap[Index].BaseAddress); Length = PageAlignLength (MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length - BaseAddress); if (Length == 0 || MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length < BaseAddress) { continue; } CoreAddMemoryDescriptor ( EfiConventionalMemory, BaseAddress, RShiftU64 (Length, EFI_PAGE_SHIFT), MemorySpaceMap[Index].Capabilities & (~EFI_MEMORY_RUNTIME) ); Status = CoreAllocateMemorySpace ( EfiGcdAllocateAddress, EfiGcdMemoryTypeSystemMemory, 0, Length, &BaseAddress, gDxeCoreImageHandle, NULL ); } } } CoreFreePool (MemorySpaceMap); return EFI_SUCCESS; }